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Abstract Model order reduction of dynamical linear time-invariant sys-
tem appears in many scientific and engineering applications. Numerically
reliable SVD-based methods for this task require O(n3) floating-point
arithmetic operations, with n being in the range 103 − 105 for many
practical applications. In this paper we investigate the use of graphics
processors (GPUs) to accelerate model reduction of large-scale linear
systems via Balanced Stochastic Truncation, by off-loading the computa-
tionally intensive tasks to this device. Experiments on a hybrid platform
consisting of state-of-the-art general-purpose multi-core processors and
a GPU illustrate the potential of this approach.
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1 Introduction

Model order reduction is an important numerical tool to reduce the time and
cost required for the design of optimal controllers in many industrial processes
where dynamics can be modeled by a linear time-invariant (LTI) system of the
form:

ẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) +Du(t), t ≥ 0.

(1)

Here, x(t) contains the states of the system, with x0 ∈ ℝ
n the initial state, u(t) ∈

ℝ
m and y(t) ∈ ℝ

p contain the inputs and outputs, respectively, and A ∈ ℝ
n×n,

B ∈ ℝ
n×m, C ∈ ℝ

p×n, D ∈ ℝ
p×m. The system in (1) can also be described by

the associated transfer function matrix (TFM) G(s) = C(sIn − A)−1B +D. A
particularly important property is that the number of states (also known as the



state-space dimension or the order) of the system, n, is in general much larger
than m and p.

The goal of model reduction is to find a reduced-order LTI system,

˙̂x(t) = Âx̂(t) + B̂u(t), t > 0, x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t) + D̂u(t), t ≥ 0,
(2)

of order r, with r ≪ n, and associated TFM Ĝ(s) = Ĉ(sIn − Â)−1B̂ + D̂ which
approximates the dynamics of the original system defined by G(s). The reduced-
order realization (2) can then replace the original model of order n in subsequent
simulations or processes, thus simplifying these tasks considerably. Model order
reduction of large-scale systems appears, e.g., in thermal, thermo-mechanical,
electro-mechanical and acoustic finite element models [1]. We consider a system
to be large-scale if n ∼ O(1, 000) − O(100, 000), while, often, m, p ∼ O(10) −
O(100).

The numerical method for model order reduction considered in this paper is
based on the so-called state-space truncation approach and requires, at an initial
stage, the solution of a Lyapunov and a Riccati equation. The reduced-order sys-
tem is then obtained using a variant of the balanced stochastic truncation (BST)
method [2], which only requires dense linear algebra computations. Although
there exist several other approaches for model order reduction (see, e.g., [1,3]
and the references therein), those are specific for a certain subset of problems
and often do not possess relevant properties such as error bounds, preservation
of stability and passivity, or phase information. A comparison of the numeri-
cal properties of SVD-based methods (as Balanced Stochastic Truncation, BST)
and Krylov subspace methods can be found in [1].

The Lyapunov and Riccati equations are solved in our algorithms via the
matrix sign function, which yields a computational cost for the global model
order reduction procedure of O(n3) flops (floating-point arithmetic operations).
This calls for the application of high performance computing in the reduction of
models with n in the order of thousands or larger.

Recent work on the implementation of the BLAS specification and some rel-
evant linear algebra operations included in LAPACK [4,5,6,7] has demonstrated
the potential of graphics processors (GPUs) to yield high performance for the
execution of dense linear algebra operations, specially if they can be cast in
terms of matrix-matrix products. In [8] we built upon these works to deal with
the solution of the standard Lyapunov equation on a GPU. Here, we extend this
work by tackling the different stages in BST methods for model reduction of
linear systems, namely, the solution of the Lyapunov and Riccati equations, the
computation of the SVD, and other auxiliary computations. The target archi-
tecture is a hybrid platform consisting of a general-purpose multicore processor
and a GPU. We exploit these two resources by designing a hybrid numerical
algorithm for model order reduction that performs fine-grain computations on
the CPU while off-loading computationally intensive operations to the GPU.

The rest of the paper is structured as follows. In Section 2 we briefly review
the BST method for model order reduction, including the Lyapunov solver, the



sign function-based Riccati solver and the remaining stages of the method. In
Section 3 high performance implementations for a hybrid CPU-GPU platform
are described. In Section 4 we present experimental results that expose the par-
allelism attained by the numerical algorithms on a platform consisting of two
Intel QuadCore processors connected to an NVIDIA Tesla C1060 GPU. Finally,
in Section 5 we provide a few concluding remarks and future lines of work.

2 Model Reduction methods based on SVD

Relative error methods attempt to minimize the relative error ∥�r∥∞, defined
implicitly by G − Ĝ = G�r. Among these, BST and its variants are particu-
larly popular [9,10,11]. Due to their high computational cost, BST methods have
been used only for problems of moderate dimension, i.e., models of state-space
dimension in the order of hundreds. The implementation included in the Subrou-
tine Library in Control Theory – SLICOT1 [12], available for MATLAB R⃝ and
Fortran 77, made feasible to target systems with a few thousands of state-space
variables on nowadays standard desktop computers, but larger problems remain
un-affordable, unless a cluster of computers and a message-passing library as
PLiCMR [13] is employed.

BST is a technique where the reduced order model is obtained truncating a
balanced stochastic realization. Such a realization is obtained as follows. Define
�(s) = G(s)GT (−s), and let W be a square minimum phase right spectral factor

of �, i.e., �(s) = WT (−s)W (s). As D has full row rank, E = DDT is positive
definite and a minimal state-space realization (AW , BW , CW , DW ) of W is given
by (see [14,15])

AW = A, BW = BDT +WcC
T ,

CW = E− 1

2 (C −BT
WXW ), DW = E

1

2 .
(3)

Here, Wc is the controllability Gramian of G(s) given by the solution of the
Lyapunov equation

AWc +WcA
T +BBT = 0 (4)

while Wo is the observability Gramian of W (s) obtained as the stabilizing solu-
tion of the algebraic Riccati equation (ARE)

0 = (A−BWE−1C)TWo +Wo(A−BWE−1C) +WoBWE−1BT
WWo+

CTE−1C.
(5)

In the following subsections we revisit the sign function methods for the
solution of Lyapunov and Riccati equations introduced in [16] and [17] respec-
tively. For the solution of the Lyapunov equation, the algorithm introduced in [8]
has demonstrated to be highly efficient on hybrid architectures equipped with a
GPU. This Lyapunov solver provides a low-rank approximation to the full-rank
factor of the solution matrix.

1 Available from http://www.slicot.org.



2.1 Solution of the Lyapunov equation

The matrix sign function was introduced in [17] as an efficient tool to solve stable
(standard) Lyapunov equations. The variant of the Newton iteration method for
the matrix sign function in Algorithm CECLNC [16] can be employed for the
solution of a Lyapunov equation (like that in (4)).

Algorithm CECLNC:

A0 ← A, S̃0 ← BT

k ← 0
repeat

Compute the rank-revealing QR (RRQR) decomposition

1√
2ck

[

S̃k, ckS̃kA
−T
k

]

= Qs

[

Us

0

]

�s

S̃k+1 ← Us�s

Ak+1 ← 1√
2

(

Ak/ck + ckA
−1

k

)

k ← k + 1
until ∥Ak − I∥1 < �l∥Ak∥1

The number of columns of factor S̃ is doubled at each iteration and, in con-
sequence, the computational and storage costs associated with its update grow
at each iteration. To moderate this increase, and the number of columns in the
factors, an RRQR factorization is computed at each step. This approach yields
important gains when the number of iterations that are required for convergence
is large. Note that Qs is not accumulated as it is not needed in further compu-
tations. This reduces the cost of the RRQR significantly. For simplicity, we do
not detail this compression procedure; see [18].

On convergence, after j iterations, S̃ = 1√
2
S̃j, of dimension k̃c×n, is the full

(row-)rank approximation of S, so that Wc = STS ≈ S̃T S̃.

The Newton iteration for the sign function method usually presents a fast
convergence rate, which is ultimately quadratic. Initial convergence can be accel-
erated using several techniques. In our case, we employ a scaling factor defined
by the parameter

ck =

√

∥Ak∥/∥A−1

k ∥.

In the convergence test, �l is a tolerance threshold for the iteration that is
usually set as a function of the problem dimension and the machine precision ".
In particular, to avoid stagnation in the iteration, we set �l = n ⋅√" and perform
one or two additional iteration steps after the stopping criterion is satisfied. Due
to the quadratic convergence of the Newton iteration, this is usually enough
to reach the attainable accuracy. The RRQR decomposition can be obtained
by means of the traditional QR factorization with column pivoting [18] plus a
reliable rank estimator.



2.2 Solution of the Riccati equation

The solution of an Algebraic Riccati Equation (ARE) of the form

FTX +XF −XGX +Q = 0, (6)

can be obtained from the stable invariant subspace of the Hamiltonian matrix
defined in [19]

H =

[

F G
−Q −FT

]

. (7)

This solution can be obtained computing the matrix sign function of H [17]:

sign(H) = Y =

[

Y11 Y12

Y21 Y22

]

, (8)

and then, solving the overdetermined system

[

Y11

Y12 + In

]

X =

[

In − Y21

−Y11

]

(9)

(e.g., applying the least squares method).

Algorithm GECRSG summarizes the steps to solve an ARE with this method.

Algorithm GECRSG:

H0 ←
[

F G
−Q −FT

]

k ← 0

repeat

Hk+1 ← 1

2

(

Hk/dk + dkH
−1

k

)

until ∥Hk+1 −Hk∥1 < �r∥Hk∥1
Solve

[

Y11

Y12 + In

]

X =

[

In − Y21

−Y11

]

The scaling factor dk and the tolerance threshold �r can be defined here fol-
lowing the ideas presented for ck and �l, respectively, in the previous subsection.

3 High performance implementation on a hybrid

architecture

In this section, we describe an efficient implementation of the BST model or-
der reduction method, specially designed for hybrid platforms composed of a



multicore CPU connected to a single GPU. The objective of the hybrid imple-
mentation is to reduce the computational time of the BST method, executing
each operation on the most convenient architecture and reducing the amount
of data transfers between the two components. Specifically, the most expensive
computations are executed on the GPU while the fine-grain operations are exe-
cuted on the CPU.

3.1 Hybrid implementation of the Lyapunov solver

The most time consuming operation of Algorithm CECLNC is the update of Ak+1.
This is due to the large dimension of A and the significant computational cost
of the matrix inversion.

The hybrid algorithm to accelerate the solution of this equation proceeds as
follows. At the beginning of each iteration, the CPU transfers matrix Ak to the
GPU. Then, the CPU and the GPU cooperate in the inversion of matrix Ak,
which is returned to the CPU upon completion. The rest of the operations are
performed on the CPU since they require a minor computational effort and can
be efficiently executed on a multicore processor, e.g. invoking parallel implemen-
tations of BLAS and LAPACK to compute the linear algebra operations or using a
simple OpenMP-based parallelization in other cases.

The inversion algorithm is based on the Gauss-Jordan elimination method [20],
since this is a highly parallel algorithm. The implementation includes some
performance-enhancing techniques, as the processing by blocks to exploit the hie-
rarchical organization of the memory, hybrid and concurrent computing (CPU
+ GPU) to increment the resource utilization, look-ahead techniques [21] to
avoid bottlenecks, padding to accelerate the memory accesses on the GPU, and
multilevel blocks strategies to improve throughput of both devices.

3.2 Hybrid implementation of the Riccati solver

This stage can be divided into three steps:

– First, it is necessary to build matrixH performing some matrix-matrix multi-
plications (see equations (3)-(5)). As the dimensions of the matrices involved
in these operations are moderate, the related computational cost is moderate
as well. For this reason, and with the aim to reduce data transfers overheads,
those operations are performed on the CPU.

– Second, the sign function for the extended matrix (7) is computed. The
proposal is based on the efficient matrix inversion kernel described in sub-
section 3.1 and the utilization of OpenMP to accelerate the matrix addition
and matrix norm evaluation performed on the CPU; see Algorithm GECRSG.
Note that the solution of the Riccati equation via this solver involves matri-
ces which are twice as big as those that appear in the sign function solver
for the Lyapunov equation.

– Finally, the overdetermined system is solved. To do so, a multi-thread version
of routine GEQP3 (included in LAPACK) is employed. Other minor operations
are also executed on the CPU and parallelized using OpenMP.



3.3 Remaining stages of the BST method

Once the low rank factor from the controllability gramian (S) and the observ-
ability gramian (Wo) have been computed from the solution of the Lyapunov and
the Riccati equations respectively, only some minor operations with moderate
computational effort are required to obtain the reduced order model.

The main computations in this step include some matrix-matrix products
involving matrices of relatively small dimension. All these operations require
a moderate number of arithmetic operations and, therefore, can be efficiently
computed on the CPU using BLAS. Computing them on the CPU avoids data
transfers and the associated overhead.

4 Numerical Experiments

In this section we evaluate the parallel performance of the BST model order
reduction method. The target platform consists of two Intel Xeon QuadCore
E5410 processors (2.33GHz) with 8GB of RAM connected to an Nvidia Tesla
C1060 via a PCI-e bus. Multi-threaded implementation of BLAS, from the Intel
MKL library (version 10.2) for the general-purpose processor and from Nvidia

CUBLAS (version 3.2) for the GPU are used.
We compare three different implementations: a sequential one (bst scpu)

that is executed on a single CPU core (used as the reference implementation),
a parallel multi-thread routine (bst mtcpu) that exploits all the cores from
the CPU, and a hybrid CPU-GPU implementation (bst hyb) that executes
operations concurrently on the GPU and the CPU cores.

We employ double precision arithmetic for the solution of two instances of the
STEEL I model reduction problem [22], extracted from the Oberwolfach bench-
mark collection (University of Freiburg)2. This model arises in the manufactur-
ing process of steel profiles. The goal is to design a control that yields moderate
temperature gradients when the rail is cooled down. The mathematical model
corresponds to the boundary control for a 2-D heat equation. A finite element
discretization, followed by adaptive refinement of the mesh, results in the ex-
ample in this benchmark. The problem dimensions depend of the discretization
mesh; the two versions employed are STEEL I1357 with n = 1, 357, m = 7, p = 6;
and STEEL I5177 with n = 5, 177, m = 7, p = 6.

Table 1 summarizes the results (in seconds) obtained with all the implemen-
tations evaluated. The execution time dedicated to solve the Lyapunov equation
is shown in column 2; columns 3, 4 and 5 report the time required to initialize
matrix H , compute sign(H) and solve the overdetermined system, respectively;
column 6 displays the accumulated time. All the times given in Table 1 include
the costs to perform all the necessary CPU-GPU data transfers.

Note that most of the time is dedicated to compute the solution of the Riccati
equation, in particular the computation of sign(H) (column 4). The rest of the
time is basically spent in the Lyapunov equation solver. A careful study of these

2 http://www.imtek.de/simulation/benchmark/.



Implementation Lyapunov H init. sign(H) System solver Total

solver time(s)

STEEL I1357

bst scpu 7.74 0.10 118.15 3.23 129.22

bst mtcpu 1.68 0.05 22.34 0.57 24.64

bst hyb 9.46 0.05 10.93 0.57 21.01

STEEL I5177

bst scpu 334.16 1.52 6404.65 325.34 7065.67

bst mtcpu 63.75 0.86 1127.87 25.05 1217.53

bst hyb 26.82 0.78 292.93 24.92 345.48

Table 1. Execution time (in secs.) of the different steps of the BST method for the
STEEL I problem.

two operations demonstrates that the computational effort is concentrated in the
calculation of matrix inverses. This operation is accelerated in the bst mtcpu

implementation using multi-thread codes. The bst hyb variant improves the
parallelization of the matrix inversion procedure using the Gauss-Jordan elimi-
nation method, which is more suitable for its execution on parallel architectures,
and off-loading part of the computations to the GPU.

The times reported for the STEEL I1357 instance show a notable benefit from
the usage of the multicore (bst mtcpu) and the hybrid (bst hyb) implementa-
tion, which are respectively 5 and 6 times faster than the sequential implemen-
tation. From the results obtained for STEEL I5177 we can conclude that these
differences are even higher for larger problems. In this case, bst mtcpu is nearly
6 times faster than bst scpu, while bst hyb is more than 20 times faster. The
reason is that larger problems present a higher inherent parallelism which can
be leveraged by the massively parallel architecture of the GPU.

5 Concluding Remarks

We have presented two high performance parallel implementations for the BST
method for model reduction. Variant bst mtcpu is optimized for its execution
on a multicore CPU, while bst hyb targets hybrid platforms composed of a CPU
and a GPU. bst hyb exploits the capabilities of both architectures, the multi-
core CPU and the many-core GPU, yielding a high performance implementation
of the BST model reduction technique. Two levels of parallelism are exploited
in this implementation: at the inner level, multithread lineal algebra kernels
included in the BLAS library (MKL and CUBLAS) are employed to compute
the most time-consuming linear algebra operations; at the outer level, operations
proceed concurrently in both architectures, overlapping computations on the
CPU and the GPU.



Experimental results on a platform consisting of a state-of-the-art general-
purpose multi-core processor and a pre-Fermi GPU show that model order re-
duction of large-scale linear systems can be significantly accelerated using this
kind of platforms.

The promising results obtained encourage us to further improve the devel-
oped implementations. On-going and future work include:

– Exploit the use of multiple GPUs to further reduce the computational time
and increase the dimension of the affordable problems.

– Evaluate the use of mixed precision techniques that allow to perform most
of the computations in single precision arithmetic.
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