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ABSTRACT. A subset S of a topological group G is called bounded
if, for every neighborhood U of the identity of G, there exists a fi-
nite subset F' such that S C FU, S C UF. The family of all
bounded subsets of G determines two structures on G, namely the
left and right balleans B;(G) and B,(G) , which are counterparts
of the left and right uniformities of G. We study the relation-
ships between the uniform and ballean structures on G, describe
all topological groups admitting a metric compatible both with
uniform and ballean structures, and construct a group analogue of
Higson’s compactification of a proper metric space.
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INTRODUCTION

A ball structure is a triple B = (X, P, B), where X, P are non-empty
sets and, for every x € X and a € P, B(x, «), is a subset of X which is
called a ball of radius o around z. It is supposed that = € B(z, a) for
all z € X and a € P. The set X is called the support of B, P is called
the set of radii.

Given any r € X, AC X, a € P, we put

B'(x,a) = {y € X :x € B(y,a)}, B(A,a) = | B(a,q).
acA
A ball structure B is called

e lower symmetric if, for any «, 3 € P, there exist o/, € P,
such that, for every x € X,

B(z,a") € B(x,a), B(x,f) € B*(x,B);

e upper symmetric if, for any «, 5 € P, there exist o/, ' € P such
that, for every x € X,

B(z,a) C B*(z,a'), B*(z,8) C B(z, 8);

e lower multiplicative if, for any «, 5 € P, there exists v € P such
that, for every x € X,

B(B(x,7),7) € B(x,a) () B(z, ),
1
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o upper multiplicative if, for any o, 5 € P, there exists v € P such
that, for every x € X.

B(B(z,a), 8) € B(z,7).

Let B = (X, P, B) be a lower symmetric and lower multiplicative
ball structure. Then the family

{U B(z,a) x B(z,a) : a € P}

zeX

is a base of entourages for some (uniquely determined) uniformity on
X. On the other hand, if / C X x X is a uniformity on X, then the
ball structure (X,U, B) is lower symmetric and lower multiplicative,
where B(z,U) ={y € X : (z,y) € U}. Thus, the lower symmetric and
lower multiplicative ball structures can be identified with the uniform
topological spaces.

We say that a ball structure B is a ballean if B is upper symmetric
and upper multiplicative.

The balleans are coming from many different areas: group theory [4],
5], coarse geometry [12] and asymptotic topology [2], combinatorics [8].
A ballean can also be defined in terms of entourages. In this case, it is
called a coarse structure. In this paper we follow terminology from [9].

Let By = (X4, P, By), By = (Xy, Py, By) be balleans. We say that
a mapping [ : X7 — X5 is a < - mapping if , for every a € P, there
exists 0 € P, such that, for every z € X,

f(Bl(f,Oé» - Bg(f(m),ﬂ),

and note that f is a counterpart of a uniformly continuous mapping
between the uniform topological spaces.

We say that By and By are asymorphic if there exists a bijection
f: Xi — X, such that f and f~! are < - mappings.

If By, By are balleans with common support X and the identity
mapping ¢d : X — X is an asymorphism, we identify B; and B, , and
write Bl = 82.

A ballean B = (X, P, B) is called connected if, for any x,y € X, there
exists w € P such that y € B(z, ). We note that connectedness can be
considered as a counterpart of Hausdorffness of a uniform topological
space.

1. BALLEANS ON GROUPS

Let GG be a group with the identity e, F¢ be a family of all finite sub-
sets of GG, Z be an ideal in the Boolean algebra of all subsets of G. We
say that Z is a group ideal if Fo CZ and A,B €T — AB ' € I. Ev-
ery group ideal Z determines two balleans (see [9, Chapter 6]) B;(G,T)
and B,(G,Z) on G, where B)(G,I7)=(G,Z,B;). B.(G,1)=(G,Z,B,)
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and, forall AeZ, ge€@,

Bi(g,A) = g(A| [{e}), B.(9,4) = (A He}g.

Now let GG be finitely generated, S be a finite system of generators
of G. The left (right) Cayley graph Cay, (G, S) (Cay,(G,S)) is a graph
with the set of vertices G and the set of edges E; = {{z,y} : 7'y € S}
(B, = {{z,y} : 2y~ € S}). Clearly, these graphs are connected.
Given any z,y € G, we denote by d;(z,y) (d,(z,y)) the length of a
shortest path in Cay(G,S) (Cay,.(G,S)) between x,y. The metric
spaces (G, d;), (G,d,) are an effective tool in geometrical group theory
[4], [5]. Every metric space can be considered as a ballean (see Sec-
tion 2), and the balleans B,(G, F¢) B.(G, Fg) are asymorphic to the
balleans determined by (G, d,), (G, d,).

In what follows, all topological groups are supposed to be Hausdorff.
A subset A of a topological group G is called bounded if, for every
neighborhood U of the identity, there exists ' € F¢ such that A C FU,
A C UF. We note that A is bounded if and only if its closure in the
completion of G by two-sided uniformity is compact.

A topological group G is said to be totally bounded (o-bounded, lo-
cally bounded), if G is a bounded subset (G is a countable union of
bounded subset, there is a bounded neighborhood of e).

Given a topological group (G, 7), the family Z. of all bounded subsets
of G is a group ideal. The subject of this paper is the balleans B;(G) =
B/(G,I,), B.(G) = B,(G,Z,), which are called the left and right ballean
of topological group G. For a locally compact group, these balleans
were introduced and studied in [3].

Let G be a group with the identity e, B = (G, P, B) be a ballean on
G. Following [9, Chapter 6], we say that B is

o left (right) invariant if all the shifts © — gz (z — xzg) are <-
mappings;

e uniformly left (right) invariant if, for every o € P, there exists
f € P such that gB(z,«a) C B(gx,B) (B(x,a)g C B(xg,B)) for all
x,9 € G.

If B is uniformly left (right) invariant, then B is left (right) invariant,
but the converse statement does not hold [9, Example 6.1.1].

Proposition 1.1. For a connected ballean B on a group G, the follow-
ing statements are equivalent

(1) B is uniformly left (right) invariant;
(i) there exists a group ideal T on G such that B = B)(G,T) B =
B.(G,I).

Proof. See [9, Section 6.1]. O
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Given any z € G, A C G, we put
G -1 G G
" ={g zg: g€ G}, A :Ua.

acA

We say that a group ideal Z on G is uniformly invariant if A® € T
for every A € 7.

Proposition 1.2. Let 7 be a group ideal on a group G. Then the
following statements are equivalent
(i) Bl(sz) = B’I‘<G7I);
(ii) Z is uniformly invariant;
(iii) the mapping x — x4 : Bi(G,Z) — Bi(G,T) is a <-mapping;
(iv) the mapping (x,y) — zy : BI(G,Z) x B/(G,Z) — B)(G,Z) is a
<-mapping.

Proof. See [9, Section 6.1]. O

Proposition 1.3. For a topological group G, the following statements
are equivalent
(i) Bi(G) = B,(G);
(ii) the subset AY is bounded for every bounded subset A;
(iii) the mapping x — x~ ' : Bi(G) — Bi(G) is a <-mapping;
(iv) the mapping (x,y) — xy : Bi(G) x B/(G) — Bi(G) is a <-

mapping.

Proof. Apply Proposition 1.2 to the group ideal Z of all bounded sub-
sets of G. O

Remark 1.1. By [13], for a locally compact group G, the condition (ii)
is equivalent to the following one: 2 is bounded for every z € G. We
show that this statement does not hold for locally bounded group. For
each n € w, we consider the semidirect product A, = B,\C,,, where
B, ~7Zs, C,, ~ Zy and put G = @),,c,, An-

We endow G with the topology whose base at identity form the

subsets {@),,~, Cn : m € w}. Then G is a group with finite conjugated
classes, the subset C' = & _ C, is bounded, but C% is unbounded.

new

2. METRIZABILITY

A metric d on a set X determines the metric ballean B(X,d) =
(X,R*,By), where Rt = {r € R : r > 0}, By(z,7) = {y € X :
d(z,y) < r}. A ballean B is called metrizable if B is asymorphic to
some metric ballean. By [9, Theorem 2.1.1], a ballean B = (X, P, B) is
metrizable if and only if B is connected and cfB < Ny, where cofinality
cfB is the minimal cardinality of cofinal subsets of P. A subset P’ < P
is cofinal if, for every o € P, there exists o/ € P such that B(x,«a) C
B(z,d) for every z € X.



BALLEANS OF TOPOLOGICAL GROUPS 5

Proposition 2.1. Let d be a left invariant metric on a group G with
the identity e, V, = {x € G : d(z,e) < r}, r € RT. Then the family
{V, :r € Rt} is a base for some group ideal T, on G, and B(G,d) =
B)(G,Z.).

Proof. Given any z,y € G, we have d(z,e) = d(e,x™1) and d(zy,e) =
dy,z7) < d(y,e) + d(z7te) = d(y,e) + d(z,y), so V, = V! and
V.V, C V,.s for all r,s € R*. Clearly, every finite subset of G is
contained in some ball V,.. Thus, Z; is a group ideal.

Since d(z,y) < r if and only if y € 2V}, B(G,d) = B)(G,Zy). O

Proposition 2.2. Let 7 be a group ideal with a countable base on
a group G. Then there exists a left invariant metric d on G, taking
integer values, such that B)(G,Z) = B(G, d).

Proof. Since T has a countable base, we can choose a base {V,, : n € w}
for Z such that Vy = {e¢} and V,, = V.1, V,,V,, C V,,;; for each n € w.
Given any x € X, we put

| z ||=min{n e w:x € V,}.
By the choice of {V,, : n € w}, we have
Fal=lla= 1, ey <zl +1yl-

We define a metric d on G by the rule d(x,y) =|| 7'y ||, and note that
B(G,d) = Bi(G,I). O

Now let G be a topological group. If G is first countable, by [6,
Theorem 8.3|, the left uniformity of G can be determined by some left
invariant metric. If G is o-bounded, by Proposition 2.2, the left ballean
Bi(G) can also be determined by a left invariant metric. In the next
theorem we stick together these two statements.

Theorem 2.1. For every topological group G, the following statements
are equivalent

(i) there is a left invariant metric d on G compatible both with left
uniformity and left ballean structure of G;
(ii) G is first countable, locally bounded and o-bounded.

Proof. (ii) = (i). If G is discrete, by Proposition 2.2, there exists a
left invariant metric d on G taking integer values and determining left
ballean structure of G. Clearly, d determines the discrete uniformity.

We assume that G is non-discrete and modify a construction of met-
ric from [6, Theorem 8.3]. We fix a bounded symmetric neighborhood
Up of the identity e of G and choose a family {U,, : n € Z} of bounded
symmetric neighborhoods of e such that

UnUn C Unyr, | JUL =G,

nel
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and {U, : n € Z} is a base of neighborhoods of e. For each n € Z, we
put Von = U,. Given any r = 200 422 + 42 [} > 1, > ... > [,
l; € Z, we put
Vo = Vi, Vs Vit
Repeating the arguments proving Theorem 8.3 from [6], we conclude
that
(1) r<s=V,CVyg
(2) ViV C Vipgrea.
Then we define a function ¢(x) = inf{r : x € V,} and note that
o(z) =0 if and only if x = e. We put

d(z,y) = sup{lp(zz) — p(zy)| : z € G},

and note that d is a left invariant metric on G.
By (1), (2) and [6, Theorem 8.3|, d determines a left uniformity of

If d(x,e) < 2! then z € V,l. On the other hand, let z € V5l. If
z €V, by (2), 2z € Voyol so ¢(2x) < ¢(2) + 22 Analogously, if
zz € V, then V,V;'e C V}f3 and ¢(z) < p(zx) + 22, Tt follows that
d(x,e) < 2%2 50 d determines the left ballean structure of G.

(i) = (4i). Since the left uniformity of G is compactible with d , G
is first countable. Since B;(G) is metrizable, by [5, Theorem 2.1.1], G
is o-bounded. Since B(G,d) = Bi(G), each ball By(z,r) is bounded,
so G is locally bounded.

U

A metric d on a set X is called an wltrametric if

(z,y) < max{d(z, 2),d(z,y)}

for all z,y, 2z € X. If G is a left invariant metric on group G , then the
set {x € G :d(z,e) <r} is a subgroup for every r € R*.

Theorem 2.2. For a topological group G, the following statements are
equivalent
(i) there is a left invariant ultrametric d on G compatible both with
left uniformity and left ballean structure of G;
(ii) there is a family {V,, : n € Z} of open subgroups of G such that
Vi € Vi1, Vo1 1 Vo] < o0, Ure; Vo = G and {V,, : n < 0} is
a base at the identity for the topology of G.

Proof. (i) = (ii). For every n € Z, we put
Vo={reG:d(z,e) <2"}.
Since d determines B;(G), |~ V, = G and each subgroup V;, is
bounded, then | V,,41 : V,, |< co. Since d is compactible with the left

uniformity of G, {V}, : n < 0} is a base at the identity for the topology
on G.
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(17) = (i). Given any x,y € G , we put
|2]| = min{n : x € V. }, d(z,y) = [l27"y]|,

and note that d is a desired ultrametric on G. O

3. DETERMINABILITY OF TOPOLOGY BY BALLEAN

It follows directly from the definitions that the balleans B;(G) and
B,(G) of a topological group G are uniquely determined by the topology
of G. In which respect the balleans B;(G) and B,(G) determine the
topology of G. We try to specify this question.

Let (G, T) be a topological group, Z. be the ideal of bounded subsets
of G. We say that (G, 1) is b-determinated if T is the strongest topology
on G for which Z. is the ideal of bounded subsets. Clearly every discrete
group is b-determined. A totally bounded group (G, 7) is b-determined
if and only if 7 is the maximal totally bounded topology on G.

Question 3.1. Given a topological group G, how to detect whether G
is b-determined?

Question 3.2. Let 7, 1 be group topologies on G such that I, =
Z.,. Which topological properties (in particular, topological cardinal
invariant) are common for (G, 1) and (G, 1) ?

We say that the topological groups G and G4 are b-equivalent if the
balleans B;(G) and B,(G) are asymorphic.

Question 3.3. Which properties of a topological group are invariant
under b-equivalence?

Question 3.4. Given a group ideal Z on G, how to detect whether there
exists a group topology T on G such that T is the ideal of all bounded
subsets of (G,T)?

The following theorem is related to Question 3.1.

Theorem 3.1. No b-determined topological Abelian group G may con-
tain a non-trivial convergent sequence. FEvery Abelian metrizable b-
determined group s discrete.

We need two auxiliary lemmas.

Lemma 3.1. Let 7y, 1 be group topologies on a group G such that
1., =1,, 11V 1o be the least upper bound of 7 and 1. Then L, ., =
I, =1,.

Proof. For a group G, following the terminology of van Douwen, we
denote by G# the group G equipped with the largest precompact group
topology. If G is Abelian then G# is Hausdorff and has no convergent
sequences [1]. O
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Lemma 3.2. Let (G, T) be a topological Abelian group. Then there ex-
ists the largest group topology 7 on G satisfying I+ = I.. Moreover,
the topology T is finer than the largest precompact group topology #
on G.

Proof. O
Proof of Theorem 3.1. U

Remark 3.1. The Abelian condition is essential in Theorem ?77. In-
deed, let G be a semi-simple connected compact group Lie group.
Clearly, G is metrizable. By [?], G admits only one precompact (in
fact, compact) group topology, so G is b-determined.

Remark 3.2. Let 7, 75 be a group topologies on a group G. Following
[10], we say that 7 is totally bounded with respect to 7 if, for every
neighbourhood U of e in 75, there exists a finite subset F' such that FU
is a neighbourhood of e in 7. Equivalently, every Cauchy ultrafilter in
(G, 1) is a Cauchy ultrafilter in (G, 7). For every group topology 7 on
G, there exists the largest topology 7 totally bounded with respect to 7.
Clearly, Z, = Z; so 7 C 7#. If (G, 7) is totally bounded, then 7 = 77,
But we cannot state that 7 = 7% for every group topology 7. Indeed,
let (G, 7) be a non-discrete topological group with only finite bounded
subsets (see Example 3.2). Then 77# is discrete, but 7 is non-discrete.
On the other hand, for every topological Abelian group (G, 7), we have
# C 7, s0 G, 7 has no non-trivial convergent sequences.

Question 3.5. Given a topological group (G, T), how to detect whether
F=1"? T =77

We construct a countable non-discrete topological group with only
finite bounded subsets.

Example 3.2. Let G = Q),,, G\ be the direct product of finite groups
G, |Grn| > 1 with the identities e,, n € w. For every g € G, we put

supp(g) = {9 € G : prog # en}.
We fix an arbitrary free ultrafilter ¢ on w and, for every ® € ¢, put

[@] = {9 € G: supp(g) C P}
The family {[®] : ® € ¢} forms a base at the identity e for some
non-discrete group topology 7 on G.

We show that (G, 7) is complete. Let ¢ be a ultrafilter Cauchy on
G with respect to the left uniformity on (G, 7) (which coincides in this
case with the right uniformity). To show that ¢ converges in (G, T), we
endow each group G,, with the discrete topology, and consider G as a
subgroup of the Cartesian product H =[], . G,. Since H is compact
in the product topology, 1) converges in H to some element h. We put

X={necw: proh#e,},
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and consider two cases.

Case: X is infinite. We choose an infinite subset Y C X such that
w\Y € ¢. Since ¢ is an ultrafilter Cauchy in (G, 7), there exists
U € 9 such that supp(g~'¢g’) C Y \w for all g,¢g € U. We fix an
arbitrary element £ € Y. Since ¥ converges to h in H. there exists
U’ € ¢ such that ¥/ C ¥ and k € supp(g) for every g € ¥'. We fix an
arbitrary element z € V. Since Y is infinite, we can take an element
m € Y\ supp(x). Since 1) converges to h in H, there exists U" € 1) such
that ¥ C ¥ and m € supp(g) for every g € ¥”. We fix an arbitrary
element y € U”. Then m € supp(z~'y), so supp(z~'y) € w\Y,
contradicting the choice of W. Thus, this case is impossible.

Case: X is finite. Replacing v to 2711, we may suppose that h = e.
We assume that 1) does not converge to e in 7, and choose an infinite
subset Y C w such that w\ Y € p. Repeating the arguments from the
previous case, we get a contradiction, so i) converges to k.

At last, we assume that (G, 7) contains an infinite closed bounded
subset A. Since (G, 7) is complete, A is compact. Since A is countable
there exists an injective sequence (a,)ne, converging to some element
a. We may suppose that a = e. Passing to a subsequence, we also
suppose that maz(a,) < min(an4+1) for every n € w, where min(x)
and maz(x) are the first and the last non-zero coordinates of . We
put M = {min(a,)n € w} and choose and infinite subset ¥ C M
such that Y ¢ . Then [w \ Y] is a neighbourhood of e in 7, but
infinitely many members of (a,,),e, are outside of this neighbourhood,
This contradiction shows that A is finite.

Question 3.6. Let (G, T) be a topological group such that T is mazimal

in the class of all non-discrete group topologies on G. Is every bounded
subset of (G, 1) finite?

4. SLOWLY OSCILLATING FUNCTION

Every ballean B = (X, P, B) has a compact Hausdorff satellite, the
corona y(B). To describe y(B), we endow X with the discrete topology
and consider the Stone-Cech compactification X of X. We take the
points of X to be the ultrafilters on X with the points of X identified
with the principal ultrafilters. The topology of X can be defined by
stating that the sets of the form A = {p € X : A € p}, where A is a
subset of X, form a base for the open sets.

We denote by X* the set of all ultrafilters 7 on X such that every
R € r is unbounded in B. A subset V is called bounded in B if
V C B(z,a) for some z € X and o € P. Clearly, X* is a closed subset
of 5X.

Given any r,q € X*, we say that r, q are parallel (and write r || ) if
there exists a € P such that B(R,a) € ¢q for each R € r. It is easy to
see that || is an equivalence on X*. We denote by ~ the minimal (by
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inclusion) closed (in X* x X*) equivalence on X* such that ||C~. The
quotient X*/ ~ is a compact Hausdorff space. It is called a corona of
B and is denoted by v(B).

To clarify the virtual equivalence ~ determining ~(B) we use the
slowly oscillating functions.

A function f: X — R is called slowly oscillating if , for every € > 0
and every o € P, there exists a bounded subset V' of X such that

diam h(B(z,«a)) < e
for every x € X \ V, where diamA = sup{|a — b| : a,b € A}.

Proposition 4.1. Let B = (X, P, B) be a connected ballean, q,r € X*.
Then q ~ 7 if and only if h*(q) = hP(r) for every slowly oscillating
function h : X — [0,1], where h? is the extension of h to BG.

Proof. See [11, Proposition 1]. O

A metric space (X,d) is called proper if every closed ball in X is
compact. For a proper metric space X , N. Higson (see [12, Section
2.3]) defined v(B(X,d)) as the reminder of some compactification of
X. To describe this compactification we recall some standard facts.

Let X be a topological space. A pair (¢,Y") is called a compactifica-
tion of X if Y is a compact space, ¢ : X — Y is a continuous mapping
and p(X) is dense in Y. If in addition ¢ is an embedding, (¢,Y") is
called a topological compactification. In this case we can identify X
with (X)), X\@(X) is called the remainder of compactification.

Let X be a topological space and let A be a norm closed subalgebra
of Cr(X) which contains all constant function. By [7, Lemma 21.39],
there is a compact space Y and a continuous mapping ¢ : X — Y with
the property that ¢(X) is densein Y and A= {f € Cr(X): f=gogp
for some g € Cr(Y)}. The mapping ¢ is an embedding if, for every
closed subset E of X and every z € X \ E, there exists f € A such
that f(z) =1and f |g=0.

For a proper metric space (X,d), the set S(X,d) of all bounded
continuous slowly oscillating real functions on X is a norm closed sub-
algebra of Cg(X,d).

Applying [7, Lemma 21.39], we get some compactification (x, x(X, d))
which is called the Higson’s compactification.

Proposition 4.2. For a proper metric space (X, d), the following state-
ments hold

(i) (x, x(X,d)) is a topological compactification;

(ii) (x(X,d) \ (X,d) is homeomorphic to v(B(X,d)).
Proof. See [11, pp 154-155]. O

For a topological group G, a function f : G — R is said to be left
(right) slowly oscillating if, for every € > 0 and every bounded subset
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F of G, there exists a bounded subset V' such that | f(zy) — f(z) |< e
(| flyx) — f(x) |<e) forall z € G\'V, y € F. Clearly, f is left (right)
slowly oscillating if and only if f is slowly oscillating with respect to
the ballean B;(G) (B.(G)).

The families S;(G) and S,(G) of all bounded continuous left and
right slowly oscillating functions on GG are the norm closed subalgebras
in Cr(G). Applying [7, Lemma 21.39], we get two compactifications

(xt, xi(G)) and (xr, x»(G)) of G.

Proposition 4.3. For a topological group G, the following statements
hold

(i) if G is locally bounded, then (xi, xi(G)), and (xr,x-(G)) are
topological compactifications;
(i) if G is not locally bounded, then x;(G) and x,.(G) are singletons.

Proof. (i) In view of [7, Lemma 21.39], it suffices to show that any
closed subset E of G and z € G\FE can be separated by left (right)
bounded continuous slowly oscillating function. Since G is locally
bounded, we can choose an open bounded neighborhood U of x such
that U [ E = 0. Since the space of G is completely regular, there is a
continuous function f : G — [0,1] such that f(z) =1 and f |;v= 0.
Clearly, f is left and right slowly oscillating.

(11) We show that every continuous left slowly oscillating function
f + G — Ris constant. Let a,b € G. Given any ¢ > 0, we choose
a bounded subset V of G such that diamf(z{e,a 'b}) < e for each
x € G\ V. Since G is not locally bounded, for every neighbourhood U
of a, there exists x € UN(G\ V). It follows that | f(a)— f(b) |[<e. O

Remark 4.1. If G is locally compact, we can identify the remainders
xi(G) \ G and x,.(G) \ G with v(B;(G)) and v(B,(G)) respectively.

Remark 4.2. Let G be a countable non-discrete group G' with finite
bounded subsets. By Proposition 4.3(7), x;(G) is a singleton. On the
other hand, by [11, Proposition 3], |v(B)(G))| = 22™.
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