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Abstract

In the last years there has been a growing interest in the construction space-time

covariance functions. However, effective estimation methods for these models are some-

how unexplored. In this paper we propose a composite likelihood approach and a

weighted variant for the space-time estimation problem.

The proposed method can be a valid compromise between the computational bur-

dens, induced by the use of a maximum likelihood approach, and the loss of efficiency

induced by using a weighted least squares procedure. An identification criterion based

on the composite likelihood is also introduced. The effectiveness of the proposed pro-

cedure is illustrated through an extensive simulation experiment, and by reanalising

a data set on Irish wind speeds (Haslett and Raftery, 1989). We also address an im-

portant issue, which has been recently explored in the literature, on how to select an

appropriate space-time model by accounting for the tradeoff between goodness-of-fit

and model complexity.
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1. INTRODUCTION

In the last years there has been a great demand for models describing the evolution of envi-

ronmental or geophysical processes in space and time. In particular, there is a considerable

need for models able to catch the simultaneous behaviour of the spatial and temporal com-

ponents. If we considered them separately, a large amount of information would be probably

lost. The geostatistical approach models such dependence through data coming from a lim-

ited number of monitoring stations observed over time. These observations are considered

as a partial realisation of a spatio-temporal random field (RF) defined on a continuum space

per time. A typical assumption is that the field is Gaussian, so the modelling task entails to

the specification and estimation of space-time covariance functions.

Literature on space-time covariance models has been continuously increasing in the last

ten years. By starting from different settings and mathematical instruments, several au-

thors have produced considerable efforts in order to build nonseparable covariance functions.

Among many others, Jones and Zhang (1997), Cressie and Huang (1999), Christakos (2000),

De Cesare et al. (2001), Gneiting (2002) and Ma (2002), should be cited. Most of these contri-

butions deal with stationary fully symmetric space-time covariance functions, e.g. isotropic

in the spatial component and symmetric in the temporal one. Recently, new covariance

models have been proposed to face more realistic situations, such as anisotropy in space or

asymmetry in time (Stein, 2005a; Porcu et al., 2006).

However, space-time estimation is not so thoroughly developed in the literature. Maxi-

mum likelihood (ML) and related techniques are generally considered the best method for

estimating the parameters of space-time covariance models. For Gaussian RF with a given

parametric covariance function, exact computation of the likelihood requires calculation of

the inverse and determinant of the covariance matrix, and this evaluation is slow when the

number of observations is large. This fact motivates the search for approximations to the

likelihood function that require smaller computational burdens. For instance, if we assume

that the RF is stationary in time and data are collected at regular time intervals on a fixed
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monitoring network, Stein (2005b) shows, by extending the conditional approach proposed

by Vecchia (1988), that there are considerable computational gains in exploiting the natural

order induced by time.

Due to its ease of implementation, Weighted Least Squares (WLS) (Cressie, 1985) is

currently the most used estimation method (see, for instance, Gneiting et al. (2007)). In

general, WLS method requires a preliminary step, e.g. obtaining a nonparametric estimate

of the variogram (the method of moments is the most popular). Thus, a heteroschedastic

non-linear regression model is estimated, using the nonparametric estimates as response vari-

able. The last step requires computation of the correlation between the empirical variogram

estimates, and this operation needs caution, as emphasised by several authors (Genton, 1998;

Pardo-Iguzquiza and Dowd, 2001).

Another problem, often overcome by the literature, is the bias of the empirical variogram

when binning (typically for irregular grids) and its consequence on the WLS estimates.

Moreover, estimation of not fully symmetric models, as in Stein (2005a), or of anisotropic

(or nonstationary) in space and symmetric in time covariance functions, as in Porcu et al.

(2006), needs adapted versions of the method of moments variogram estimator.

Due to the aspects that have been stressed previously, the literature encourages the

proposal for new methodologies devoted to the approximation of the likelihood function for

a space-time data set.

In this paper, we suggest the use of composite likelihood approaches (Lindsay, 1988) to

estimate space-time dependence. Composite likelihood (CL for short) is a likelihood-based

approximation indicating a general class of pseudo-likelihoods based on the likelihood of

marginal or conditional events. In a pure spatial setting, Curriero and Lele (1999) introduced

CL for semivariogram estimation and showed that this method shares some of the best

properties of the WLS and ML methods. In particular, it does not depend on the choice of

lag bins and it is robust towards miss-specification of the distribution.

The use of CL methods in the spatio-temporal context has never been proposed by the

literature and this fact motivates our research.

We show, through an extensive simulation study, that our method induces considerable
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gains in efficiency with respect to WLS methods. These gains can be justified using well-

known results about the estimating equations. We also address an important issue, which

has been recently explored in the literature, on how to select an appropriate space-time

model by taking into account the tradeoff between goodness-of-fit and model complexity

(Huang et al., 2007). In this paper the authors used the Akaike Information Criterion and

the Bayesian Information Criterion which are based on the likelihood function. Here, we

propose an information criteria for model selection based on composite likelihood, exploiting

recent results in Varin and Vidoni (2005).

The plan of the paper is the following. Space-time covariance models and their estimation

methods are briefly reviewed in Sections 2 and 3. In Section 4 we introduce the CL and WCL

methods for space-time data and the adopted model selection criteria. In Section 5 we present

a simulation study and in Section 6 we re-analyse the Irish-wind speed dataset (Haslett and

Raftery, 1989). Finally Section 7 summarises our findings.

2. SPACE-TIME COVARIANCE MODELS

Let {Z(s, t), s ∈ R
d, t ∈ R} be a real-valued Gaussian space-time RF and assume that

Var[Z(s, t)] < ∞, for all s ∈ Rd, t ∈ R. The very high order of complexity of space-time

interactions calls for simplifying assumptions, such as those of intrinsic or weak stationarity,

that have implications on the existence of the moments of the RF.

Under the assumption of intrinsic stationarity, we have that E[Z(s, t)] = µ and Var(Z(s, t)−

Z(s′, t′)) = 2γ(h, u), where h = s − s′ ∈ R
d and u = t − t′ ∈ R are respectively the spa-

tial and temporal separation vectors. The mapping 2γ(h, u) : Rd × R → R is called the

space-time variogram associated to the intrinsically stationary RF.

A RF is weakly stationary if E[Z(s, t)] = µ, for all s, t and the covariance between

Z(s, t) and Z(s′, t′) depends only on the spatial and temporal separation vectors, namely

Cov(Z(s, t), Z(s′, t′)) = C(h, u). It is easy to see that weak stationarity implies intrinsic

stationarity, whilst the converse is in general not true. A covariance function is called

isotropic if it depends on the separation vectors only through their lengths ‖h‖ and |u|, i.e.

C(h, u) := C̃(‖h‖, |u|), for C̃ positive definite.

Covariance functions which are not isotropic are called anisotropic. In the literature the
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assumption of isotropy is very popular because of its simplicity and interpretability.

For weakly or intrinsically stationary RF’s, other simplifying assumptions are those of

separability and full symmetry. A separable model is obtained through the tensorial product

between a merely spatial covariance function and a temporal one. Following Mitchell et al.

(2005), we have

C(h, u) =
C(h, 0)C(0, u)

C(0, 0)
, ∀(h, u) ∈ R

d × R.

A simple example of separable model is the doubly exponential model, namely

C(h, u) = σ2 exp (−c‖h‖ − a|u|) , (1)

where c, a are positive scale parameters and σ2 is the variance of the RF.

Separability gives important computational benefits and consequently separable models

have been used even in situations in which they are not physically justifiable. Therefore

many reseachers have recently proposed nonseparable covariance classes for spatial-temporal

processes. For instance, Gneiting (2002) proposed the following model

C(h, u) =
σ2

(a|u|2α + 1)βd/2
exp

(
−

c‖h‖2γ

(a|u|2α + 1)βγ

)
, (2)

where a, c are positive scale parameters, α, γ ∈ [0, 1] are respectively temporal and spatial

smoothing parameters, β ∈ [0, 1] is a space-time interaction parameter, and σ2 is the variance

of the RF.

The product with the purely temporal covariance (a|u|2α+1)−1, fixing d = 2 and through

a convenient reparametrisation, gives an interesting variation of the previous model

C(h, u) =
σ2

(a|u|2α + 1)
exp

(
−

c‖h‖2γ

(a|u|2α + 1)βγ

)
. (3)

Note that if β = 0 we have a separable model.

The models defined by equations (1-2) are fully symmetric, e.g. they are rotationally

invariant (or isotropic) in the spatial component and symmetric in the temporal one, i.e.

C(h, u) = C̃(‖h‖, |u|). This implies the obvious identity,

C(h, u) = C(−h, u) = C(h,−u) = C(−h,−u),

for (h, u) ∈ Rd × R, as noticed by Gneiting (2002).
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The assumption of full symmetry is a useful restriction for constructing positive definite

functions, but the real world offers a number of situations in which this assumption is

frequently violated. A substantive improvement of the previous construction can be achieved

by working in two different directions: on the one hand, allowing anisotropy in space, and on

the other one, building models that are asymmetric in time. In this direction, new covariance

functions can be obtained by working in the Lagrangian framework (Cox and Isham, 1988).

Roughly speaking, the covariance is obtained as the expected value of a stationary co-

variance function CS on R
d

C(h, u) = EV(CS(h − Vu)),

where the random vector V incorporates some physical knowledge through a probabilistic

distribution and the expectation is taken with respect to its distribution. For instance, V

could represent the velocity vector in R3 and could be uniformly distributed on the unit

sphere. A Lagrangian version (Stein, 2005a) of the model (3) is

C(h, u) =
σ2

(a|u|2α + 1)

exp(−c‖h − εuv‖)

(a|u|2α + 1)β/2
, (4)

where a, c are positive scale parameters, α ∈ [0, 1] is a smoothing parameter, β ∈ [0, 1] is a

space-time interaction parameter, ε ∈ R controls the degree of asymmetry, σ2 is the variance,

and V is a degenerated distribution with mass on v. If v is a vector of the canonical basis

for Rd, the choice introduces an asymmetry only in one direction. Successful application for

modelling prevailing winds can be found in the previously mentioned papers.

3. ESTIMATION METHODS

In this section we review those estimation methods that are used throughout this paper.

This section is largely expository and for a more complete review, we refer the reader to the

textbooks of Cressie (1993) and Stein (1999).

The popularity of Least Squares methods (LS for short) is due to their ease of computation

and the fact that they are free of distributional assumptions. Let Z = (Z(s1, t1), . . . Z(sN , tN))′

be N observations from a intrinsically stationary space-time RF.

A nonparametric estimate of the semi-variogram is typically obtained through the method

of moments (Matheron, 1965). Assuming that points are disposed on a regular lattice, the
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estimate is

γ̂(h, u) =
1

2|N(h, u)|

∑

(i,j)∈N(h,u)

(Z(si, ti) − Z(sj, tj))
2,

where N(h, u) = {(i, j) : si − sj = h; ti − tj = u}.

Then, the following generalised sum of squares is minimised

(γ̂(h, u) − γ(h, u; θ))′ R(h, u; θ)−1 (γ̂(h, u) − γ(h, u; θ)) ,

where γ̂(h, u) = (γ̂(h1, u1), . . . , γ̂(hm, um))′, γ(h, u; θ) = (γ(h1, u1; θ), . . . , γ(hm, um; θ))′

and R is a definite positive matrix. A natural choice for R is var(γ̂(h, u)), obtained for

instance through the Pardo-Iguzquiza and Dowd (2001) approximation. Cressie (1985) sug-

gested an approximation of var(γ̂(h, u)) assuming a Gaussian RF and uncorrelation among

γ̂(hj, uj). The matrix R is replaced by a diagonal matrix where the diagonal entries are

calculated as

var(γ̂(hk, uk)) ≈ 2
γ(hk, uk; θ)2

|N(h,uk)|
, k = 1, . . . , m.

Thus, instead of minimising the generalised sum of squares, Cressie (1985) proposed to

minimise the weighted sum of squares

m∑

k=1

|N(hk, uk)|

γ(hk, uk; θ)2
(γ̂(hk, uk) − γ(hk, uk; θ))2 .

Barry et al. (1997) show that minimising this function corresponds to solving an estimating

equation whose bias is of order N(hk, uk)
−1. The WLS estimate has evident computational

gains but it depends on the γ̂(hk, uk), that are correlated.

Whenever the data are not regularly spaced, a tolerance region is needed in order to

get reasonable estimates, otherwise the number of points lying on regular separations would

be too small. If the data are regularly collected over time, but not over space, an adapted

version of N(h, u) could be N∆(h, u) = {(i, j) : si − sj ∈ Tol(h∆); ti − tj = u}, where

Tol(h∆) is some specified tolerance region ∆ around h. Anyway, any tolerance region

introduces a subjective choice in the estimation, and a nonnegligible bias that strongly

depends on the choice of the lag bins, N∆(hk, uk), that are chosen arbitrarily or on the base of

heuristic considerations. This drawback is even bigger when we want to estimate anisotropic

parametric models (Porcu et al., 2006). Moreover, in the case of space-time covariance
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functions built throughout the Lagrangian framework (Stein, 2005a), it is not clear how to

proceed with WLS estimation. Computation of the bias and its impact on WLS estimates

has been overcome by the literature. In a pure spatial setting, Muller (1999) noted that a

subjective choice of lag bins could have critical impact on the parameter estimates. In this

sense, he suggested that fitting based on the variogram cloud would avoid this drawback.

ML methods require the distribution of the underlying RF to be known and in literature

it is only developed the case of Gaussian RF (Mardia and Marshall, 1984; Pardo-Iguzquiza,

1998). Let Z = (Z(s1, t1), . . . Z(sN , tN))′ be N observations from a zero-mean Gaussian RF.

The log-likelihood function can be written as

l(θ) = − log |Σ(θ)| − Z
′Σ(θ)−1Z,

where Σ(θ) = Var(Z) depends on θ ∈ Θ ⊆ Rp. The ML estimator in a spatial setting has

desirable asymptotic properties like consistency and asymptotic normality under increasing

domain asymptotics (Mardia and Marshall, 1984). However applications of ML methods to

spatial data have been criticised for computational reasons. A potential drawbak is the mul-

timodality of the likelihood surface (Warnes and Ripley, 1987). Moreover, the most critical

part in likelihood calculation is to evaluate the determinant and inverse of Σ. This evalu-

ation could be theoretically carried out in O(N 2.81) steps (Aho et al., 1974) but the most

widely used algorithms such as Cholesky decomposition require O(N 3) steps. This can be

prohibitive if N is large. This motivated Vecchia (1988); Stein et al. (2004); Stein (2005b);

Caragea and Smith (2005); Fuentes (2007) to look for approximations to the likelihood func-

tion that require less than O(N 3) steps to evaluate, but that still have reasonable statistical

properties.

4. COMPOSITE LIKELIHOOD METHODS

Let {f(Z, θ), θ ∈ Θ} be a parametric family of joint densities for the observations Z ∈ D ⊆

R
N and consider a set of events {Ai : Ai ⊆ F, i ∈ I ⊆ N}, where F is a σ-algebra on D. The

logarithm of the composite likelihood (CL) (Lindsay, 1988) is defined as

CL(θ) =
∑

i∈I

log f(Z ∈ Ai, θ).
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The pioneering example in spatial statistics was the Besag pseudo-likelihood function for

lattice data (Besag, 1974), and we can find applications of CL in geostatistics (Curriero and

Lele, 1999), point processes (Guan, 2007), binary spatial data (Heagerty and Lele, 1998) and

image models (Nott and Ryden, 1999) amongst many others.

Let Z(s, t) be an intrinsically stationary RF with variogram 2γ(·, ·; θ), where θ is an

unknown p−dimensional parameter vector. We follow Curriero and Lele (1999) and consider

all possible differences U(s, s′, t, t′) = Z(s, t) − Z(s′, t′), s 6= s′, t 6= t′. We assume that the

distribution of these differences is Gaussian, i.e.

U(s, s′, t, t′) ∼ N(0, 2γ(s − s′, t − t′; θ)), (5)

that gives the negative log-likelihood

cl(s, s′, t, t′; θ) = log γ(s − s′, t − t′; θ) +
1

2

U2(s, s′, t, t′)

γ(s − s′, t − t′; θ)
.

Summing up all the possible differences, we get the composite likelihood function

CL(θ) =
N∑

i=1

N∑

j>i

cl(si, sj, ti, tj; θ). (6)

Note that the method does not request any inversion matrix and the order of computations

is O(N2). Computational gains can be further achieved if we consider a weigthed version of

composite likelihood in equation (6), namely

WCL(θ) =
N∑

i=1

N∑

j>i

cl(si, sj, ti, tj; θ)wi,j, (7)

where wi,j = 1 when ‖si − sj‖ ≤ h and |ti − tj| ≤ u, and 0 otherwise, for specified positive

values h and u defining the bandwidth of a space-time neighborhood. Note that the weights

should be adapted for dealing with geometric anisotropies. Estimates θ̂WCL are obtained

by minimising WCL(θ) with respect to θ. For this, we need to introduce some minimal

notation and write ∇γ(·, ·; θ) := δp

δθ1,··· ,δθp
γ(·, ·; θ1, · · · , θp).

The associated estimating function

s(θ) =
N∑

i=1

N∑

j>i

∇γ(si − sj, ti − tj; θ)

γ(si − sj, ti − tj; θ)

(
1 −

U2(si, sj, ti, tj)

2γ(si − sj, ti − tj; θ)

)
wi,j, (8)
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can be readily verified to be zero-unbiased, irrespectively of the distributional assumptions

imposed on U(si, sj, ti, tj). In Section 5 we show that (7) gives more efficient estimates than

(6). This can be also illustrated by considering a simple example in a spatial framework,

imposing that the spatial dependence can be catched by using an exponential variogram,

having equation γ(h; θ) = 1− exp(−3‖h‖/θ), θ > 0. Thus, in this case θ is a positive scalar

representing the range of the spatial correlation, e.g. the minimum lag at which the spatial

correlation of the underlying RF is negligible.

Assuming a spatial Gaussian RF, the inverse of the Godambe information (Godambe,

1991) associated to (8), using the relation

Cov(U(si, sj, ti, tj)
2, U(sl, sk, tl, tk)

2) = 2(γil − γjl − γjk + γik)
2,

where γij = γ(||si − sj||, θ), reduces to

G(θ) =
E[s(θ) 2]

[E∇s(θ) ]2
=

∑
i

∑
j>i

∑
l

∑
k>l

∇γij∇γlk

γ2

ijγ2

lk

(γil − γjl − γjk + γik)
2wi,jwl,k

2

[∑
i

∑
j>i

(
∇γij

γij

)2

wi,j

]2 . (9)

It can be appreciated that, for this example, the inverse of the Godambe information

only implies smoothness assumptions of the first order on the associated variogram, and a

very broad class of variograms satisfies this assumption.

Figure 1-a shows G(θ) as a function of h on a 7 × 7 regular grid in a square [1, 4]2 for

different values of θ. Pairs of locations separated for distances larger than h are ignored.

We can see that the efficiency increases with the spatial lag h, and attains the minimum

at the first lag available (h = 0.5). The gain is more evident when the spatial dependence,

θ, increases. Figure 1-b considers the same setting but under an irregular grid. Note that

in this spatial scheme, it seems dangerous to take h too small, and that the optimal h is

proportional to the spatial dependence, as could be expected.

An important issue in the geostatistical approach is the selection of an appropriate covari-

ance model, taking into account the tradeoff between goodness-of-fit and model complexity.

Model selection criteria as AIC and BIC have been proposed in a spatial (Hoeting et al., 2006)

and space-time (Huang et al., 2007) setting. Nevertheless, they depend on the computation

of the likelihood function. For the framework proposed in this paper, we can follow Varin
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Figure 1: Inverse of Godambe information matrix for an exponential variogram model,

γ(h; θ) = 1 − exp(−3‖h‖/θ). We considered 49 spatial locations on [1, 4]2 and θ = 1, 2, 3;

(a) a regular 7 × 7 grid, (b) 49 sites randomly located.

and Vidoni (2005), who introduce a model selection criterion based on the CL estimating

function.

More precisely, the CL information criterion selects the model maximising

CLIC(θ̂WCL) = WCL(θ̂WCL) + tr(ĴĤ−1), (10)

where Ĵ and Ĥ are consistent and first-order unbiased estimators for J(θ) = E(s(θ)s(θ)
′

)

and H(θ) = E(∇s(θ)), respectively.

These matrices could be estimated by

Ĥ =
∑

i

∑

j>i

∇γ̂ij∇γ̂′
ij

γ̂2
ij

wi,j

and

Ĵ =
1

2

∑

i

∑

j>i

∑

l

∑

k>l

∇γ̂ij∇γ̂′
lk

γ̂2
ijγ̂

2
lk

(γ̂il − γ̂jl − γ̂jk + γ̂ik)
2wi,jwl,k,

where γ̂ij = γ(si − sj, ti − tj; θ̂WCL) but evaluation of Ĵ is computationally expensive for

large datasets.
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Assume that the RF is stationary in time and data are collected at regular time intervals,

t = 1, . . . , T , on a fixed monitoring network of n sites and define Z t = (Z(s1, t), . . . , Z(sn, t))′.

In this case we can use a sub-sampling method (Heagerty and Lele, 1998; Heagerty and

Lumley, 2000). The idea of sub-sampling is to consider overlapping sub-sample Z
(m)
i =

(Z ′
i, . . . , Z

′
i+m−1)

′, i = 1, . . . , T − m + 1. In our case we can estimate J by

Ĵ =
1

(nT − mn + 1)

nT−mn+1∑

i=1

m

T
si(θ̂WCL)si(θ̂WCL)′,

where si(θ̂WCL) is calculated using the sub-samples Z
(m)
i . As far as the choice of the temporal

window size m, we refer the reader to section 2.6 of Heagerty and Lumley (2000).

Finally, we aim to remark that the definition of (10) relies on asymptotic properties of

the composite likelihood estimator, that are not fully developed for the space-time setting.

In this case, as data are regularly spaced on a lattice, some results can be obtained following

the approach in the appendix of Heagerty and Lele (1998), even if with tedious calculus.

5. SIMULATED DATA

In this section we describe a simulation study with the aim of examining and comparing the

performances of CL and WCL estimates with respect to WLS and ML ones. Simulations

were performed including the separable and nonseparable spatio-temporal covariance models,

respectively defined in equations (1) and (2).

The methods are compared in terms of (relative) mean squared errors (MSE), calculated

over 150 RF realisations, Z(s, t), s ∈ {1, . . . , N}2, t ∈ {1, . . . , T}, with N = 4, 7, 10 and

T = 15, 30, 45. The number of the observations was chosen in order to keep feasible the

computation of the full likelihood. We considered two different models:

1. The model in equation (1), that is a separable exponential model, with c = 2, a = 0.8,

σ2 = 1.7.

2. The model in equation (2), that is a nonseparable and fully symmetric model, with

c = 2, a = 0.8, σ2 = 1.7 (smoothing parameter equal to 0.5).

Tables 1 and 2 show the relative efficiency of the WLS and CL with respect to ML. CL

and WLS present almost the same efficiency, with a slight advantage for CL especially for
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N = 4 N = 7 N = 10

WLS CL WLS CL WLS CL

c 3.08 2.91 4.74 4.70 7.43 7.44

T = 15 a 1.36 1.27 1.82 1.80 2.10 2.10

σ2 1.04 1.03 1.01 1.02 1.04 1.03

c 3.64 3.55 5.32 5.23 8.34 8.33

T = 30 a 1.36 1.34 2.10 2.08 2.91 2.94

σ2 1.03 1.02 1.03 1.01 1.02 1.02

c 5.19 5.02 5.44 5.39 9.01 9.02

T = 45 a 1.40 1.12 2.14 2.14 3.10 3.11

σ2 1.05 1.03 1.04 1.04 1.03 1.02

Table 1: Relative efficiency, based on MSE, for WLS and CL estimation methods with

respect to ML, when model (1) is used with c = 2, a = 0.8, σ2 = 1.7.

small sample sizes. We also found that this advantage is even stronger for irregular grids

since the binning introduces a bias in the empirical variogram, as expected. As the choice

of the grids is somewhat arbitrary, we do not report the results.

The differences among the estimates seem to be clearer for the scale parameter, whereas

the three methods behave very similarly in terms of variance estimates.

Now we consider the weighted version of CL as in equation (7). In Table 3 we report the

MSE relative efficiencies for WCL for model (2) observed on a regular grid with N = 4, T =

45 for several combinations of spatial and temporal lags, respectively h and u lags. Similar

results (not reported here) have been obtained for different sample sizes. The remarkable

fact is that a careful lag selection leads to a significative improvement. We obtained similar

results for models (1) and (2) when fixing the scale parameters and estimating the smoothness

ones.

Finally, we show a small example of model identification using the CL information cri-

terion based on WCL. We considered 100 independent simulations from the Stein model in

equation (4) with N = 4 and T = 150 and three different settings:
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N = 4 N = 7 N = 10

WLS CL WLS CL WLS CL

c 7.88 7.21 11.84 11.80 15.23 15.26

T = 15 a 6.99 6.80 11.73 11.65 16.11 16.10

σ2 2.23 2.22 2.24 2.21 2.31 2.30

c 9.67 9.59 13.11 13.10 18.39 18.37

T = 30 a 10.23 10.12 14.25 14.25 18.11 18.09

σ2 2.30 2.20 2.29 2.28 2.41 2.40

c 11.21 11.02 15.94 15.92 20.12 20.12

T = 45 a 12.09 11.91 14.98 14.99 19.61 19.60

σ2 2.39 2.39 2.21 2.22 2.65 2.65

Table 2: Relative efficiency, in terms of MSE, for WLS and CL estimation methods when

model (2) is used with c = 2, a = 0.8, γ = 0.5, α = 0.5, β = 0.5, σ2 = 1.7.

|u| ≤ 1 |u| ≤ 2 |u| ≤ 3

c 1.04 1.19 1.21

||h|| ≤ 1 a 1.21 2.80 3.65

σ2 1.01 1.20 1.21

a 3.15 3.45 3.71

||h|| ≤ 2 c 6.64 6.48 6.41

σ2 3.32 3.04 2.91

a 2.10 2.59 3.07

||h|| ≤ 3 c 4.53 4.91 5.29

σ2 2.22 2.29 2.35

Table 3: Relative efficiency, based on MSE, for WCL at different spatial and time lags when

model (2) is used with parameters: c = 2, a = 0.8, σ2 = 1.5, with N = 4 and T = 45.
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1. c = 1, a = 1, α = 0.5, σ2 = 0.6, β = 0, ε = 0;

2. c = 1, a = 1, α = 0.5, σ2 = 0.6, β = 0.7, ε = 0;

3. c = 1, a = 1, α = 0.5, σ2 = 0.6, β = 0.7, ε = −0.5.

Note that these models are nested. We chose a small number of locations and a sufficiently

large number of times in order to estimate the matrix J . This is a common setting in

environmental studies. Calculation of the empirical covariances yielded values Ĉ(h, 3) ≤

0.15, for any spatial lags and identically equal to 3 for the temporal lag, so we set u = 3 and

considered all spatial lags in the WCL computation. The J matrix was estimated through

sub-sampling method with a temporal window m = 4. The outcomes of these simulations

are summarised in Table 4. These results seem promising because they indicate that at least

80% of the models are correctly identified.

Identified

A B C

A 80 19 1

True B 10 81 9

C 0 5 95

Table 4: CLIC identification between different models on a 4× 4 regular grid, and T = 150.

6. REAL DATA

We reanalysed the Irish wind speed data originally described in Haslett and Raftery (1989)

and further analysed in Gneiting (2002); De Luna and Genton (2005); Stein (2005a,b); Gneit-

ing et al. (2007). In this data set daily wind speeds are collected over 18 years (1961-1978)

at 12 sites in Ireland. Following Haslett and Raftery (1989) we omitted the Rosslare station,

and then considered a square root transformation to have deseasonalised data. The seasonal

component was estimated by calculating the average of the square roots of the daily means

over all years and stations for each day of the year, and regressing the result on a set of

annual harmonics.
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As in Gneiting et al. (2007) we considered only the first ten years as a training set and

the next 8 years as a validation set. We considered a spatial nugget effect, as Gneiting

(2002) did, thus a discontinuity in C(h, u) at h = 0, for all u due to measurement errors

and/or small scale variability. A simple way to model a spatial nugget effect is to write the

covariance function in the following form

C̄(h, u) = σ2(1 − ν)C(0, u)

(
C(h, u)

C(0, u)
+

ν

1 − ν
δh=0

)
, (11)

with ν ∈ [0, 1] and where σ2 > 0 is the variance or sill of the model.

As outlined in Gneiting (2002), data showed asymmetry in time in the east-west direction.

Thus, using CL, we estimated the spatio-temporal structure of the Irish wind speed data

using three covariance models for C(h, u):

• (a) A separable structure, obtained by considering the model in equation (2) with

β = 0.

• (b) A nonseparable model, obtained by considering the same model in equation (2),

but with a non-vanishing β.

• (c) a nonseparable, and not fully symmetric model as in equation (4).

We used the WCL with u = 3 since correlations in time decay in a fast way (see Figure

5 in Gneiting (2002)). The estimation results are shown in Table 6. Estimates of scale,

smoothing, and variance parameters were quite similar for the three considered models and

gave a good fit for the spatial margins (see Figure 2)

To choose the best model we considered two approaches. The former is based on

prediction in time performance. Following Gneiting et al. (2007), we considered the ve-

locity measures during the 8 years of the test period (1971-1978) and we calculated for

each station 365 × 8 = 2920 one day ahead predictions, ẑ(s, t), using the simple krig-

ing predictor, with the covariance function estimated in the training period. To assess

and rank the point forecasts, we used the root-mean-square error (RMSE), defined as

RMSE(s) =
∑6570

t=3651(z(s, t) − ẑ(s, t))2/2920.
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Station (a) (b) (c)

Roche’s Point 0.484 0.478 0.477

Valentia 0.501 0.501 0.501

Kilkenny 0.436 0.430 0.430

Shannon 0.464 0.464 0.464

Birr 0.477 0.476 0.476

Dublin 0.446 0.442 0.442

Claremorris 0.490 0.491 0.491

Mullingar 0.428 0.425 0.425

Clones 0.484 0.480 0.479

Belmullet 0.495 0.495 0.496

Malin Head 0.496 0.491 0.491

Table 5: RMSE for the stations of the Irish wind speed data

Looking at the RMSE results in Table 5, there is not a clear advantage from a particular

model. In particular, (b) and (c) models perform similarly.

The latter approach is based on CLIC values as introduced in Section 4. Here, we chose

a window size of four days for the sub-sampling. Results in Table 6 show that this criterion

selects the asymmetric in time model.

7. CONCLUSIONS AND DISCUSSION

We have introduced a CL-based estimation of covariance models in a general space-time set-

ting. The method is computationally cheaper with respect to ML, presents some advantages

with respect to the classical WLS, and allows us to introduce a model selection criterion. We

have also discussed a weighted version of CL in a space and space-time setting that allows

to improve estimation from computational and efficiency points of view.

Our results are consistent with those of other authors in different settings. For instance

Heagerty and Lele (1998) recommended to consider only significant lags but only to save

computations. Varin and Vidoni (2007) noted that taking only fixed time lags helps to
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(a) (b) (c)

a 0.80333 0.90942 0.97137

c 0.00130 0.00125 0.00136

α 0.84481 0.90714 0.93208

υ 0.03145 0.03800 0.03994

β - 0.72098 0.80170

ε - - 0.00419

σ2 0.32416 0.31446 0.30466

lCL 921116 2748165 2749202

CLIC 920155 2747212 2748367

Table 6: CL estimates for the Irish wind speed data: (a) separable model, (b) Gneiting

nonseparable model and (c) nonseparable and not fully symmetric model.

highly improve efficiency of CL estimation.

There exist other ways to construct CL in a space-time setting. For instance the ap-

proximating likelihoods on selected blocks introduced by Caragea and Smith (2005) are

special cases of the CL. We can borrow their idea for regular monitoring data with respect

to time. Define Zt = (Z(s1, t), . . . , Z(sn, t))′, t = 1, . . . , T , and the log-likelihoods clt(θ) =

log f(Zt, · · · , Zt−p; θ). A composite likelihood function is CL(θ) =
∑T

t=p+1 clt(θ). Assum-

ing a Gaussian distribution and stationarity on time, we have to invert a (p + 1)n× (p + 1)n

matrix for T times, and so the complexity is O(T (p+ 1)3n3). Thus, the method is useful for

data sets with few locations observed many times.
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