
Accelerating Model Reduction of
Large Linear Systems with Graphics Processors

P. Benner1, P. Ezzatti2, D. Kressner3, E. S. Quintana-Ort́ı4, and A. Remón4

1 Max-Planck-Institute for Dynamics of Complex
Technical Systems (Magdeburg, Germany)

benner@mpi-magdeburg.mpg.de
2 Centro de Cálculo-Instituto de la Computación,

Universidad de la República (Montevideo, Uruguay)
pezzatti@fing.edu.uy

3 Seminar für Angewandte Mathematik, ETHZ (Zürich, Switzerland)
daniel.kressner@sam.math.ethz.ch

4 Depto. de Ingenieŕıa y Ciencia de Computadores,
Universidad Jaume I (Castellón, Spain)
{quintana,remon}@icc.uji.es

Abstract Model order reduction of a dynamical linear time-invariant
system appears in many applications from science and engineering. Nu-
merically reliable SVD-based methods for this task require in general
O(n3) floating-point arithmetic operations, with n being in the range
103 − 105 for many practical applications. In this paper we investigate
the use of graphics processors (GPUs) to accelerate model reduction of
large-scale linear systems by off-loading the computationally intensive
tasks to this device. Experiments on a hybrid platform consisting of
state-of-the-art general-purpose multi-core processors and a GPU illus-
trate the potential of this approach.

Key words: model reduction, dynamical linear systems, Lyapunov equa-
tions, SVD-based methods, GPUs.

1 Introduction

Model order reduction is an important numerical tool to diminish the simulation
time or the cost of designing optimal controllers in many industrial processes,
with dynamics modeled by a linear time-invariant (LTI) system:

Eẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) +Du(t), t ≥ 0.

(1)

Here, x(t) contains the states of the system, with initial state x0 ∈ Rn, u(t) and
y(t) contain the inputs and outputs, respectively, and E,A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n, D ∈ Rp×m. The system in (1) can also be described by the associated
transfer function matrix (TFM) G(s) = C(sE − A)−1B + D. A particularly
important property is that the number of states (also known as the state-space

dimension or the order) of the system, n, is in general much larger than the
number of inputs and outputs, m and p, respectively.

The goal of model reduction is to find a reduced-order LTI system,

Ê ˙̂x(t) = Âx̂(t) + B̂u(t), t > 0, x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t) + D̂u(t), t ≥ 0,
(2)

of order r, with r � n, and associated TFM Ĝ(s) = Ĉ(sÊ − Â)−1B̂ + D̂
which approximates the dynamics of the original system defined by G(s). The
reduced-order realization (2) can then replace the original high-order system in
a simulation or the design of an optimal controller, thus simplifying such tasks
considerably. Model reduction of large-scale systems appears, e.g., in thermal,
thermo-mechanical, electro-mechanical and acoustic finite element models [1].
We consider a system to be large-scale if n ∼ O(1, 000) − O(100, 000); while,
often, m, p ∼ O(10)−O(100).

The numerical method for model reduction considered in this paper is based
on the so-called state-space truncation approach and requires, at an initial
stage, the solution of two coupled generalized Lyapunov equations. The reduced-
order system is then obtained using a variant of the balanced truncation (BT)
method [2,3], which only requires a few dense linear algebra computations. Al-
though there exist several other approaches for model reduction (see, e.g., [1,4]
and the references therein), those are specialized for certain problem classes and
often lack properties such as error bounds or preservation of stability, passivity,
or phase information. A comparison of the numerical properties of SVD-based
methods (as BT) and Krylov subspace methods can be found in [1,5,6,7].

The Lyapunov equations are solved in our method via the matrix sign func-
tion, which yields a computational cost for the global model reduction procedure
of O(n3) flops (floating-point arithmetic operations). This calls for the applica-
tion of high performance computing in the reduction of models already with n
in the order of thousands.

Recent work on the implementation of BLAS and the major factorization
routines for the solution of linear systems [8,9,10,11] has demonstrated the po-
tential of graphics processors (GPUs) to yield high performance on dense linear
algebra operations which can be cast in terms of matrix-matrix products. In [12]
we built upon these works to deal with the solution of the standard Lyapunov
equation on a GPU. Here, we further extend this work by tackling the different
stages in SVD-based methods for model reduction of generalized linear systems,
namely, the solution of the coupled generalized Lyapunov equations, the com-
putation of the SVD, and auxiliary computations. The target architecture is a
hybrid platform consisting of a general-purpose multicore processor and a GPU.
We exploit these two resources by designing a hybrid numerical algorithm for
model reduction that performs fine-grained computations on the CPU while
off-loading computationally intensive operations to the GPU. We also overlap
computations in both architectures in order to improve the performance.

The rest of the paper is structured as follows. In Section 2 we briefly review
the BT method for model reduction, including the sign function-based Lyapunov

solver, and the remaining stages of the method. There we also describe the ap-
proach to computing all these operations on the hybrid platform. In Section 3 we
present experimental results that illustrate the accuracy and parallelism attained
by the numerical algorithms on a platform consisting of two Intel QuadCore pro-
cessors connected to an NVIDIA Tesla C1060 GPU via a PCI-e bus. Finally, in
Section 4 we provide a few concluding remarks.

2 SVD-Based Methods for Model Reduction

BT model reduction [13,14,15,16] belongs to the family of absolute error meth-
ods, which aim at minimizing

‖G− Ĝ‖∞ = sup
ω∈R

σmax(G(jω)− Ĝ(jω)),

where j :=
√
−1 and σmax(M) stands for the largest singular value of a matrix

M .
Model reduction via BT methods employs information about the controlla-

bility Gramian Wc and the observability Gramian Wo of the system (1), given
by the solutions of the coupled generalized Lyapunov matrix equations

AWcE
T + EWcA

T +BBT = 0, (3)

AT W̃oE + ET W̃oA+ CTC = 0, (4)

with Wo = ET W̃oE. In most model reduction applications, the matrix pair
(A,E) is stable (i.e., all its generalized eigenvalues are in the open left complex
plane), so thatWc andWo are both positive semidefinite. Therefore, the solutions
of the Gramians can be factored as Wc = STS and Wo = RTR. (Here, S and R
are usually refereed to as the Cholesky factors of Wc and Wo, though they are
not necessarily Cholesky factors in a strict sense.)

Consider now the singular value decomposition (SVD) of the product

SRT = UΣV T = [U1 U2]

[
Σ1

Σ2

]
[V1 V2]

T
, (5)

where U and V are orthogonal matrices, and Σ = diag (σ1, σ2, . . . , σn) is a
diagonal matrix containing the singular values of SRT , also known as the Hankel
singular values (HSV) of the system. Given a partitioning of Σ into Σ1 ∈ Rr×r

and Σ2 ∈ R(n−r)×(n−r), and a conformal partitioning of U and V in (5), the
square-root (SR) version of BT determines a reduced-order model of order r as

Ê = TlETr, Â = TlATr,

B̂ = TlB, Ĉ = CTr, D̂ = D,
(6)

with

Tl = Σ
−1/2
1 V T

1 RE
−1 and Tr = STU1Σ

−1/2
1 . (7)

The state-space dimension r of the reduced-order model can be chosen adaptively
as this method provides a realization Ĝ satisfying

‖G− Ĝ‖∞ ≤ 2

n∑
j=r+1

σj .

In the following subsection we revisit the sign function-based generalized
Lyapunov solver introduced in [17]. The solver yields low-rank approximations
to the Cholesky or full-rank factors of the solution matrices which can reliably
substitute S and R in the computations in (5) and (7).

2.1 The sign function method

The matrix sign function was introduced in [18] as an efficient tool to solve stable
(standard) Lyapunov equations. The following variant of the Newton iteration
for the matrix sign function [17] can be used for the solution of the generalized
Lyapunov equations (3)-(4):

Algorithm CGCLNC:

A0 ← A, S̃0 ← BT , R̃0 ← C
k ← 0
repeat

Ak+1 ← 1√
2

(
Ak/ck + ck(EA−1k)E

)
Compute the rank-revealing QR (RRQR) decomposition

1√
2ck

[
S̃k, ckS̃k(EA−1k)T

]
= Qs

[
Us

0

]
Πs

S̃k+1 ← UsΠs

Compute the RRQR decomposition

1√
2ck

[
R̃k, ck(R̃kA

−1
k)E

]
= Qr

[
Ur

0

]
Πr

R̃k+1 ← UrΠr

k ← k + 1
until ‖Ak − E‖1 < τ‖Ak‖1

On convergence, after j iterations, S̃ = 1√
2
S̃jE

−T and R̃ = 1√
2
R̃jE

−1 of

dimensions k̃o × n and k̃c × n are, respectively, full (row-)rank approximations
of S and R, so that Wc = STS ≈ S̃T S̃ and Wo = RTR ≈ R̃T R̃.

The Newton iteration for the sign function usually presents a fast convergence
rate, which is ultimately quadratic. Initial convergence can be accelerated using
several techniques. In our case, we employ a scaling defined by the parameter

ck =
√
‖A‖∞/‖EA−1k E‖∞.

In the convergence test, τ is a tolerance threshold for the iteration that is usually
set as a function of the problem dimension and the machine precision ε. In

particular, to avoid stagnation in the iteration, we set τ = n ·
√
ε and perform

one or two additional iteration steps after the stopping criterion is satisfied. Due
to the quadratic convergence of the Newton iteration, this is usually enough
to reach the attainable accuracy. The RRQR decomposition can be obtained
by means of the traditional QR factorization with column pivoting [19] plus a
reliable rank estimator.

Each iteration of algorithm CGCLNC requires the following operations: the
LU decomposition of Ak (2

3n
3 flops), followed by the system solve EA−1k and

the matrix product (EA−1k)E (2n3 + 2n3 flops); let sk and rk be the number

of columns of Ŝk and R̂k; then an n × n × sk matrix product is required to
construct S̃k(EA−1k)T (2n2sk flops), a system solve with rk right-hand sides to

obtain R̃kA
−1
k (2n2rk flops), and an n×n×rk matrix product to build (R̃kA

−1
k)E

(2n2rk flops); finally, two QR factorizations with column pivoting complete the
major computations in the algorithm (2n(s2k +r2k)− 2

3 (s3k +r3k) flops). (The latter
flop count assumes that Sk and Rk are full rank, so the actual cost is smaller than
this.) Other minor operations, as norms, scalings, etc., contribute with negligible
computational costs.

2.2 Hybrid implementation of the Lyapunov solver

The objective of the hybrid implementation is to reduce the computational time
executing each operation on the most convenient architecture while, whenever
possible, overlapping the execution of operations in both architectures. On the
other hand, a careful scheduling of operations is necessary to minimize the com-
munication overhead, amortizing the cost of transferring the data between the
memory spaces of the GPU and the CPU.

The hybrid algorithm proceeds as follows. At the beginning of each iteration,
the CPU transfers matrix Ak to the GPU. Then, the CPU and the GPU coop-
erate in the LU factorization of matrix Ak. The solution of the EA−1k system is

also obtained on the GPU while the CPU solves the R̃kA
−1
k system. Then, the

computation of the matrix product (EA−1k)E proceeds on the GPU while the

CPU computes S̃k+1 and R̃k+1, (in particular, this will require the computation
of the two RRQR decompositions and four matrix-matrix products involving
relatively small matrices). Finally, the matrix and scalings to construct Ak+1 as
in algorithm CGCLNC are computed on the CPU.

Some other necessary secondary operations are performed on the CPU since
they require a minor computational effort.

The use of both architectures requires some data transfers. To control and
minimize the communication overhead, data transfers are only scheduled if there
is an important gain associated with them. Specifically, the data transfers needed
at each iteration are:

1. Send Ak from the CPU to the GPU to compute its LU decomposition.
2. Send the factors resulting from the LU decomposition of Ak from the GPU

to the CPU.

3. Send the solution of EA−1k from the GPU to the CPU so that S̃k+1 can be
computed there.

4. Send the result of (EA−1k)E, required to compute Ak+1, from the GPU to
the CPU.

Besides these data transfers, there are some minor communications being
performed in the algorithm, in particular, by the LU decomposition kernel.

In summary, the most remarkable strengths of this implementation are:

– The use of a hybrid kernel for the LU decomposition. In this kernel the GPU
and the CPU cooperate for computing the decomposition [10].

– The new code generated for the solution of triangular systems on the GPU. A
great effort has been conducted to speed-up the execution of this operation;
several GPU-based variants were implemented, employing techniques like
padding. The best variant obtained, employed in this work, is a blocked
routine that casts most of the arithmetic operations in terms of matrix-
matrix products. As a result, this new version outperforms notoriously the
CUBLAS implementation (it is approximately a 30% and 70% faster for the
examples STEEL I and FLOW METER considered in Section 3, respectively) and
yields a significant acceleration of one of the most time-consuming stages in
the model reduction procedure.

– The use of two levels of parallelism. At the inner level, operations are per-
formed using multi-threaded implementations of BLAS. At the outer level,
different operations are executed concurrently in the two available resources:
CPU and GPU.

– The reduced overhead introduced by communications: only transfers that
are amortized over a large number of flops are performed, so that it will be
unlikely that communication produces a loss of efficiency. Note that whether
data transfers are or not amortized depends on the problem dimension, which
in our case, ranges in 103 − 105.

2.3 Remaining stages in model reduction BT

Once the Cholesky factors S̃ and R̃ have been computed, the remaining opera-
tions to obtain the reduced order model comprise a matrix product of moderate
dimension (S̃T R̃ ≈ SRT); the SVD of the result, see (5); and a few more matrix-
matrix operations and a system solve, see (6)–(7). All these computations require
a reduced number of flops and, therefore, are performed on the CPU.

3 Numerical Experiments

In this section we evaluate the numerical accuracy and parallel performance of
the BT model reduction method. The target platform consists of two Intel Xeon
QuadCore E5410 processors at 2.33GHz, connected to an Nvidia Tesla C1060
via a PCI-e bus. We employed the multi-threaded implementation of BLAS in

MKL (version 10.2) for the general-purpose processor and Nvidia CUBLAS
(version 2.1) for the GPU. We set OMP NUM THREADS=8 so that one thread is
employed per core in the parallel execution of the MKL routines in the Intel
Xeon QuadCore processors.

In the following experiments, we evaluate the performance using single preci-
sion arithmetic on two model reduction problems from the Oberwolfach bench-
mark collection at the University of Freiburg1:

– STEEL I: This model arises in a manufacturing method for steel profiles.
The goal is to design a control that yields moderate temperature gradients
when the rail is cooled down. The mathematical model corresponds to the
boundary control for a 2-D heat equation. A finite element discretization,
followed by adaptive refinement of the mesh results in the example in this
benchmark. The dimensions of this problem are n = 5, 177, m = 7, p = 6.

– FLOW METER: This 2-D model of an anemometer-like structure mainly consists
of a tube and a small heat source. The model is given by a spatially semi-
discretized instationary convection-diffusion equation with Dirichlet bound-
ary conditions and a parabolic inflow profile. The reference temperature is
set to 300 K, and Dirichlet boundary conditions as well as initial conditions
are set to 0 with respect to the reference. The dimensions of this problem
are n = 9, 669, m = 1, p = 5.

Table 1 shows the results obtained with our hybrid CPU-GPU algorithm for the
solution of the coupled generalized Lyapunov equations associated with these
systems. Columns 2, 3, 4 and 5 of the table show the time (in seconds) for the
LU factorization of Ak, the solution of the four triangular systems in the compu-
tations EA−1k and R̃kA

−1
k , the matrix product (EA−1k)E, and the updates of the

factors S̃ and R̃, respectively (including the time for all the data transfers asso-
ciated to each one of the operations). The rest of columns show the global time
per iteration of the hybrid implementation, the time per iteration for the same
algorithm implemented on the multicore CPU, and the convergence criterion.

Most of the iteration time is spent in the computation of the LU decomposi-
tion (column 2), the solution of the four triangular systems (column 3) and the
matrix-matrix product (column 4). Those are the operations which, in part or
completely, are performed on the GPU.

The number of columns of the factors S̃ and R̃ is doubled at each iteration
and, in consequence, the cost associated to the update of the factors increases
with the iteration count. To keep the number of columns in the factors under
control, an RRQR factorization is computed at each step [19]. This approach
yields important gains when the number of iterations that are required for con-
vergence is large enough to increment notoriously the size of the factors, as is
the case for the two problems considered in this section. The increment in the
number of columns of S̃ and R̃ results in an increment of the time required for
their update (column 5). This time becomes relevant after some iterations, as
this is mostly a BLAS-2 based computation performed on the CPU, e.g., being

1 http://www.imtek.de/simulation/benchmark/.

#Iter Time Time Time Time Time Time Conv. criterion

k PAk = LU EA−1
k , (EA−1

k)E S̃k(EA−1
k), iteration iteration ‖Ak+E‖F

‖E‖F
R̃kA

−1
k R̃k(A−1

k E), (Hybrid) (CPU)

compress

STEEL I

1 0.698 1.041 0.807 0.121 2.958 5.337 2.732e+02
2 0.544 1.023 0.788 0.047 2.618 5.286 2.064e+01
3 0.544 1.023 0.788 0.079 2.650 5.354 3.698e+00
4 0.544 1.023 0.788 0.159 2.732 5.465 1.140e+00
5 0.543 1.023 0.789 0.381 2.955 5.638 3.644e−01
6 0.545 1.023 0.788 0.909 3.486 6.219 7.936e−02
7 0.546 1.022 0.789 1.366 3.946 6.553 8.546e−03
8 0.543 1.023 0.788 1.866 4.442 6.909 5.706e−04
9 0.544 1.184 0.788 2.093 4.670 7.105 1.257e−05
10 0.546 1.209 0.788 2.185 4.767 7.250 7.319e−07

ACCUMULATED TIME 35.224 61.156

FLOW METER

1 3.380 7.741 5.183 0.289 17.359 31.516 6.884e+01
2 2.906 7.673 5.116 0.109 16.512 31.580 6.758e+00
3 2.918 7.673 5.116 0.137 16.553 31.725 1.585e+00
4 2.888 7.673 5.116 0.202 16.592 31.970 5.010e−01
5 3.007 7.673 5.115 0.359 16.871 32.126 1.580e−01
6 2.893 7.674 5.116 0.702 17.099 32.329 5.044e−02
7 2.886 7.673 5.116 0.971 17.365 32.525 1.241e−02
8 2.890 7.674 5.116 1.066 17.462 32.842 1.702e−03
9 2.893 7.673 5.117 1.191 17.591 32.896 1.156e−04
10 2.891 7.673 5.115 1.236 16.634 32.997 1.396e−06
11 2.891 7.673 5.116 1.248 17.994 32.881 2.389e−07

ACCUMULATED TIME 188.032 355.387

Table 1. Performance of the hybrid CPU+GPU implementation of the Newton itera-
tion for the solution of the Lyapunov equation with factored right-hand side.

nearly half of the total iteration time for the STEEL I problem after 9 iterative
steps. Executing these operations on the GPU, though possible, would require
some extra CPU-GPU communications and would slow down the execution of
the initial iterations.

Compared with the execution of the same algorithm on a CPU, the use of the
GPU yields an important reduction of the execution times on the most compu-
tationally expensive operations which carries over to the global execution time
per iteration (the LU factorization, the solution of triangular systems and the
matrix-matrix product). Furthermore, while some computations are off-loaded
to the GPU, others are performed concurrently on the CPU. This second level
of parallelism further reduces the total execution time.

4 Concluding Remarks

We have presented a new parallel algorithm for model reduction of large linear
systems on a hybrid CPU-GPU platform. Our algorithm exploits the capabilities
of both architectures, the multi-core CPU and the many-core GPU, obtaining
a high performance implementation of a BT model reduction technique. We
use two levels of parallelism: at the inner level, multi-thread implementations
of the BLAS library (MKL and CUBLAS) compute the most time-consuming
linear algebra kernels. At the outer level, operations proceed concurrently in
both architectures.

Results show that model reduction of large-scale linear systems can be tackled
with this kind of platforms in a reasonable computational time.

Future research resulting from this experience will include:

– Use of multiple GPUs to further reduce the computational time and increase
the dimension of the affordable problems. The computation of the matrix-
matrix product in (EA−1k)E, due to its strong scalability, can be accelerated
using a multi-GPU implementation. Also the computation time for the LU
factorization of Ak can be reduced (see the results reported in [20]) as well as
the solution of the triangular system performed on the GPU (EA−1k), since
most of the operations are cast in terms of matrix-matrix products.

– Use of double precision arithmetic. Performance of current GPUs in double
precision is considerably lower than single precision, but the new generation
of GPUs will drastically reduce this difference. As an alternative, we will
investigate the use of iterative refinement which given a single precision
solution, obtains the double precision solution at a reduced cost.

References

1. A. Antoulas, Approximation of Large-Scale Dynamical Systems. Philadelphia, PA:
SIAM Publications, 2005.

2. P. Benner, E. Quintana-Ort́ı, and G. Quintana-Ort́ı, “State-space truncation meth-
ods for parallel model reduction of large-scale systems,” Parallel Comput., vol. 29,
pp. 1701–1722, 2003.

3. T. Penzl, “Algorithms for model reduction of large dynamical systems,” Linear
Algebra and its Applications, vol. 415, no. 2-3, pp. 322 – 343, 2006.

4. R. Freund, “Reduced-order modeling techniques based on Krylov subspaces and
their use in circuit simulation,” in Applied and Computational Control, Signals,
and Circuits, B. Datta, Ed. Boston, MA: Birkhäuser, 1999, vol. 1, ch. 9, pp.
435–498.

5. P. Benner, “Numerical linear algebra for model reduction in control and simula-
tion,” GAMM-Mitteilungen, vol. 29, no. 2, pp. 275–296, 2006.

6. P. Benner, V. Mehrmann, and D. Sorensen, Eds., Dimension Reduction of Large-
Scale Systems, ser. Lecture Notes in Computational Science and Engineering,
vol. 45. Springer-Verlag, 2005.

7. W. Schilders, H. van der Vorst, and J. Rommes, Eds., Model Order Reduction:
Theory, Research Aspects and Applications, ser. Mathematics in Industry, vol. 13.
Springer-Verlag, 2008.

8. V. Volkov and J. Demmel, “LU, QR and Cholesky factorizations using
vector capabilities of GPUs,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2008-49, May 2008. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-49.html

9. P. Bientinesi, F. D. Igual, D. Kressner, and E. S. Quintana-Ort́ı, “Reduction to
condensed forms for symmetric eigenvalue problems on multi-core architectures,” in
Proceedings of the 8th International Conference on Parallel Processing and Applied
Mathematics – PPAM’09, ser. Lecture Notes in Computer Science. Springer, to
appear.

10. S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, E. S. Quintana-Ort́ı, and
G. Quintana-Ort́ı, “Exploiting the capabilities of modern GPUs for dense matrix
computations,” Concurrency and Computation: Practice and Experience, vol. 21,
pp. 2457–2477, 2009.

11. H. Ltaif, S. Tomov, R. Nath, P. Du, and J. Dongarra, “A scalable high perfor-
mance cholesky factorization for multicore with GPU accelerators,” University of
Tennessee, LAPACK Working Note 223, 2009.

12. P. Benner, P. Ezzatti, E. S. Quintana-Ort́ı, and A. Remón, “Using hybrid CPU-
GPU platforms to accelerate the computation of the matrix sign function,” in
Euro-Par 2009, Parallel Processing - Workshops, ser. Lecture Notes in Computer
Science. Springer-Verlag, 2009, vol. 6043, pp. 132–139.

13. B. Moore, “Principal component analysis in linear systems: Controllability, ob-
servability, and model reduction,” IEEE Trans. Automat. Control, vol. AC-26, pp.
17–32, 1981.

14. M. Safonov and R. Chiang, “A Schur method for balanced-truncation model re-
duction,” IEEE Trans. Automat. Control, vol. AC–34, pp. 729–733, 1989.

15. M. Tombs and I. Postlethwaite, “Truncated balanced realization of a stable non-
minimal state-space system,” Internat. J. Control, vol. 46, no. 4, pp. 1319–1330,
1987.

16. A. Varga, “Efficient minimal realization procedure based on balancing,” in Prepr.
of the IMACS Symp. on Modelling and Control of Technological Systems, vol. 2,
1991, pp. 42–47.

17. P. Benner, E. Quintana-Ort́ı, and G. Quintana-Ort́ı, “Solving linear-quadratic op-
timal control problems on parallel computers,” Optimization Methods Software,
vol. 23, no. 6, pp. 879–909, 2008.

18. J. Roberts, “Linear model reduction and solution of the algebraic Riccati equation
by use of the sign function,” Internat. J. Control, vol. 32, pp. 677–687, 1980,
(Reprint of Technical Report No. TR-13, CUED/B-Control, Cambridge University,
Engineering Department, 1971).

19. G. Golub and C. Van Loan, Matrix Computations, 3rd ed. Baltimore: Johns
Hopkins University Press, 1996.

20. V. Volkov and J. W. Demmel, “LU, QR and Cholesky factorizations using vector
capabilities of GPUs,” University of California at Berkeley, LAPACK Working
Note 202, May 2008.

