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Abstract. This paper presents a supervised feature selection method applied to
regression problems. The selection method uses a Dissimilarity matrix originally
developed for classification problems, whose applicability is extended here to re-
gression and built using the conditional mutual information between features with
respect to a continuous relevant variable that represents the regression function.
Applying an agglomerative hierarchical clustering technique, the algorithm se-
lects a subset of the original set of features. The proposed technique is compared
with other three methods. Experiments on four data-sets of different nature are
presented to show the importance of the features selected from the point of view
of the regression estimation error (using Support Vector Regression) considering
the Root Mean Squared Error (RM SE).

1 Introduction

Feature selection aims at reducing the dimensionality of data. It consists of selecting the
most relevant features (attributes) among the set of original ones [12]. This step is cru-
cial for the design of regression and classification systems. In this framework, the term
relevant is related to the impact of the variables on the prediction error of the variable
to be regressed (target variable).The relevant criterion can be based on the performance
of a specific predictor (wrapper method), or on some general relevance measure of the
features for the prediction (filter method). Wrapper methods may have two drawbacks
[19]: (a) they can be computationally very intensive; (b) their results may vary accord-
ing to initial conditions or other chosen parameters. On the other hand, filter methods
allow sorting features independently of the regressor. Eventually, embedded methods
try to include the feature selection as a part of the regression training process. In order
to tackle the combinatorial search problem to find an optimal subset of features, the
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most popular variable selection methods seek to avoid having to perform an exhaustive
search applying forward, backward or floating sequential schemes [9][16].

This paper presents a (filter type) feature clustering-based method aiming at finding
a subset of features that minimizes the regression error. To do this, the conditional
mutual information will be estimated to define a criterion of distance between features.
This distance has already been used in [18] for feature selection in classification tasks.
Thus, the main contribution of this paper is to establish a methodology to properly
solve the estimation of this distance for regression problems where the relevant variable
is continuous, through the assessment of the conditional mutual information.

The organization of the rest of this paper is as follows. Section 2 gives an overview
of the theoretical foundations of this distance and solves its estimation in regression
problems. Section 3 describes the experiments carried out, the databases used and the
other feature selection methods in regression used in the comparison. Section 4 presents
and discusses the regression results obtained. Finally, some concluding remarks are
depicted in Section 5.

2 Feature selection for regression

2.1 The Minimal-Relevant-Redundancy criterion function

Sotoca et al show in [18] that if X = ()?1, . ,)N(m) is a subset of m random variables
out of the original set of » random variables X = (X7,..., X,,), that is, X C X, then,
the decrease in mutual information about a relevant variable Y can be expressed as
IX;Y)—I(X;Y) = I(X; Y/X). They also show that the decrease of mutual informa-
tion of the original and the reduced sets with respect to the relevant variable Y is upper
bounded by I(X; V) —I(X;Y) < L 37 | S (X5 Y/X;), where I(X;; Y/ X;) is
the conditional mutual information between the feature X; and the cluster representa-
tive X; and expresses how much information variable X; can predict about the relevant
variable Y that X ; cannot. This bound can be interpreted as a Minimal Relevant Redun-
dancy - mRR criterion, meaning that the selected features will tend to be as independent
as possible with respect to the information content of the relevant variable Y they are
attempting to predict.

One way to find a solution to the minimization problem is to approximate this bound
by a clustering process, where X = (X7,...,X,,) are the representative features of
each cluster. To solve this problem, given two variables X; and X, the following func-
tion satisfies the properties of a metric distance:

D(X;, X;) = I(Xi; Y/ X5)+1(X;; Y/ Xy) = H(Y/X3)+H(Y/X;)-2-H(Y/ X, X;)

ey

The same metric will be considered here, using an agglomerative hierarchical ap-

proach based on a Ward’s linkage method [20]. The number of groups is reduced at each

iteration until m clusters are reached. For each resulting cluster, C}, its representative

feature X ;j 1s chosen as the feature X ; with the highest value of the mutual information
with respect to the continuous relevant variable Y, that is,

X, ={X; €Cy; [(X;;Y) > I(X;Y); VX, €} 2)
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2.2 Estimation of the Conditional Mutual Information for regression tasks

Given a set of N n-dimensional training samples (xx,yx), k = 1,..., N defined by the
set of variables (features) X = (X1, ..., X,,) where there is a dependency y, = f(xx),
and for which a specific regressor can be applied, the conditional differential entropy
H(Y/X) can be written as [1]:

HY/X) = - / p(x, 9) log p(y/x)dxdy 3)

Considering that the joint probability distribution, p(x,y) can be approximated by
the empirical distribution [15]: p(x,y) = = - Zgzl 0(x — Xk, y — Yk ), where 0(x —
Xk, Yy — Yr) is the Dirac delta function, and substituting p(x, y) into Eq. 3, we have:

N
HY/X) =~ > logplue/xe) @
k=1

Calculating Eq. 4 for one and for all pairs of two variables X;, X;, and substituting in
Eq. 1, the Dissimilarity matrix of distances D(X;, X;) can be obtained.

The assessment of p(y/x) in Eq.4 is usually called Kernel Conditional Density Es-
timation (KCDE). This is a relatively recent active area of research that basically started
with the works by Hyndman et al [8], among others. One way to obtain p(y/x) is to
use a (training) dataset (xy, yx) and a Nadaraya-Watson type kernel function estimator,
as in [7], considering only the ¥y, training values that are paired with values xy:

S En =) KX = xel)
PP = S Ko (- ) ®

where K}, is a compact symmetric probability distribution function, for instance, a gaus-
sian kernel. In this case:

1 xTy-1x
Kpnx)=————F exp| ———— 6
T L p( 2h2 ) ©

where Y is a covariance matrix of a n-dimensional vector, x. There are two bandwidths,
hy for the y kernel and ho for the x kernel. The accuracy in the estimation of the
conditional density functions is dependent on the assessment of the (h1, ha) parameters.
The most common way to establish this accuracy would be the Mean Integrated Square
Error [17] which can be defined (in this case) as:

MISE(hy, hy) = / [p(y/%) — Bly/)]? dyp(x)dx )

However, the following cross-validated log-likelihood defined in [7] will be used here
because of its lower computational requirements:

L(h1, he) = %Zlog(ﬁ’k) (y/xk) - DM (i) ®)
k
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where p{~*) means p evaluated with (xy,, v ) left out. p(x) is the standard kernel density
estimate over x using the bandwidth hy in Eq. 5. It can be shown that maximizing
the KCDE likelihood is equivalent to minimizing the MISE criterion. Substituting the
Watson-Nadaraya type kernels into the L(hq, ha) [7]:

L(hy,he) = %Zlog <Zj;ﬁk K, (yi — y5) Ko ([[x5 — Xj||)> _ Z K, ([x6 —x;11)
k

> Koo (1% — x51) N-1

1 ZIO > ik By (i — y5) K, (|30 — x5
TNZ S N_—1

i#k

3 Experimental validation

3.1 Methods

The proposed method, hereafter called M Ip;s:, would consist of the steps described
in Algorithm 1. Other three methods were used and compared to the method proposed
here.

e Monteiro et al method [13] based on a Particle Swarm Optimization (PSO) strategy
[10] (Particle-Swarms Feature Selection, P.S — F'S). It is a Wrapper-type method
to make feature selection using an adaptation of an evolutionary computation tech-
nique developed by Kennedy and Eberhart [10]. For further details, see [13].

e Forward Stepwise Regression (F'S R). Consider a linear regression model. The sig-
nificance of each variable is determined from its t-statistics with the null hypothesis
that the correlation between y and X is 0. The significance of factors is ranked us-
ing the p-values (of the t-statistics) and with this order a series of reduced linear
models is built.

e Elastic Net (E'N). It is a sparsity-based regularization scheme that simultaneously
does regression and variable selection. It proposes the use of a penalty which is
a weighted sum of the /; —norm and the square of the ls—norm of the coefficient
vector formed by the weights of each variable. For further details, see [21].

3.2 Dataset description
Four datasets were used to test the feature selection methods, divided into three groups:

e Hyperspectral datasets. Two hyperspectral datasets corresponding to a Remote Sens-
ing campaign (SEN2F LE X 2005, [14]) were used.

1. CASI-THERM. 1t consists of the reflectance values of image pixels that were
taken by the Compact Airborne Spectrographic Imager (C AST) sensor [14].
Corresponding thermal measurements for those pixels were also performed.
The C'AST sensor images are formed by 144 bands between 370 and 1049nm.

9
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1. Kernel width estimation. Obtain, for each pair and tuple (Y; X;) and (Y; X, X ), the pair
of parameters (h1, h2) that maximize L(h1, h2) (Eq. 9).

2. Kernel Density Estimation. Obtain the Watson-Nadaraya type Kernel Density estimators
Ky (y — yr) and K, (||lx — x|) applying Eq. 6

3. Assessment of the A-Posterior Probabilities. Estimate p(y/x) as p(y/x) <«
Sk Kny (W—yr) Kny (Ix—xx )

3k Kng (Ix—xk1)

4. Estimation of the Conditional Entro~pies. Obtain, for each variable X = X; and ev-
ery possible combination X = (X, X;) the Conditional Entropies: H(Y/X) + —+ -
Sorss log p(yk /xk)- ~

5. Construction of the Dissimilarity Matrix D(X;, X;). Obtain D(X;,X;) =
I(X;Y/X)+I1(X;;Y/X:)=HY/X:))+ HY/X;) — HY/X:, X;)

6. Clustering. Application of a Hierarchical Clustering strategy based on Ward’s linkage
method to find clusters using D(X;, X;). The number of clusters is determined by the num-
ber of variables to be selected.

7. Representative selection. For each cluster the variable with the highest value of the mutual
information with respect to the continuous relevant variable Y is selected.

Algorithm 1: Selection of variables using Mutual Information based measures

2. CASI-AHS-CHLOR. 1t consists of the reflectance values of image pixels that
were taken by the C AST and Airborne Hyper-spectral Scanner (AHS) [14]
sensors. Corresponding chlorophyll measurements for those pixels were also
performed. AH S images consist of 63 bands between 455 and 2492 nm.

e Bank32NH. It consists of 8192 cases, 4500 for training and 3692 for testing, with
32 continuous variables, corresponding to a simulation how bank-customers choose
their banks. It can be found in the DELVE Data Repository.

e Boston Housing. Dataset created by D. Harrison et al [6]. It concerns the task of
predicting housing values in areas of Boston. The whole dataset consists of 506
cases and 13 continuous variables. It can be found in the UCI Machine Learning
Repository.

4 Results and discussion

One (h1, ho) kernel width pair was obtained for each (yg, Xy ) pair, applying an Active
Set method [5] for non-linear multi-variable optimization with constraints. The starting
values were fixed at: h1 g = ha o = m, asin [11], and the lower and upper bounds
at [P m, hi ) = [0.1 - hy0,10 - hy o], i = 1,2. For the assessment of p(y/x) when
x = (Xj, X;), the covariance matrix considered was diagonal: ¥ = diag(c7,075),
where oZ and ajz are the variance value of variables 7 and j, respectively, for the training
set. For the selection of the variable that represents a cluster, Eq.2 was applied.
Support Vector Regression (SV R) [2] with a radial (gaussian) basis function was
used for regression, and the Root Mean Squared Error (RM SE) as the performance
criterion. For each one of the four datasets, an exhaustive grid search using equally
spaced steps in the logarithmic space of the funing SV R parameters (C, €, o) was made
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Database MIp;st|PS—FS| FSR | EN [Friedman Test|Quade Test
CASI-AHS-CHLOR| 2.9160 |3.1266 (4.5636(3.3524| 6.53 (-) 7.24 (+)
CASI-THERM 3.3267 | 3.3892 |3.6425|3.4381 0.08 (-) 0.02 (-)
Bank32NH 0.0961 |0.0953 [0.0950{0.0950| 0.48 (-) 1.03 (-)
Boston Housing 4.4270 14.3702 [4.8016|4.6252 1.43 (-) 1.44 (-)
Average 2.6914 | 2.7454 |3.2757|2.8777

Table 1. RM S E Error over the first 5 variables. (+ = positive), (— = negative)

to select and fix the best parameters for each one of these datasets. A 10-fold cross-
validation strategy was used to obtain the RM SE error on the Boston Housing dataset.

Figure 1 shows the RMSE error given by the SVR method for the four datasets
and the first 20 variables selected (13 variables for Boston Housing) by each one of
the variable selection methods tested. Tables 1 to 3 show the RM SFE Error over the
first 5, 10 and 15 variables (13 variables for Boston Housing) for all the methods and
datasets selected. Friedman and Quade Tests [3], [4] were applied on the results with
a confidence level of p = 0.005. The Fisher distribution critical value for the four
methods and over the first 5, 10 and 15 variables (13 for Boston Housing) was set
up, obtaining F'(3,12) = 7.20, F(3,27) = 5.36, F(3,42) = 4.94. The differences
in RM SFE ranked for the four methods are not significant for the first 5 features, but
they are for 10 to 15 features. Thus, the difference between the methods increases with
the number of selected features, although in the case of CASI-THERM database the
statistical tests are not significant.

The proposed method, M Ip;s:, obtains better performance with respect to the rest
of methods for all the cases (5, 10 and 15 variables) for the CASI-AHS-CHLOR and
CASI-THERM datasets and for two out of the three (10 and 13 variables) for the Boston
Housing dataset. PS—FS method is the second best one in most cases followed by
the EN method, while F'SR behaves worst. When averaging each method over the four
databases, M Ip;,; obtains lower values in the three tables.

The selection of the first one and the first two variables is better for M Ip;s; com-
pared to the rest of the methods. In this case, the clustering strategy plays an important
role in the formation of different groupings of features, obtaining better results than a
greedy selection algorithm as is the case of F'SR. In the cases of PS—FS and EN methods
the possible advantage of our method consists in a proper adjustment of the parameters
from Nadaraya—Watson function estimator and its use through a distance metric in
feature space that takes into account the internal relationships between features.

Database M1Ip;s:|PS—FS| FSR | EN |Friedman Test|Quade Test
CASI-AHS-CHLOR| 2.3970 [2.5448 |4.1506(2.8153| 28.04 (+) 20.73 (+)
CASI-THERM 3.1912 | 3.2866|3.3585(3.2501 1.17 (-) 0.93 (-)
Bank32NH 0.0930 |0.0913(0.0910|0.0913 4.14 (-) 6.21 (+)
Boston Housing 4.2035 | 4.3264 (4.7022|4.8756| 6.73 (+) 5.98 (+)
Average 2.4712 | 2.5623|3.0756|2.7581

Table 2. RM S E Error over the first 10 variables. (+ = positive), (— = negative)
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Database MIp;st|PS—FS| FSR | EN [Friedman Test|Quade Test
CASI-AHS-CHLOR| 2.1964 (2.2922|3.7828(2.5497| 49.13 (+) | 30.43 (+)
CASI-THERM 3.2055 |3.2771(3.3027(3.2308| 2.17 (-) 1.68 (-)
Bank32NH 0.0920 |0.0908 [0.0905]0.0907 1.21 (-) 7.71 (+)
Boston Housing 4.3171 |4.516214.7995{4.9491| 7.84 (+) 8.08 (+)
Average 2.4517 |2.5436(2.9950|2.7051

Table 3. RM S E Error over the first 15 variables (13 for Boston Housing). (+ = positive), (— =
negative)

5 Conclusions

This paper presents a filter-type method to do feature selection for regression, using
a Dissimilarity matrix based on conditional mutual information measures. This matrix
is an extension for continuous variables of a Dissimilarity matrix used by Sotoca et al
in [18] for classification. The method is compared against three other methods on four
datasets of different nature, using the RM S E Error given by the SVR technique. Au-
thors are currently working on the performance analysis with other types of regressors
and datasets and analyzing the effect of noise in the data on the performance of the
selection strategy.
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