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Abstract. The present paper addresses the problem of the classification of hy-
perspectral images with multiple imbalanced classes and very high dimension-
ality. Class imbalance is handled by resampling the data set, whereas PCA and
a supervised filter are applied to reduce the number of spectral bands. This is a
preliminary study that pursues to investigate the benefits of combining several
techniques to tackle the imbalance and the high dimensionality problems, and
also to evaluate the order of application that leads to the best classification per-
formance. Experimental results demonstrate the significance of using together
these two preprocessing tools to improve the performance of hyperspectral im-
agery classification. Although it seems that the most effective order corresponds
to first a resampling strategy and then a feature (or extraction) selection algo-
rithm, this is a question that still needs a much more thorough investigation in the
future.

1 Introduction

Hyperspectral sensors are characterized by a very high spectral resolution that usually
results in hundreds of observation channels [27]. Although this allows to address many
applications requiring very high discrimination capabilities in the spectral domain [4],
the huge amount of data available makes complex the classification of hyperspectral
images. In this classification context, another important drawback is that the hyperspec-
tral information is commonly represented by a very large number of features (spectral
bands), which are usually highly correlated [27,31].

A complex situation frequently ignored in hyperspectral imaging refers to the pres-
ence of severely skewed class priors. This situation is generally known as the class
imbalance problem [13]. A data set is said to be imbalanced when one of the classes
(the minority one) is heavily under-represented in comparison to the other (the major-
ity) class. Because of samples of the minority and majority classes usually represent
the presence and absence of rare cases respectively, they are also known as positive
and negative examples. It has been observed that class imbalance often leads to poor
classification performance in many real-world applications, especially for the minority
classes.



Most of the approaches to tackle the imbalance problem have been proposed both at
the data and algorithmic levels. Data-driven methods consist of balancing the original
data set, either by over-sampling the minority class [5, 12] and/or by under-sampling [9,
21] the majority class until the classes are approximately equally represented. Belong-
ing to this group, we can also find several algorithms for feature selection [1, 18,23,
33,35]. At the algorithmic level, solutions include internally biasing the discrimination-
based process [7,8] and assigning distinct costs to the classification errors [24,25,39].

Although class imbalance has been extensively studied for binary classification
problems in the last decades, very few approaches deal with imbalanced multi-class
data sets, as is the case of remote sensing applications. In the particular context of
hyperspectral imagery, some proposals are simple adjustments of conventional learning
algorithms [3,20,37], whereas others employ ensembles of classifiers [32,36] or feature
selection tools [6].

This paper investigates some strategies to select the most relevant features and man-
age the class imbalance in the classification of hyperspectral imagery acquired by the
Airborne Visible/Infrared Imaging Spectrometrer (AVIRIS'). The problem is of great
importance since these image data present both very high dimensionality and multiple
imbalanced classes, what certainly provides additional challenges in the framework of
remote sensing classification. In order to face such a problem, this work focuses on the
joint use of feature selection/extraction and resampling techniques, and explores the
order in which they should be applied to achieve the best classification results.

The rest of the paper is organized as follows. Section 2 describes the methodology
proposed to handle both class imbalance and high dimensionality, and also briefly re-
views the fundamentals of the classifiers used in this work. Next, Sect. 3 contains a
description of the real hyperspectral image database used in this paper and defines the
configuration of the experiments carried out. Section 4 provides the results and dis-
cusses the most important findings. Finally, Sect. 5 concludes the present study and
outlines possible avenues for future research.

2 Methodology

This section provides an overview of the method here proposed to classify remote sens-
ing data according to the two issues of interest previously pointed out. In a first stage,
the hyperspectral image data set will be preprocessed with the double aim of balancing
the skewed classes and reducing the number of features/bands, albeit not necessarily in
this order. The second stage will consist of classifying the resulting set after overcom-
ing those two problems. Note that only those algorithms that will be further used in the
experiments are described in the present section.

2.1 Data Preprocessing

Taking the particular characteristics of hyperspectral data sets into account, most imag-
ing tasks could usually benefit from the application of some preprocessing techniques.

! http://aviris.jpl.nasa.gov/



Here we concentrate on a common situtation in which the data set consists of multiple
imbalanced classes in a high dimensional representation space.

Balancing the Classes. Data level methods for balancing the classes consists of re-
sampling the original data set, either by over-sampling the minority class or by under-
sampling the majority class, until the classes are approximately equally represented.
Both strategies can be applied in any learning system since they act as a preprocessing
phase, thus allowing the system to receive the training instances as if they belonged to
a well-balanced data set. By using this strategy, any bias of the learning system towards
the majority class due to the skewed class priors will hopefully be eliminated.

The simplest method to increase the size of the minority class corresponds to ran-
dom over-sampling, that is, a non-heuristic method that balances the class distribution
through the random replication of positive examples. Nevertheless, since this method
replicates existing examples in the minority class, overfitting is more likely to occur.
Chawla et al. [5] proposed an over-sampling technique that generates new synthetic mi-
nority samples by interpolating between several preexisting positive examples that lie
close together. This method, called SMOTE (Synthetic Minority Over-sampling TEch-
nique), allows the classifier to build larger decision regions that contain nearby samples
from the minority class.

On the other hand, random under-sampling [15, 38] aims at balancing the data set
through the random removal of negative examples. Despite its simplicity, it has em-
pirically been shown to be one of the most effective resampling methods. Unlike the
random approach, many other proposals are based on a more intelligent selection of the
negative examples to be eliminated. For instance, the one-sided selection technique [21]
selectively removes only those negative samples that either are redundant or that border
the minority class examples (assuming that these bordering cases are noise).

Dimensionality Reduction. The reduction in the hyperspectral representation space
can be carried out by means of feature selection or extraction techniques [14, 26]. In
both approaches, the aim is to reduce the number of bands, without much loss of infor-
mation. The process of feature selection is to choose a representative subset of features
from the original data by assessing its discrimination capabilities according to statis-
tical distance measures among classes (e.g., Bhattacharyya distance, Jeffries-Matusita
distance, and the transformed divergence measure). The feature extraction approach
addresses the problem of dimensionality reduction by projecting the data from the orig-
inal feature space onto a low-dimensional subspace, which contains most of the original
information.

Probably, one of the most well-known feature extraction methods corresponds to
PCA (Principal Component Analysis) [17], which seeks to reduce the dimension of the
data by finding a few mutually orthogonal linear combinations of the original variables
with the largest variance. It involves a mathematical procedure that transforms a number
of (possibly) correlated observed variables into a smaller number of uncorrelated artifi-
cial variables called principal components. The principal components extracted in PCA
are the eigenvectors of the data coveriance matrix, where the first principal component is
the eigenvector with the largest eigenvalue (the one that accounts for a maximal amount



of total variance in the observed variables). The remaining components will account for
a maximal amount of variance in the observed variables that was not accounted for by
the preceding components, and will be uncorrelated with all of the previously extracted
components.

In the case of feature selection, the algorithm here used corresponds to a super-
vised feature filter, namely correlation-based feature selection (CFS) [11]. The central
hypothesis of this technique is that good feature sets should contain variables that are
highly correlated with the class, yet uncorrelated with each other. Thus irrelevant fea-
tures should be ignored because they will have low correlation with the class, whereas
redundant features should be removed as they will be highly correlated with one or
more of the remaining variables. The acceptance of a feature will depend on the extent
to which it predicts classes in areas of the input space not already predicted by other fea-
tures. The implementation of CFS allows the user to choose from three heuristic search
strategies: forward selection, backward elimination, and best first (this may start with
no features and search forward, or with the full set of features and search backward, or
even start at any point and search in both directions).

2.2 Classification

We assume that there exists a set of n previously labeled examples (training set), say
X ={(z1,w1), (2, w2), ..., (zn,wn)}, where each element has an attribute vector x;
and a class label w;. Two traditional classification techniques for remote sensing data
will be used in the present experimental study: a support vector machine and a decision
tree.

Support Vector Machine. Support vector machine (SVM) models [34] were originally
proposed for the classification of linearly separable classes of samples, based on the idea
of the empirical risk minimization principle. For any particular set of two-class data, an
SVM finds the unique hyperplane (one per class) having the maximum margin §. The
samples that define the hyperplanes are called support vectors. A special characteristic
of the SVM is that the solution to a classification problem is represented by the support
vectors that determine the hyperplane with the maximum margin.

For nonlinear problems, the SVM maps the input data from the original input space
onto a higher dimensional feature space using a kernel function. Formally, an SVM
defines a new space where data are linearly separable. For such a purpose, it constructs
an optimal hyperplane (or a set of hyperplanes) in a high or infinite dimensional space,
which can be used for classification, regression or other tasks. The optimal hyperplane
corresponds to a decision surface that maximizes the distance between it and the nearest
training samples of any class (this largest distance is the maximum margin). In general,
the larger the margin, the lower generalization error of the classifier.

The use of nonlinear kernels provides the SVM with the ability to model complex
separation hyperplanes. However, because there is no theoretical tool to predict which
kernel will give the best results for a given data set, experimenting with different types
(e.g., polynomial, B-spline, radial basis function, sigmoid, tensor product) or using prior
knowledge [19] are the only ways to identify the best kernel function.



Decision Tree. A decision tree is a classification (or regression) tool [2] that uses a tree-
like graph or model of decisions and their consequences. Thus a decision-tree model is
built by analyzing training data and the result is then used to classify unseen data. The
internal nodes of a tree evaluate the existence or significance of individual attributes.
Following a path from the root to the leaves of the tree, a sequence of such tests is
performed resulting in a decision about the appropriate class of new objects.

The decision trees are usually constructed in a top-down fashion by choosing the
most appropriate attribute each time. An information-theoretic measure (e.g., entropy,
Gini impurityindex, information gain, Chi-square) is used to evaluate features, which
provides an indication of the “classification power” of each attribute. Once a feature is
chosen, the training data are divided into subsets, corresponding to different values of
the selected feature, and the process is repeated for each subset until a large proportion
of the instances in each subset belongs to a single class.

Popularity of decision trees comes as a result of flexibility, easy interpretability
and simple implementation. Thus many decision-tree algorithms have been developed,
being ID3 [29], C4.5 [30], and CART [2] some of the most extensively-used.

3 Experimental Set-up

The experiments were carried out on the 92AV3C data set?, which corresponds to a
hyperspectral image (145 x 145 pixels) taken over Northwestern Indiana’s Indian Pines
by the AVIRIS sensor in June 1992 and employed to recognize different land-cover
classes. Although the AVIRIS sensor collects 224 spectral bands, four of these contain
only zero values and so they can be removed, leaving 220 non-zero bands. On the other
hand, several bands should also be discarded due to the effect of atmospheric absorption
and/or noise [16, 22,26, 27], thus giving a total of 185 bands to be considered in the
present study. The ground truth data show that the image has 17 classes, although only
16 classes belonging to different crop types, vegetation, man-made structures or other
kinds of land were used (see Table 1). The omitted class contains unlabeled pixels,
which presumably correspond to uninteresting regions or were too difficult to label.

In order to increase the statistical significance of the experimental results, several
classification performance measures were averaged over 30 different random partitions
(2/3 of pixels for training and the rest for testing) of the original data set, preserving the
prior class probabilities of each and the statistical independence between the training
and test sets of every partition. The training sets were preprocessed by SMOTE and
random under-sampling (RUS) to handle the class imbalance, and also by PCA (with
a variance of 0.99) and the CFS algorithm for dimensionality reduction. Since it is
difficult to decide which classes to resample in a multi-class problem (e.g., class o9
can be deemed as majoritary when compared to class o5, but minoritary with respect
to class og), we divided the biggest class (Soybeans—min, o14) into four blocks (each
one with 25% of samples). Based on this, the remaining classes were over-sampled to
reach 50% and 75% the size of the majority class because they represent non-extreme
cases. Similarly, the under-sampling strategy was applied by removing 50% and 75%
of samples according to the size of the biggest class.

2 https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral html



Table 1. Number of training and test pixels per class, along with the relative percentage of sam-
ples belonging to each class

Class (o) Training Test %

o1: Stone-steel towers 63 32 092
o2: Hay—windrowed 326 163 4.72
o3: Corn—min 556 278 8.05
o4: Soybeans—notill 645 323 9.34
o5: Alfalfa 36 18 0.52
06: Soybeans—clean 409 205 5.92
o7: Grass/Pasture 331 166 4.79
os: Woods 863 431 12.48
o9: Bldg—Grass—Trees—Drives 253 127 3.67
o10: Grass/pasture—-mowed 17 9 025
o11: Corn 156 78 2.26
o12: Oats 13 7 0.19
o13: Corn—notill 956 478 13.83
o14: Soybeans—min 1645 823 23.81
o15: Grass/Trees 498 249 7.21
o16: Wheat 141 71 2.05

The J48 decision tree (an open source Java implementation of the very popular C4.5
algorithm) and a SVM [28] were applied to sets that were preprocessed and also to each
original training set (without any preprocessing). Both classifiers were taken from the
WEKA toolkit [10] and all hyper-parameters of J48 were set to the default values. The
SVM employed a polynomial kernel of degree 1 and was trained with the sequential
minimal optimization algorithm [28].

3.1 Classification Performance Measures

The decisions made by a classification model over a set of samples can be expresed
in the form of a confusion matrix, where each entry (4, j) contains the number of cor-
rect/incorrect predictions. Given a problem with C' classes, Table 2 corresponds to a
C x C confusion matrix: columns represent the predicted class and rows indicate the
actual class. The elements of the diagonal contain the total number of correct predic-
tions in each class, whereas the remaining entries summarise the number of misclassi-
fications.

Several performance measures based on straightforward indices can be easily for-
mulated from the confusion matrix, revealing results on each class. However, very often
the evaluation has to be performed using more ellaborated measures in order to reflect
the overall effectiveness of a classifier. In this paper, the accuracy, the kappa statistic and
the geometric mean were used to assess the classification performance on the 92AV3C
hyperspectral image database.

The most traditional metric for measuring the performance of learning systems is
the accuracy (Acc), which can be defined as the degree of fit (matching) between the
predictions and the true classes of data. However, the use of plain accuracy to evaluate



Table 2. Confusion matrix for a multi-class problem

Predicted class
Actual class| o1 o2 -+ OC
o1 1,1 T2 0 TiC
o2 r2,1 T22 o T2,C
oc rcai rece -+ re,c

the classifiers in imbalanced domains might produce misleading conclusions, since it is
strongly biased to favor the majority classes. In order to maximize the individual accu-
racy on each class while keeping them balanced, Kubat et al. [21] proposed to use the
geometric mean of accuracies (Gmean), which is calculated by multiplying the accu-
racies of the C' classes and taking the C"th root of this product. On the other hand, the
kappa statistic or kappa coefficient (x € [—1, +1]) measures pairwise agreement among
a set of classifications, correcting for expected chance agreement. A value of +1 means
that there exists a total agreement, whereas x = —1 reflects a complete disagreement.
A value of 0 suggests that there is no agreement other than which would be expected by
chance. Note that the kappa coefficient is a standard performance measure widely used
in remote sensing.

Apart from these global metrics, the average accuracy of each individual class
(Acc;) was calculated in order to evaluate the effect of the preprocessing techniques
on the majority and minority classes separately. The arithmetic mean of these C' indi-
vidual accuracies, say Mean, will be also included in the next section as an additional
overall estimate of the performance.

ZiC:1 Acc;
C

Mean =

)]

4 Results and Discussion

Table 3 reports the results, in terms of the four global performance metrics enumerated
in the previous section, given by J48 and SVM when classifying the test samples. As
can be observed, the use of a dimensionality reduction method (individually or together
with some resampling algorithm) produces an important decrease in SVM performance,
whereas this effect is much less noticeable with the J48 decision tree. Focusing on the
resampling strategies, it is worth pointing out that SMOTE generally excels the ran-
dom under-sampling approach, except when it is combined with PCA using the SVM
classifier.

Among the performance metrics included in Table 3, the Gmean is probably the
most useful one since it is calculated from the individual accuracy on each class. This is
especially remarkable in the case of SVM: despite the plain accuracy and kappa using
the original training set are high enough, the geometric mean is 0, what means that all
samples from one or more classes have been misclassified. The only strategies capable
of overcoming this problem are SMOTE, CFS+SMOTE and SMOTE+CFS (combining



Table 3. Global performance measures obtained with J48 and SVM

J48 SVM
Acc Kk Mean Gmean| Acc Kk  Mean Gmean
Original 0.739 0.703 0.710 0.692 | 0.817 0.791 0.694 0.000
PCA 0.688 0.644 0.652 0.613 | 0482 0.367 0.304 0.000
CFS 0.734 0.697 0.693 0.668 | 0.665 0.606 0.498 0.000
RUS 50% 0.708 0.671 0.707 0.688 | 0.807 0.781 0.710 0.000
75% 0.677 0.637 0.699 0.682 | 0.779 0.752 0.710 0.000
SMOTE 50% 0.734 0.698 0.729 0.716 | 0.827 0.804 0.883 0.876

75%  0.734 0.698 0.732 0.719 | 0.824 0.801 0.891 0.886
PCA+RUS 50% 0.661 0.617 0.658 0.623 | 0.508 0.431 0.349 0.000
75%  0.638 0.593 0.654 0.619 | 0.488 0.416 0.352 0.000
PCA+SMOTE 50%  0.671 0.627 0.692 0.673 | 0.474 0388 0.547 0.333
75%  0.663 0.620 0.692 0.675 | 0.526 0.464 0.604 0.472
RUS+PCA 50% 0.661 0.618 0.657 0.622 | 0.505 0.428 0.347 0.000
75%  0.639 0.595 0.661 0.629 | 0.485 0.413 0.350 0.000
SMOTE+PCA 50% 0.669 0.625 0.682 0.660 | 0.457 0.363 0.528 0.276
75%  0.661 0.618 0.683 0.664 | 0.509 0.444 0.587 0.459
CFS+RUS 50% 0.705 0.667 0.694 0.671 | 0.679 0.633 0.533 0.000
75%  0.672 0.632 0.691 0.672 | 0.661 0.618 0.563 0.000
CFS+SMOTE 50% 0.727 0.690 0.717 0.701 | 0.699 0.656 0.767 0.729
75%  0.727 0.691 0.728 0.715 | 0.711 0.673 0.791 0.767
RUS+CFS 50% 0.705 0.667 0.697 0.675 | 0.685 0.640 0.544 0.000
75%  0.677 0.637 0.697 0.680 | 0.682 0.641 0.582 0.000
SMOTE+CFS 50% 0.735 0.699 0.730 0.716 | 0.764 0.731 0.826 0.808
75% 0.731 0.695 0.727 0.713 | 0.769 0.740 0.847 0.834

SMOTE with PCA provides some increase in performance, but still insufficient), thus
suggesting that it is preferable to generate synthetic minority samples rather than to
remove instances from the majority classes.

In hyperspectral imaging, it is generally accepted that feature selection is better than
extraction because of two main reasons [26]. On the one hand, feature extraction would
need the whole (or most) of the original data representation to extract the new fea-
tures, forcing to always deal with the whole initial representation of the data. Besides,
since the data are transformed, some crucial and critical information might be compro-
mised and distorted. The present experiments support this assertion since CFS has been
consistently superior to PCA in terms of any performance measure, irrespective of the
classifier and the strategy (applied alone or combined with resampling) used.

On the other hand, when comparing the results given by SMOTE and SMOTE+CES,
one should be aware of both the classification performance and the computational
needs. Although the single application of SMOTE attains better results than combin-
ing SMOTE with CFS, it has to be noted that the feature selection algorithm produces a
severe reduction in the number of bands, what represents an additional benefit in form
of computational savings.

As regards the application order of the two preprocessing tools, it appears that re-
sampling should be performed before any dimensionality reduction, especially in the



case of using over-sampling together with feature selection. This suggests that SMOTE
and RUS need the whole set of features to lead to the highest performance, meaning
that the removal of bands causes a loss of hyperspectral information that is necessary
for correctly resampling the data set.

Note that the average number of bands given by CFS is 28 when it has been applied
before the resampling algorithms, whereas it selects about 30 and 48 bands when RUS
and SMOTE are firstly run, respectively. On the other hand, PCA gives 3 bands in all
cases, that is. it produces a dramatic reduction in dimensionality.

Table 4. Average classification accuracy on each class with the J48 decision tree (o1, 05, 010,
012 correspond to the minority classes, and og, 013, 014 are the majority classes)

Class

o1 o5 010 012 s 013 014

Original 0.866 0.643 0.590 0.496 0.916 0.645 0.749
PCA 0.923 0.385 0.636 0.422 0.879 0.486 0.759
CFS 0.869 0.495 0.688 0.388 0.923 0.637 0.748
RUS 50% 0.893 0.648 0.625 0.415 0.883 0.595 0.609
75%  0.892 0.628 0.606 0.457 0.846 0.559 0.559

SMOTE 50% 0914 0.676 0.707 0.515 0.900 0.627 0.726

75% 0.924 0.698 0.686 0.519  0.902 0.627 0.714
PCA+RUS 50% 0932 0.383 0.682 0.435  0.867 0.479 0.597
75% 0931 0.361 0.745 0376  0.834 0.410 0.559
PCA+SMOTE 50%  0.951 0.596 0.750 0.618  0.814 0.427 0.722
75% 0944 0.608 0.728 0.619  0.817 0.435 0.668
RUS+PCA 50% 0932 0.372 0.654 0.430 0.874 0.470 0.597
75% 0.933 0.335 0.746 0.472  0.836 0.415 0.558
SMOTE+PCA 50% 0923 0.578 0.744 0477  0.805 0.418 0.721
75% 0.926 0.559 0.769 0.487  0.793 0.428 0.668
CFS+RUS 50% 0.891 0.509 0.709 0.386  0.893 0.596 0.617
75% 0912 0.511 0.702 0.479  0.851 0.546 0.569
CFS+SMOTE 50%  0.914 0.650 0.735 0.467  0.897 0.614 0.726
75% 0.926 0.643 0.761 0.538  0.899 0.620 0.708
RUS+CFS 50% 0.888 0.519 0.694 0.403  0.890 0.601 0.610
75%  0.897 0.538 0.727 0.466  0.849 0.563 0.564
SMOTE+CFS 50%  0.924 0.648 0.740 0.521 0.899 0.628 0.730
75% 0922 0.632 0.741 0.494  0.891 0.621 0.710

In order to assess the effect of the preprocessing approaches on each class sepa-
rately, Tables 4 and 5 report the average classification accuracy achieved on each in-
dividual class with J48 and SVM, respectively. For the sake of clarity, only the results
corresponding to the smallest classes (01, 05, 010, 012) and those of the most repre-
sented classes (og, 013, 014) were here included. One can see that both resampling
techniques improve the accuracy achieved on the minority classes, but in some cases
they entail a slight reduction on the performance of the majority classes. It is worth not-



ing that this degradation appears to be less significant when using SMOTE, as already
concluded from the global metrics in Table 3.

If we focus on the results of PCA and CFS (without resampling), it is interesting to
remark that these lead to a decrease in the performance of most classes, especially when
used with the SVM classifier. However, the application of SMOTE before using those
algorithms mitigates this effect, suggesting that it is important to balance the classes
before reducing the dimensionality of hyperspectral data.

Regarding the classes with 0% of accuracy when classified with SVM (those cases
in which the geometric mean was 0 as reported in Table 3), the over-sampling technique
allows to overcome this problem and obtain a certain trade-off between the majority and
minority classes.

Table 5. Average classification accuracy on each class with the SVM (o1, 05, 010, 012 correspond
to the minority classes, and o, 013, 014 are the majority classes)

Class

o1 05 J10 012 og 013 014

Original 0.936 0.000 0.314 0.000 0.970 0.754 0.857
PCA 0.831 0.000 0.000 0.000 0.984 0.000 0.987
CFS 0.856 0.000 0.000 0.000 0.975 0.529 0.884
RUS 50% 0.936 0.000 0.376 0.000 0.968 0.786 0.695
75%  0.935 0.000 0.387 0.000 0.953 0.742 0.580

SMOTE 50% 0.966 0.928 0.930 1.000 0.924 0.721 0.801

75% 0968 0.924 0.930 1.000 0911 0.755 0.711
PCA+RUS 50% 0.831 0.000 0.000 0.000  0.984 0.482 0.564
75%  0.833 0.000 0.000 0.000  0.983 0.489 0.442
PCA+SMOTE 50% 0935 0.648 0.949 0.843  0.850 0.016 0.822
75% 0937 0.687 0.941 0.817  0.754 0.241 0.709
RUS+PCA 50%  0.832 0.000 0.000 0.000  0.984 0.486 0.553
75%  0.831 0.000 0.000 0.000  0.983 0.491 0.427
SMOTE+PCA 50% 0933 0.678 0.933 0.802  0.827 0.021 0.863
75%  0.935 0.702 0.929 0.767  0.730 0.257 0.696
CFS+RUS 50%  0.860 0.000 0.000 0.000 0.972 0.687 0.666
75%  0.858 0.000 0.000 0.000  0.925 0.570 0.580
CFS+SMOTE 50% 0945 0.891 0.926 0953  0.936 0.456 0.795
75% 0.955 0.878 0.922 0.968  0.929 0.552 0.671
RUS+CFS 50% 0.874 0.000 0.000 0.000  0.971 0.687 0.665
75%  0.885 0.000 0.000 0.000  0.947 0.612 0.600
SMOTE+CFS 50% 0.959 0.898 0.926 0.989  0.931 0.626 0.783
75% 0964 0.909 0.933 0.994 0912 0.674 0.684

5 Conclusions and Further Extensions

The present paper has focused on classification of hyperspectral imagery with two com-
plex characteristics: high dimensionality and severe skewed class distributions. The



experimental study has allowed to draw some preliminary conclusiones: (i) It results
more important to balance the classes rather than to reduce the dimensionality, at least
in terms of classification performance (accuracy, geometric mean or some other met-
ric); (i) The best choice seems to be the application of SMOTE followed by a feature
selection algorithm; and (iii) The SVM appears to be a more robust classifier than the
J48 decision tree, at least for this particular hyperspectral database.

As already pointed out, in hyperspectral imaging, selection selection is commonly
better than feature extraction, especially because relevant information might be dis-
torted by means of the transformation. Although the empirical results have corroborated
this statement, one should also take into account that PCA obtains a much stronger
reduction in the number of bands than CFS and therefore, classification performance
could be affected by this fact. Thus future research will be addresed to analyse in depth
the relationship between dimensionality reduction and effectiveness when using both
feature selection and extraction algorithms. Another direction for future studies would
be incorporating an editing/filtering phase to remove possible noisy data before any
other process.
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