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Fine structure of spectral properties for random correlation matrices:
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We study some properties of eigenvalue spectra of financial correlation matrices. In particular, we investigate
the nature of the large eigenvalue bulks which are observed empirically, and which have often been regarded as
a consequence of the supposedly large amount of noise contained in financial data. We challenge this common
knowledge by acting on the empirical correlation matrices of two data sets with a filtering procedure which
highlights some of the cluster structure they contain, and we analyze the consequences of such filtering on
eigenvalue spectra. We show that empirically observed eigenvalue bulks emerge as superpositions of smaller
structures, which in turn emerge as a consequence of cross correlations between stocks. We interpret and
corroborate these findings in terms of factor models, and we compare empirical spectra to those predicted by
random matrix theory for such models.
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I. INTRODUCTION

In physics, random matrix theory (RMT) is mainly used to
model systems of particles interacting according to unknown
laws. This is particularly handy for studying energy levels
of complex systems such as heavy nuclei and mesoscopic
systems. In such cases, the Hamiltonian operator can be
conveniently described by a random matrix featuring some
suitable symmetry properties. In particular, two matrix en-
sembles have been commonly used: the Gaussian orthogonal
ensemble of real symmetric random matrices, and the Gaussian
unitary ensemble of Hermitian random matrices [1,2]. In both
these cases, for proper normalization of matrix elements, the
asymptotic statistical properties of the eigenvalues follow the
so-called semicircle law:

ρ(λ) = 1
2π

√
4 − λ2, (1)

where ρ(λ) is the marginal probability density function of the
eigenvalues. Until recent years physicists often neglected the
study of random correlation matrices, even though they find
applications in very diverse fields ranging from biology to
econometrics. For this reason, applied mathematicians have
studied such objects since the 1920s [3]. The asymptotic
eigenvalue statistics in this case is given by the Marčenko-
Pastur distribution [4], which will be extensively discussed
in the following sections. Since the late 1990s, thanks to the
growing interest in financial markets as prototypes of complex
systems, physicists started working on random correlation
matrices [5,6], and this will be the subject of this paper as
well.
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We consider a set of N stocks whose spot price at time t we
denote as Si(t), i = 1, . . . ,N . Let t1, . . . ,tT +1 be T + 1 equally
spaced time instants, then we introduce the corresponding log
returns

ri,j+1
def= log

Si(tj+1)
Si(tj )

; (2)

typically, one can think of the ti as days. This notation is
a little redundant, and we can simply denote time steps as
j = 1, . . . ,T + 1. Now, we can assume that the T recorded
log-return values are realizations of N × T random variables
R

(i)
j , so that we globally end up with NT observations rij ,

i = 1, . . . ,N , j = 1, . . . ,T . Equivalently, the vector

ri
def= (ri,1, . . . ,ri,T ) (3)

containing all the observations of the ith asset returns can
be seen as a realization of a vector random variable R(i).
Such a framework is fully characterized by finite probability
distributions [7,8]:

P
(
R

(1)
1 ∈ A

(1)
1 , . . . ,R

(1)
T ∈ A

(1)
T ; . . . ;

R
(N)
1 ∈ A

(N)
1 , . . . ,R

(N)
T ∈ A

(N)
T

)

= P (R(1) ∈ B(1); . . . ; R(N) ∈ B(N)), (4)

where A
(i)
j ∈ R ∀i,j and B(i) ∈ RT ∀i. Depending on the

choice of the random variables R(i), such a picture allows
for a huge variety of possible descriptions for the stochastic
dynamics of financial data. Most simply, a standard assump-
tion, according to which the log returns are described by
uncorrelated Gaussian processes [(r1,i , . . . ,rN,i) ∼ N (0,1N ),
where 1N represents the N × N identity matrix] could be
adopted. However, as is well known [9], correlations often play
a major role, and a realistic description of financial markets
should by no means neglect them. Still, a Gaussian framework
can be retained by observing that a set of zero-mean correlated
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Gaussian numbers generated by a stationary stochastic process
is completely characterized by its expectation value vector µ
and covariance matrix E:

Eij,kl = E[rij rkl]. (5)

Following [10] in this paper we shall simplify this structure
to the assumption that cross correlations between assets and
autocorrelations in time factorize:

Eij,kl = CikAjl. (6)

In the above equation Cik (Ajl) represents an element of a
N × N (T × T ) positive-definite symmetric matrix C (A). We
shall keep this same kind of notation, that is, denoting matrices
by bold letters and the corresponding matrix elements by the
same nonbold letters throughout the rest of the paper. We shall
assume the C matrix of cross correlations to be constant over
time. Also, most importantly, we shall neglect all possible
correlations in time by assuming A = 1T :

Eij,kl = Cikδj l . (7)

This last assumption is well motivated both from an empirical
viewpoint [9] and a theoretical one, since asset returns can
be shown not to display autocorrelations whenever assets are
assumed to be described by a submartingale. As a matter of
fact, from the submartingale property one can show that

E[ri,j ri,k] ∼ E[̃ri,j r̃i,k] = 0, (8)

where

r̃i,j = Si(tj+1) − Si(tj )
Si(tj )

∼ ri,j (9)

assuming no dividend payment in the period and Si(tj+1) −
Si(tj ) & Si(tj ). This relation means that returns are uncor-
related (not necessarily independent) random variables, as
can be empirically verified [9]. In the following, we shall
always assume the previously mentioned condition [Si(tj+1) −
Si(tj ) & Si(tj )] to be fulfilled, thus allowing to identify log
returns and returns [as in Eq. (9)].

The Gaussian probability measure leading to the correlation
structure (7) can be shown to be

P (R)DR = 1
(2π )NT/2(detC)T/2

exp
(

− 1
2

TrRTC−1R
)

DR,

(10)

where R is a rectangular N × T matrix containing all of the re-
turns observations (Rij = rij ), while DR def=

∏N
i=1

∏T
j=1 dRij

is the flat integration measure over matrix elements.
Being symmetric, the C matrix in (10) is made of N (N +

1)/2 independent entries. Now the typical challenge to be
faced in many multivariate analysis problems is to estimate
these numbers from N time series of T observations, that is,
NT data points. When such data are collected in a N × T
matrix R as in (10), then a standard estimator for C is given by
the matrix c def= RRT/T . In other words, an estimator for the
matrix element Cij in C is given by

cij = 1
T

T∑

t=1

RitRjt , (11)

which is the well-known Pearson estimator for large T
[for small values of T the 1/T factor would need to be
replaced by 1/(T − 1)]. Of course, the cij are a noise-dressed
representation of the Cij . As a matter of fact, even though the
random variables in R were exactly described by the proba-
bility distribution in (10) (i.e., by the correlation matrix C),
the finiteness of the data sample under study would anyway
cause the cij to deviate, on average, from their “true” counter-
parts Cij . As is intuitively clear, the two will become closer
as more observations are collected, that is, as T → ∞, or
equivalently as q → 0, where q is the so called “rectangularity
ratio”

q
def= N

T
. (12)

However, realistic situations in financial practice typically
involve large numbers of variables and similarly large numbers
of observations. Ideally, this is not far from a “thermodynamic
limit” situation in which

N,T → ∞ , with
N

T
= q = constant. (13)

Remarkably this is precisely the regime under which some
powerful RMT results are valid [4]. In particular, this is the
limit under which it is possible to make analytical statements
about the relation between the eigenvalue spectra of the
theoretical covariance matrix C and its estimator (11) [11–13].
We shall exploit those results in the following sections.

A very general class of models fulfilling (7) is the one
of the so called factor models [14–18]. Such models aim at
describing the time evolution of each asset in terms of a few
“driving forces,” or factors, which typically describe the impact
that a market sector or the whole market itself have on a given
asset. In a K factors model, the time evolution of asset returns
is given by

rit = ri(t) =
K∑

j=1

g
(j )
i mj (t) + g

(0)
i εi(t), (14)

where g
(j )
i and g

(0)
i are constant parameters, whereas mj and

εi are independent and identically distributed normal random
variables. We shall assume these latter to be normalized as
follows:

E[mi(t)] = E[εi(t)] = 0,

E[mi(t)mj (t ′)] = E[εi(t)εj (t ′)] = δijδt t ′ ,

E[mi(t)εj (t ′)] = 0. (15)

In the next section we shall specialize the model in (14)
to a particular case. However, in a very general fashion,
factor models have proven to be able to reproduce, at least
qualitatively, some relevant features of empirical covariance
matrix eigenvalue spectra.

The general appearance of the return covariance matrix
eigenvalue spectrum of a given number of assets (for zero mean
and unit standard deviation data) is the one depicted in Fig. 1
for the log returns of the daily prices for the assets composing
the S&P500 and FTSE350 Indices (data downloaded from
Yahoo Finance). Three main features are clearly visible: a
large bulk close to zero, a number of larger eigenvalues
“leaking out” of such bulk, and a much larger and isolated
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FIG. 1. (Color online) (a) Empirical eigenvalue density of the covariance matrix for T = 3400 daily returns of N = 396 assets belonging
the S&P500 Index over the years 1996–2009. (b) The same density as in (a) without the largest eigenvalue. (c) Eigenvalue density for T = 1423
daily returns of N = 243 assets belonging to the FTSE350 Index over the years 2005–2010. (d) The same density as in (c) without the largest
eigenvalue. All figures were produced with standardized data. In (b) and (d) the Marčenko-Pastur distributions for the corresponding values of
q = N/T are also plotted.

eigenvalue. Since the pioneering works [5,6], RMT has
become a standard tool to analyze these macroscopic features.
More specifically, the aforementioned eigenvalue bulk has
mostly been identified with the Marčenko-Pastur distribution
[4], that is, the limiting eigenvalue marginal probability density
for the (already introduced) matrix c = RRT/T when all the
entries Rij are drawn from a normal distribution N (0,σ ).
Quite importantly, this result is rigorously derived only in
the thermodynamic limit (13) of infinite matrix sizes growing
to infinity at a fixed rate. In this limit, the Marčenko-Pastur
distribution reads

ρc(') = 1
2πqσ 2

√
('+ − ')(' − '−)

'
,

(16)
'±

def= σ 2(1 ± √
q)2,

where q is the rectangularity ratio defined in (12). However, as
can be seen in Figs. 1(b)–1(d), the Marčenko-Pastur distribu-
tion actually provides a very poor fit of empirical distributions
when q and σ are assumed to be equal to N/T and 1
(for standardized data), respectively. The aforementioned
eigenvalue bulks are reasonably well fitted by a Marčenko-
Pastur distribution only when q and σ are assumed to be free
parameters, whose values are to be determined via fitting. In
particular, this typically causes q to deviate from the ratio
N/T , thus introducing the concept of effective system size.

Since the Marčenko-Pastur distribution emerges as the
limiting density for the covariance matrix of N uncorrelated
time series made of T observations, identifying eigenvalue
bulks such as the ones in Fig. 1 with it basically amounts

to state that most of the information contained in empirical
covariance matrix spectra is actually no information at all,
being equivalent to the spectrum one would obtain in the
presence of pure noise [12,19]. On the other hand, this
viewpoint allows one to give a specific meaning to the “large”
eigenvalues out of the bulk. As would also be possible to
verify with principal component analysis (PCA) [20], such
eigenvalues correspond to groups of correlated assets, most
typically belonging to the same market sector. Analogously,
the largest eigenvalue of the distribution is usually identified
with the “market mode”: such an eigenvalue appears as a
consequence of those fluctuations that involve the market as a
whole, and as a matter of fact the PCA can easily show it to
account for a large part of the return variance.

As already anticipated, factor models (14) represent good
candidates to reproduce most of the empirical features shown
in Fig. 1. In the following sections we shall make use of
such models to challenge the previously mentioned common
knowledge, according to which the eigenvalue bulks in
empirical covariance matrix spectra essentially correspond to
noise. Such a common knowledge has already been revised
critically in a number of works (see, for example, [13,21–24]),
and in this paper we wish to present an additional amount of
evidence in this direction.

The paper is organized as follows. In Sec. II the “direct”
problem of analytically estimating eigenvalue densities is
addressed. In particular, some specific versions of the factor
model in Eq. (14) will be introduced and the eigenvalue
spectra for the correlation matrix C of such model will be
derived (sometimes performing approximations). Then the
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RMT results provided in [12,13] will be applied in order
to derive exact results for the noise-dressed version c of the
correlation matrix. Eventually, a subsection will be devoted
to discuss the results obtained via Monte Carlo simulations
in order to validate the analytical formulas. In the light of
such numerical results, we shall also briefly discuss again
the applicability limits of the Marčenko-Pastur distribution. In
Sec. III the “inverse” problem of inferring eigenvalue densities
from the empirically observed ones will be discussed. More
specifically, a filtering procedure will be devised in order to
highlight some of the cluster structure in empirical correlation
matrices. Such a procedure will be performed on two data sets
(relative to the S&P500 and the FTSE350 Indices): the results
we obtain confirm, at least on a qualitative level, the ability
of factor models to reproduce relevant stylized facts observed
in real stock market returns, and we believe this to be one
of the main points in our paper. Eventually, in Sec. IV some
conclusions and possible future perspectives of this work will
be outlined.

II. THEORY: THE DIRECT PROBLEM

A. Cluster models: Heuristic analysis

Let us now specialize the factor model (14). In particular,
let us start from the situation where all asset returns obey the
following equation:

ri(t) = γNmN (t) + (1 − γN )εi(t), (17)

where mN (t),εi(t) ∼ N (0,1) ∀t , and γN ∈ [0,1]. In the previ-
ous equation mN represents a common mode driving all assets
with the same “intensity” γN . We shall now build K clusters
of correlated assets from Eq. (17). Thus, let there be K groups
of Nk variables (k = 1, . . . ,K) with N̄

def=
∑K

k=1 Nk ! N , and
let us order the assets so that ri belongs to the kth assets
for i = 1 +

∑k−1
l=1 Nl, . . . ,

∑k
l=1 Nl . We can also denote the

generic element in the kth cluster as r
(k)
i . We shall define it as

r
(k)
i (t) = γkmk(t) + (1 − γk)ri(t) ,

(18)

i = 1 +
k−1∑

l=1

Nl, . . . ,

k∑

l=1

Nl,

where γk ∈ [0,1], mk(t) ∼ N (0,1) is a cluster mode and ri is
as in Eq. (17). Thus, we can rewrite the previous relation as

r
(k)
i (t) = γkmk(t) + (1 − γk)γNmN (t)

+(1 − γk)(1 − γN )εi(t) , (19)

i = 1 +
k−1∑

l=1

Nl, . . . ,

k∑

l=1

Nl.

We still simply call ri (i = 1 + N̄, . . . ,N) those elements
which do not belong to any cluster, and we assume them
to evolve according to (17). We always have E[ri(t)] =
E[r (k)

j (t)] = 0 ∀,i,j,k,t . Recalling the relations in (15), which
can be generalized to include mN in a straightforward way, we
can calculate all possible covariance matrix elements between

assets described by (17) and (19). Four separate cases can be
distinguished:

E[ri(t)rj (t)] = (1 − γN )2δij + γ 2
N,

E
[
ri(t)r

(k)
j (t)

]
= (1 − γk)γ 2

N,

E
[
r

(k)
i (t)r (k)

j (t)
]
= (1 − γk)2(1 − γN )2δij + (1 − γk)2γ 2

N + γ 2
k ,

E
[
r

(k)
i (t)r (l)

j (t)
]

= (1 − γk)(1 − γl)(1 − γN )2δij

+(1 − γk)(1 − γl)γ 2
N. (20)

We are now in position to compute the correlation matrix C of
the model, whose matrix elements read

Cij = E[ri(t)rj (t)]
√

Var[ri(t)]Var[rj (t)]
(21)

with straightforward generalizations to those involving ele-
ments belonging to clusters.

We shall focus for now on the limiting case in which
correlations between cluster elements are very strong, that
is, when γk → 1 in each cluster. One can see from (20) that
under this assumption the model’s correlation matrix has a
simple block-diagonal structure:

C =





E(N1) 0 . . . 0 0
0 E(N2) . . . 0 0
...

...
. . .

...
...

0 0 . . . E(NK ) 0
0 0 . . . 0 F(N−N̄ )




, (22)

where EM is the M × M matrix whose entries are all equal to
unity (EM

ij = 1 ∀i,j ), while F(N−N̄ ) is a (N − N̄ ) × (N − N̄ )
matrix with a slightly more complicated structure:

F(N−N̄ ) =





1 γ 2
N

(1−γN )2+γ 2
N

. . .
γ 2

N

(1−γN )2+γ 2
N

γ 2
N

(1−γN )2+γ 2
N

1 . . .
γ 2

N

(1−γN )2+γ 2
N

...
...

. . .
...

γ 2
N

(1−γN )2+γ 2
N

γ 2
N

(1−γN )2+γ 2
N

. . . 1




.

(23)

The block structure in (22) allows for the computation of the
eigenvalue spectrum. In fact, since we have

det(E(M) − 'IM ) = 'M−1(M − '),

det(F(N−N̄ ) − 'IN−N̄ ) =
[

(N − N̄ )γ 2
N + (1 − γN )2

(1 − γN )2 + γ 2
N

− '

]

×
[

(1 − γN )2

(1 − γN )2 + γ 2
N

− '

]N−N̄−1

,

(24)

the characteristic equation for the C matrix reads

'N̄−K

[
' − (N − N̄ )γ 2

N + (1 − γN )2

(1 − γN )2 + γ 2
N

]

×
[
' − (1 − γN )2

(1 − γN )2 + γ 2
N

]N−N̄−1 K∏

k=1

(' − Nk) = 0. (25)
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This eigenvalue spectrum is able to reproduce, at least on a
heuristic level, some of the features of empirical spectra (see
Fig. 1): each cluster gives rise to a large eigenvalue equal to
the cluster size Nk , and the common mode produces one large
eigenvalue ∼(N − N̄ )γ 2

N/[(1 − γN )2 + γ 2
N ] too. It is worth

mentioning that this latter eigenvalue might not necessarily be
the largest one: as a matter of fact, large enough Nk and a
small γN can lead to situations in which the largest eigenvalue
is given by maxk Nk . Even though this seems not to be the
case in most financial applications, it is still worth stressing
that the largest eigenvalue in empirical spectra should not be
labeled as the “market eigenvalue” right away, but only after
some further checks.

Going back to Eq. (25), a (N − N̄ − 1)-fold degenerate
eigenvalue {equal to (1 − γN )2/[(1 − γN )2 + γ 2

N ]} can be
recognized. Also, Eq. (25) indicates that each cluster gives rise
to Nk − 1 zero modes, altogether forming a group of N̄ − K
zero modes. In a noise-marred situation, as it can be verified
by means of Monte Carlo simulations, the degeneracies in
(25) are broken and give rise to two bulks. In the highly
correlated cluster assumption (γk → 1) yielding (25) the two
bulks typically remain well separated. However, when such
assumption is relaxed, allowing for small values of the γk ,
the two bulks get closer, and for properly chosen values of
the parameters they eventually “collide” and merge into one
single structure (see Sec. II C and the figures in it). This
latter might be identified with the typical eigenvalue bulks
appearing in empirical spectra (see Fig. 1). It is important
to stress, already at this heuristic level, that the emergence
of such a bulk in this factor model stems from the presence
of (weak) correlations between the assets, oppositely to the
Marčenko-Pastur distribution (16), which in turn, as already
discussed, originates from pure noise. Nevertheless, quite
subtly the Marčenko-Pastur distribution can still provide good
fits to such bulks in a number of situations, as we shall illustrate
later.

The previous factor model, yielding Eq. (25) for the
eigenvalue spectrum of its correlation matrix, can be further
simplified to the case where no common factor is driving the
asset returns. This can be directly achieved on the eigenvalue
spectrum by setting γN = 0 in Eq. (25). This gives

'N̄−K (' − 1)N−N̄

K∏

k=1

(' − Nk) = 0. (26)

This spectrum still yields one large eigenvalue for each
cluster and two degenerate eigenvalues equal to zero and one,
respectively. Just like in the previous discussion, let us now
relax the assumption of strong correlations (γk → 1) within
clusters. For the sake of simplicity, let us assume that all
assets in each cluster are mutually correlated with the same
correlation coefficient ρk ∈ [0,1] [which can be explicitly
computed from (20)]. So, the correlation matrix of the model
would read

C =





Ẽ(N1) 0 . . . 0 0
0 Ẽ(N2) . . . 0 0
...

...
. . .

...
...

0 0 . . . Ẽ(NK ) 0
0 0 . . . 0 IN−N̄




, (27)

where each Ẽ(Nk) is a Nk × Nk matrix such that Ẽ
(Nk )
ij = ρk for

i += j and Ẽ
(Nk )
ii = 1, while the last block is now given by the

identity matrix [as can be seen from the first relation in (20)
for γN = 0]. One can verify that

det(Ẽ(Nk) − 'INk
) = [' − (1 − ρk)]Nk−1

× {' − [Nkρk + (1 − ρk)]}. (28)

In order to further simplify things, let us consider the case
where we have just one cluster of N̄ assets with mutual
correlation ρ. Equation (25) in this case would need to be
modified to read

[' − (1 − ρ)]N̄−1(' − 1)N−N̄ {' − [N̄ρ + (1 − ρ)]} = 0,

(29)

thus giving one large eigenvalue and two degenerate eigen-
values equal to (1 − ρ) and one. The latter emerges as a
consequence of the N − N̄ mutually uncorrelated assets, that
is, as a consequence of pure noise, while the former is due
to the presence of a cluster. Just like in the case discussed
previously, a noise-dressed version of (29) would lead to two
eigenvalue bulks, and suitably chosen values of ρ would make
the two bulks merge into one (see Sec. II C). Thus, in this case
too, the emergence of a main bulk would not be a consequence
of pure noise alone.

B. Cluster models: Exact results

The proper mathematical framework to deal with covari-
ance matrices featuring degenerate spectra [as the ones in
Eqs. (25), (26), and (29)] is the one provided in [12,13], and
we shall exploit it extensively in the following. So, first let
us introduce some basic notions and notations of RMT. Just
like we did so far, we shall denote the eigenvalues of the
correlation matrix C of a given model as 'i (i = 1, . . . ,N),
while the eigenvalues of the corresponding estimator (11) will
be denoted as λi . Quite straightforwardly, one can define the
eigenvalue density for the theoretical correlation matrix as

ρC(') = 1
N

N∑

i=1

δ(' − 'i), (30)

and this is related to the matrix moments M
(k)
C :

M
(k)
C

def= 1
N

Tr Ck = 1
N

N∑

i=1

'k
i =

∫
d'ρC(')'k. (31)

In analogy to (30), one can define an expected spectral density
for the estimator c in equation (11):

ρc(λ) = 1
N

N∑

i=1

E[δ(λ − λi)], (32)

where the expectation is to be meant with respect to the
probability measure (10). Generalizing (31), we can then
define the expected matrix moments as

m(k)
c

def= 1
N

E[Trck] =
∫

dλρc(λ)λk. (33)
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The two corresponding resolvents, or Green’s functions, are
given by

GC(Z) = (ZIN − C)−1,
(34)

gc(z) = E[(zIN − c)−1],

where Z,z ∈ C. Then one can introduce the moment generat-
ing functions, and it is possible to show that they are closely
related to the Green’s functions in the following way:

MC(Z) def=
∞∑

k=1

M
(k)
C

Zk
= ZGC(Z) − 1,

(35)

mc(z) def=
∞∑

k=1

m
(k)
c

zk
= zgc(z) − 1,

where we have

GC(Z) def= Tr[GC(Z)]
N

,

(36)
gc(z) def= Tr[gc(z)]

N
.

Moreover, from the well known relation limε→0+(λ + iε)−1 =
P(λ−1) − iπδ(λ) (where P denotes the principal value), one
can show that the eigenvalue densities (30) and (32) can be
directly derived from the corresponding Green’s functions
(34):

ρC(') = − 1
π

lim
ε→0+

Im GC(' + iε),

ρc(λ) = − 1
π

lim
ε→0+

Im gc(λ + iε). (37)

So, basically, the Green’s function contains the same infor-
mation as the whole eigenvalue density, and, through (35),
the same is also true for the moment generating function. In
particular, for ',λ > 0, the previous relations can be converted
into

ρC(') = − 1
π'

lim
ε→0+

Im MC(' + iε),

ρc(λ) = − 1
πλ

lim
ε→0+

Im mc(λ + iε). (38)

A fundamental relation between between the moment generat-
ing functions of a “true” correlation matrix and its estimator in
the infinite matrix size limit (13) can be derived [12,13] either
in the framework of free random variables [10,25,26] or using
planar diagrammatic methods [12,27,28]. The starting point
is the following simple relation between moment generating
functions:

mc(z) = MC(Z), (39)

where the two complex arguments are related by the following
transformation:

Z = z

1 + qmc(z)
. (40)

Once MC(Z) is known, mc(z) can be derived in principle from
the following functional equation:

mc(z) = MC

[
z

1 + qmc(z)

]
. (41)

Bearing in mind the previous discussion on factor models,
we shall focus on correlation matrices whose spectra display
degenerate eigenvalues. Let us then assume the correlation
matrix C to have L distinct eigenvalues 'i (i = 1, . . . ,L) with
degeneracies ni . The moment generating function for such a
matrix is given by

MC(Z) = 1
N

L∑

i=1

ni'i

Z − 'i

=
L∑

i=1

wi'i

Z − 'i

, (42)

where the weights wi = ni/N have been introduced. Thus,
from (41) we get

mc(z) =
L∑

i=1

wi'i[1 + qmc(z)]
z − 'i[1 + qmc(z)]

. (43)

For each fixed z this becomes a polynomial equation of degree
L + 1 in mc(z), yielding as many solutions. The problem
arises of choosing the right one: as extensively discussed and
detailed in [29], the right branch of the map in Eq. (40) to
pick up is the one giving Z → z for z → ∞. In the simplest
case one has C = IN and, of course, the correlation matrix
has just one N -fold degenerate eigenvalue equal to one: it
can be shown that, in this case, Eq. (43) leads precisely to
the Marčenko-Pastur distribution (16), as one would expect.
On the other hand, already when considering two distinct
eigenvalues, quite different scenarios are possible, including
the previously discussed cases of well separated or merging
bulks (see the next subsection and [28]). Let us also remark
that Eq. (43) cannot be applied to the large nondegenerate
eigenvalues typically displayed by factor models. This is
because, as already stated, we shall always work in the
thermodynamic limit (13), where the weight (1/N) of such
eigenvalues vanishes as N → ∞. As a matter of fact, this kind
of eigenvalues need to be investigated per se, and actually
extensive areas of the RMT literature are devoted to the
study of statistical properties of single eigenvalues as well
as order statistics [30]. In particular, it has been shown in [31]
that large nondegenerate sample eigenvalues of correlation
matrices follow a normal distribution (see the next subsection
for a numerical confirmation).

C. Monte Carlo simulations

In this subsection we present and detail the Monte Carlo
simulations we performed in order to test and validate the
analytical results described so far. In all cases, we generated
T realizations of N stochastic processes described by the
factor model introduced in Eqs. (18), (19), and (20) (from a
numerical viewpoint, this just boils down to the generation of
standard Gaussian random numbers). By choosing different
parameter values, we implemented the different versions of the
model which were discussed in the previous subsection, corre-
sponding to different theoretical correlation matrices Eqs. (22)
and (27)]. The eigenvalues of the corresponding estimators
(11) were obtained via numerical diagonalization (by means
of the diagonalization algorithm provided by Matlab R©).

In Fig. 2 a first example of eigenvalue spectra deriving
from factor models is presented. In this first example a
common mode (introduced via a nonzero γN coefficient, see
the figure caption for all the details on parameter values) as
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FIG. 2. (Color online) (a) Eigenvalue density for 100 simulations of the factor model described in (18), (19), and (20) with N = 500,
T = 2000 (q = 0.25). One cluster made of N1 = N̄ = 100 variables, correlated via a coefficient γ1 = 0.7, is present. A common mode is
introduced via a coefficient γN = 0.3. As expected from Eq. (25), two eigenvalue bulks are clearly visible. The mean value in the bulk on the
left is 0.04, while Eq. (25) would predict zero as a consequence of the strong correlation limit (γk → 1) approximation. On the other hand, the
mean value in the bulk on the right is 0.85, in remarkable agreement with the predicted value (1 − γN )2/[(1 − γN )2 + γ 2

N ] = 0.84. For the sake
of readability, the “large” eigenvalues are not shown. (b) By setting γ1 = 0.4, the two bulks in (a) merge into a single one. Such a structure,
despite emerging as a consequence of (weak) correlations, is very well fitted by a Marčenko-Pastur distribution [see Eq. (16)] with q = 0.29
and σ = 0.88 (solid line).

well as a correlated cluster of variables are present. As already
discussed in the previous subsection, the degeneracies in Eq.
(25) are broken, and, in the limit of strong correlations in the
cluster (γk → 1), two well separated eigenvalue bulks emerge
[Fig. 2(a)]. On the other hand, when such correlations get
weaker, the two eigenvalue bulks get closer, eventually melting
into one single structure (Fig. 2). Remarkably such a structure
is quite well fitted by a Marčenko-Pastur distribution, which is
however characterized by values of the q and σ parameters that
differ from the ones which would be obtained for standardized
uncorrelated data (q = N/T and σ = 1).

Such features are further illustrated in Fig. 3, which
refers to the case of a factor model with no common mode
(γN = 0). Again the progressive fusion (induced by weaker
correlations) between separated eigenvalue bulks is shown.
Also, we compare the numerically obtained spectra to the
eigenvalue densities obtained from the solution of Eq. (43),
obtaining a very good agreement between the two [Figs. 3(a)
and 3(b)]. Just like in the previous case, the Marčenko-Pastur
distribution seems to provide quite a good fit of the “limiting”
eigenvalue bulk obtained for small correlations [Fig. 3(c)].
However, we performed a Kolmogorov-Smirnov [32] test
under the null hypothesis of data distributed according to a
Marčenko-Pastur distribution, and we found such hypothesis
to be rejected for all the significance levels we considered (see
the caption of Fig. 3 for further details). On the other hand, the
same test prevented us from rejecting the hypothesis of data
distributed according to the eigenvalue density obtained from
the solution of Eq. (43), its degenerate eigenvalues being given
by Eq. (29). This is quite surprising, given the great similarity
between the two densities [see Fig. 3(d)], which would be
almost undistinguishable if plotted on the scale of the whole
distribution [as in Fig. 3(c)]. In the following section, we shall
apply these ideas to financial data.

We also believe these findings to provide some interesting
evidence against the use of the Marčenko-Pastur distribution
whenever nonnegligible correlations are present between ran-
dom variables. Despite being close, in a number of situations,

to the eigenvalue densities deriving from the solution of
Eq. (43), the Marčenko-Pastur distribution always needs
to be fitted on the data under study, even when they are
completely under control (as in the case of Monte Carlo
simulations). Then, as already pointed out, the presence of
correlations causes the parameters q and σ to deviate from
the corresponding values which would be obtained in a pure
noise situation. In particular, given the definition in Eq. (12),
this leads to the introduction of the artificial, and possibly
misleading, concept of effective system size. On the other
hand, in the conclusions section we provide suggestions on
how to use cluster models to fit empirical spectra just by means
of filtering algorithms and Monte Carlo simulations.

Eventually, concluding this subsection on Monte Carlo
simulations, in Fig. 4 we show a numerically obtained
distribution of the largest sample eigenvalue for a factor model
yielding the eigenvalue spectrum in (29). As can be seen by
direct inspection, the corresponding histogram is well fitted by
a Gaussian distribution, as already anticipated in the previous
subsection. Moreover, three statistical tests (whose details
are provided in the caption) were performed under the null
hypothesis of normally distributed data, and all the results we
obtained prevent from rejecting such hypothesis. It is known
that in a number of situations largest sample eigenvalues of
correlation matrices are distributed according to Tracy-Widom
(TW) distributions [30]. Now, since in some cases TW
distributions can look quite close to normal distributions, we
also performed statistical tests in order to rule out the former
for the distribution of the largest sample eigenvalue of factor
models.

III. EMPIRICAL DATA: THE INVERSE PROBLEM

The goal of this section is to show that some of the features
displayed in correlation matrix spectra of factor models are
actually present in empirical spectra of financial correlation
matrices too. In particular, our goal is to show that the
Gaussian factor models outlined in the previous sections and
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FIG. 3. (Color online) (a) Eigenvalue spectrum of the correlation matrix for the factor model yielding the spectrum in (29) for N = 500,
T = 2000, N̄ = 100, and ρ = 0.84. This model yields two degenerate eigenvalues: '1 = 1 − ρ = 0.16 and '2 = 1 (see also Fig. 2). The
histogram is the result of 100 Monte Carlo simulations of such model, while the solid line represents the density obtained from the solution
of Eq. (43) (solved as in [29]). (b) Eigenvalue spectrum for the same model with ρ = 0.65, that is, for '1 = 0.35. It can be clearly seen that
the two separated bulks shown in (a) start to merge as a consequence of the smaller correlations (smaller value of ρ). Again, the solid line
represents the density obtained from Eq. (43). (c) Posing ρ = 0.30 the two eigenvalue bulks merge completely into one single structure. In
analogy to Fig. 2(b), such a structure is apparently well fitted by a Marčenko-Pastur distribution with q = 0.26 and σ = 0.97, plotted as a solid
line. On this scale, the Marčenko distributions would be barely distinguishable from the density obtained from Eq. (43) with '1 = 1 − ρ = 0.7
and '2 = 1. (d) Comparison between two such densities (the dark line represents the Marčenko-Pastur distribution, while the grey line is
the solution of Eq. (43)) in correspondence of their peak, where they differ the most. Despite the quite small deviation between the two, a
Kolmogorov-Smirnov (KS) performed on the data gave the following results. The critical values for different significance levels α, are given
by V∗

KS(α = 0.10) = 5.5 × 10−3, V∗
KS(α = 0.05) = 6.1 × 10−3 and V∗

KS(α = 0.01) = 7.3 × 10−3. Under a null hypothesis of data distributed
according to the Marčenko-Pastur distribution, the value of the KS statistic was SKS = 7.9 × 10−3, allowing for the rejection of the null
hypothesis for all the significance levels considered. On the other hand, under the null assumption of data distributed according to the density
obtained from Eq. (43), we obtained SKS = 2.3 × 10−3, thus preventing from rejecting the null hypothesis. Clearly the large statistics in this
example plays a relevant role in helping the KS test to “distinguish” the two densities. Smaller data samples would prevent the Marčenko-Pastur
distribution from being rejected. Indeed, when performing a KS test on a smaller version (N = 250, T = 1000, N̄ = 50, ρ = 0.30) of the
system in (d), we obtained SKS = 3.0 × 10−3 with the density given by Eq. (43) and SKS = 5.0 × 10−3 for the Marčenko-Pastur distribution,
the critical value being V∗

KS(α = 0.05) = 8.6 × 10−3. Thus this example shows how rescaled and smaller system dimensions might prevent
from discriminating the two densities.

the eigenvalue spectra they yield for correlation matrices do
actually make contact with financial data on a qualitative
level, thus confirming that the empirically observed eigenvalue
bulks, as the ones shown in Fig. 1, cannot be regarded as a
consequence of pure noise. In the light of the discussions in
Sec. II, we consider a peak separation [similar to those shown
in Figs. 2(a) and 3(a)] the most important phenomenological
evidence one should look for. For this reason we shall try
to empirically recreate, as best as possible, the conditions
under which such a peak separation might be achieved. It
is important to stress that nothing guarantees a priori that such
conditions should be fulfilled by financial data. Thus, in the
following we shall devise a filtering procedure able to detect
those correlation structures (i.e., strongly correlated clusters
plus additional uncorrelated assets) which might replicate the
block-diagonal correlation matrices generated by the factor

models introduced in the previous sections closely enough. We
shall restrict our attention only to a relatively small number
of assets in our data sets (396 assets from the S&P500 Index
and 243 assets from the FTSE350 Index), namely only those
ones which ideally replicate the block-diagonal structure of the
correlation matrix in (27). When a single cluster is considered,
such matrix yields the eigenvalue spectrum of Eq. (29), whose
noise-dressed version is expected to produce well separated
eigenvalue bulks. Let us rewrite the matrix in Eq. (27) for this
specific case:

C =
(

Ẽ ¯(N) 0
0 IN−N̄

)
, (44)

recalling that Ẽ
¯(N)

ij = ρ for i += j and Ẽ
¯(N)

ii = 1, N̄ being the
number of elements in the correlated cluster.
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FIG. 4. (Color online) Distribution of the largest eigenvalue
λMAX from 5000 Monte Carlo simulations of the factor model
yielding the spectrum in (29) with ρ = 0.85, N = 500, and
N̄ = 100. The distribution is well fitted by a normal distribution
(dark line) with expected value m = 84.79, very close to the
theoretical value predicted by Eq. (29): N̄ρ + (1 − ρ) = 85.15.
Three different statistical tests (Jarque-Bera, Lilliefors, and
Kolmogorov-Smirnov) [32] were performed, assuming a null
hypothesis of normally distributed data. In the following
we report the different critical values (V∗) obtained for the
different tests and for different significance levels α. Also,
we report the statistic values (S), which, if smaller than
the critical values, prevent the null hypothesis from being
rejected. Jarque-Bera test: SJB = 3.114, V∗

JB(α = 0.10) = 4.605,
V∗

JB(α = 0.05) = 5.992, V∗
JB(α = 0.01) = 9.210. Lilliefors

test: SL = 0.78 × 10−2, V∗
L(α = 0.10) = 1.14 × 10−2,

V∗
L(α = 0.05) = 1.25 × 10−2, and V∗

L(α = 0.01) = 1.56 × 10−2.
Kolmogorov-Smirnov test: SKS = 0.78 × 10−2, V∗

KS(α = 0.10) =
1.73 × 10−2, V∗

KS(α = 0.05) = 1.92 × 10−2, V∗
KS(α = 0.01) =

2.30 × 10−2. All of the previous results prevent from rejecting the
hypothesis of normally distributed data. We also generated a TW
distribution with the algorithm described in [33], fitted it (grey line)
to the data, and performed a KS test on it (the KS being the only
non-Gaussian test among the ones mentioned previously) obtaining
SKS = 2.16 × 10−2, which allows to reject the null hypothesis of
data distributed according to a TW distribution for α = 0.05,0.10.

In order to reproduce the structure in (44), we start from
the empirical covariance matrices (let us denote them as c,
according to the previously adopted notation) of our data sets
and apply the following procedure.

(1) We first identify a small cluster of N̄ strongly mutually
correlated assets. If we denote the corresponding set of indices
as IU , then we have

cij " ρU , i,j ∈ IU (45)

for some threshold value ρU > 0, which should be fixed to be
quite high (a reasonable choice for financial data is ρU ≈ 0.6)
in order to actually ensure strong correlations between all the
stocks in the cluster. This selection procedure is meant to
reproduce the Ẽ ¯(N) diagonal block in Eq. (44).

(2) Then, all assets which are weakly correlated to the
elements in the cluster are pointed out. Among those, only the
ones with small mutual correlations are retained. By grouping
their indices in another set ID , we can write

|cij | ! ρ ′
D, i ∈ IU , j ∈ ID,

(46)
|ckl| ! ρ ′′

D, k,l ∈ ID, k += l

for some threshold values ρ ′
D,ρ ′′

D ∈ (0,ρU ). ρ ′
D and ρ ′′

D should
be chosen to be quite small (reasonable choices are ρ ′

D,ρ ′′
D ≈

0.1), so that the first condition in (46) will ensure very weak
correlations between elements in ID and elements in the cluster
IU , mimicking the zero off-diagonal blocks in (44). Similarly,
for small values of ρ ′′

D the second condition in (44) will
reproduce the identity matrix in the right-lower block of (44).

(3) If we now redefine N to be the total number of stocks
in IU and ID , so that ID contains N − N̄ elements, and we
properly sort them, then the approximation to (44) is given as
follows

c =
(

cIU
cIU ,ID

cID,IU
cID

)
, (47)

where cIU
and cID

are square matrices (of dimensions N̄
and N − N̄ , respectively) containing the correlation matrix
elements pertaining to the two sets IU and ID . On the other
hand, the cIU ,ID

matrix (cID,IU
being its transpose) contains the

“interaction” terms between the two sets.
The goal of such a construction is to empirically make

contact with the spectrum in Eq. (29). As a matter of fact, for
suitably chosen threshold values ρU , ρ ′

D , and ρ ′′
D , we expect

the eigenvalue spectrum of the c matrix in (47) to be the
noise-dressed version of the one in (29). In particular, small
values of ρ ′

D and ρ ′′
D should guarantee the cID

block to yield
N − N̄ eigenvalues close to one. On the other hand, the block
Ẽ(N̄ ) in (44) yields N̄ − 1 small eigenvalues equal to 1 − ρ
and a large one equal to N̄ρ + (1 − ρ). Now it is reasonable to
assume ρ to be equal to the average mutual correlation between
the assets (i.e., the average of off-diagonal correlation matrix
elements) in IU ,

ρ = 1
N̄ (N̄ − 1)

∑

i +=j

[cIU
]ij , (48)

and to suppose that cIU
will produce N̄ − 1 eigenvalues

close to this value. Lastly, before moving on let us mention
that applying the previously outlined filtering procedure to
uncorrelated or weakly correlated data would not produce any
relevant result, even for less restrictive threshold values than
the ones we use.

In the following we present and discuss the results we
obtained applying this procedure to our data sets. In the
case of the S&P500 Index, we identified a cluster made of
N̄S&P = 7 strongly mutually correlated assets [ρS&P = 0.712,
with ρS&P computed as in (48)], all of which happen to
belong to the energy sector. We then identified a group of
33 stocks, belonging to various sectors, which satisfy the
previously described requirements: a small mutual correlation
(mean value = 0.099) and a small correlation with the N̄
elements in the cluster (mean value = 0.096). So, all in
all we have NS&P = 40. Analogously, also in the FTSE350
Index case we were able to identify a cluster made of
N̄FTSE = 7 highly mutually correlated stocks (ρFTSE = 0.707),
all corresponding to investment trusts. In this case, however,
we only found 21 more stocks (so that NFTSE = 28) satisfying
the aforementioned requirements (mean value of mutual
correlation = 0.015, mean value of correlations with elements
in the cluster = 0.014). In Fig. 5 graphical representations
of the empirical correlation matrices were obtained, and a
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FIG. 5. Graphical representation of correlation matrices. (a) 40 × 40 correlation matrix for the selected returns belonging to the S&P500
Index. (b) 28 × 28 correlation matrix for the selected returns belonging to the FTSE350 Index. In (a) and (b) the stocks have been sorted in
order to highlight the cluster structure. (c) and (d) Model correlation matrices corresponding to the cases shown in (a) and (b), respectively. In
all plots, white diagonal blocks correspond to ones, while black ones correspond to zeros. Gray shadings are intermediate values. As already
explained in the main text, the gray shadings in (c) and (d) correspond to ρ = 0.712 and ρ = 0.707, respectively. The presence of unresolved
structures in (a) and, less evident, in (b), suggests that the model matrix in (44), depicted in (c) and (d), does not fully capture all empirical
features.

comparison to the theoretically expected ones are shown. As
can be seen by direct inspection, the correlation matrix we
obtain in the FTSE350 Index case is remarkably similar to the
one in (44), whereas the one we obtain for the S&P500 Index
has some further inner structure as a consequence of the much
higher mean correlations.

In Fig. 6 the eigenvalue spectra we obtained from
the previously discussed correlation matrices [the ones re-
ported in Figs. 5(a) and 5(b)] are shown. In particular, in
Figs. 6(a) and 6(b) we plot the spectra obtained, respec-
tively, from the S&P500 and FTSE350 correlation matrices
constructed according to the clustering procedure outlined
previously. In both cases, two distinct eigenvalue bulks can
be noticed. The smaller bulks on the left are made of six
eigenvalues, and, since we have N̄S&P = N̄FTSE = 7, this is in
agreement with the prediction given by Eq. (29) for N̄ = 7.
Also, in the FTSE350 Index case [Fig. 5(b)] the larger
eigenvalue bulk around one is made of NFTSE − N̄FTSE = 21
eigenvalues, which is again in agreement with (29), while
the largest eigenvalue in the spectrum (not shown in the
plot) is equal to 5.235, remarkably close to the predic-
tion given by N̄FTSE ρFTSE + (1 − ρFTSE) = 5.242 [see again
Eq. (29)]. On the other hand, the spectrum relative to the

S&P500 Index yields two large eigenvalues [not shown in
Fig. 6(b)] equal to 3.552 and 6.483, and neither value is in
agreement to the large eigenvalue prediction NS&P ρS&P +
(1 − ρS&P) = 5.272. Such discrepancy is due to the unre-
solved correlation structure in the empirical S&P matrix [see
Fig. 5(a)], which gives rise to additional subclusters.

In Figs. 6(c) and 6(d) the two eigenvalue bulks we just
discussed are fitted with the eigenvalue density deriving from
the second equation in (38) when applied to the solution of
(43), that is, the moment generating function mc of the noise-
dressed version of a correlation matrix C with degenerate
eigenvalues. In both cases we consider correlation matrices
with two degenerate eigenvalues in order to try to fit the two
main bulks. The smaller eigenvalue '1, responsible for the
emergence of the smaller bulks on the left, is assumed to be
equal to 1 − ρ, accordingly to Eq. (29). So in the two different
cases we analyzed we have

'1S&P = 1 − ρS&P = 0.288, w1S&P = N̄S&P − 1
NS&P − 2

,

(49)

'1FTSE = 1 − ρFTSE = 0.293, w1FTSE = N̄FTSE − 1
NFTSE − 1

,
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FIG. 6. (Color online) (a) and (b) Eigenvalue densities of the correlation matrices represented in Figs. 5(a) and 5(b). In both cases one
can clearly distinguish two well separated bulks, while the largest eigenvalues have not been plotted for better visualization (see main text for
further explanation). (c) and (d) Comparison between the theoretically expected spectra derived via Eq. (43) (solid lines) and the empirical ones.
The latter have been modified with respect to (a) and (b) according to the following approach. A bootstrap random sampling (100 iterations)
has been performed on the weakly correlated subsets of stocks, picking 30 stocks out of 33 in the S&P500 Index case and 18 out of 21 in the
FTSE350 Index case. The presence of undetected structures [see Figs. 5(a) and 5(b) and main text] leads to a poor agreement between data and
theory. The values and weights of the eigenvalues used to plot the theoretical density obtained from Eq. (38) are detailed in (49). (e) and (f) As
in (c) and (d) but with weakly correlated data reshuffled before bootstrap, leading to a much better agreement between data and theory. The
reference eigenvalue for the bulks on the right is now assumed to be equal to one (see main text).

where the two slightly different weights are justified by the
previously mentioned fact that in the S&P case there are two
isolated eigenvalues which separate from the main bulks, while
in the FTSE case there is only one such eigenvalue. On the
other hand, the larger eigenvalue '2, which according to (29)
should be exactly equal to one, is assumed to be equal to
the empirical mean value of the main bulks on the right in
Figs. 6(c) and 6(d). These are found to be

'2S&P = 0.887, '2FTSE = 0.997 (50)

and one might notice that, again, the value obtained in the
FTSE case is in excellent agreement with the theoretically
expected one. So, all in all, the curves drawn in Figs. 6(c)

and 6(d) are obtained from the values in Eqs. (49) and (50).
Such curves, as already mentioned, are fitted to the empirical
spectra. However, a bootstrap approach was adopted in order
to improve the statistics. More specifically, for each bootstrap
iteration a random sampling on the weakly correlated stocks
was performed, picking 30 out of 33 in the S&P case and 18
out of 21 in the FTSE case. On the contrary, the stocks forming
the highly correlated clusters were always kept (thus keeping
the eigenvalue bulks on the left almost unchanged). As can be
seen in Figs. 6(c) and 6(d) the agreement between theory and
prediction is very poor. This is essentially due to the additional
correlation structures in the empirical correlation matrices
(see Fig. 5), which are neglected in the model matrix (44) and
in its eigenvalue spectrum (29). All the bulks displayed in
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Figs. 6(c) and 6(d) appear to be “smeared” versions of
their theoretical counterparts, even the small ones relative
to the eigenvalues in (49). Interestingly this shows that
inhomogeneities in correlation structures have quite an impact
on eigenvalue spectra even on a “small scale” (let us recall
that N̄S&P = N̄FTSE = 7).

In Figs 6(e) and 6(f) the same fit as the one just discussed is
performed, the only difference being that an additional random
reshuffling of the returns is performed on the bootstrapped
assets. Such an operation is meant to destroy all possible
correlations, and this leads to a quite good agreement between
data and predictions on the bulks on the right [the theoretical
densities being now computed with '2 = 1, accordingly
to Eq. (29)]. This essentially confirms that the substantial
deviations shown in Figs. 6(c) and 6(d) can entirely be imputed
to the unresolved cluster structures in the empirical correlation
matrices. The same kind of analyses (bootstrap and reshuffling)
were not performed on the stocks belonging to the correlated
clusters because of their very small number.

All in all, the previous observations definitely suggest
that the empirically observed eigenvalue bulks cannot be
regarded as a consequence of the noisiness in financial
correlation matrices. On the contrary, in the light of the
previous discussions it could be conjectured that bulks emerge
from the interplay of several cluster structures like the ones we
isolated (see Fig. 5) [12,13].

IV. SUMMARY AND CONCLUSIONS

Let us now summarize the main messages in the paper.
(1) Several rough but useful results about spectral properties

of financial correlation matrices, such as the position of
large nondegenerate eigenvalues, can be inferred by a clever
application of the direct problem (see Sec. II A). This only
involves algebraic calculations, namely the solution of suitable
secular equations. This approach can be used either when the
cluster structure is known a priori, or when there are good
reasons to assume a certain correlation structure. Combining
the direct analysis with Monte Carlo simulations can provide a
clear picture in a number of situations, avoiding the analytical
difficulties of random matrix theory, and keeping the finite-
sized nature of the problem. Typically, one wishes to reproduce
observed spectra starting from a factor model, and this can be
done as follows.
(a) Identify the cluster structure in the data set under analysis,

using clustering algorithms [34].
(b) Estimate the average correlations within clusters.
(c) Build a theoretical, “mean field,” matrix model C from the

above estimates.
(d) Run Monte Carlo simulations of the matrix model.
(e) Compare the outcome of the simulation to the empirical

spectrum.
If the comparison is statistically satisfactory, the matrix model
C can be retained and used for further analyses, such as

portfolio selection. If not, the model is to be refined, for
example, by studying more carefully the correlation structure
of the data or by abandoning the mean field assumption, at
least allowing for some cluster interactions.

(2) As far as the largest eigenvalue is concerned, its dis-
tribution is not Tracy-Widom, but Normal [30,31]. Moreover,
this distribution cannot be derived from the thermodynamic
limit formula (43). In fact, such an eigenvalue is typically
nondegenerate and its weight in a diagrammatic expansion of
the Green’s function would vanish as 1/N , for N → ∞.

(3) For factor models the bulks in empirical eigenvalue
spectra come as the noise-dressed version of degenerate
eigenvalues. Thus such bulks encode the information on the
cluster structure of the empirical correlation matrix c, and this
can be evidenced by means of proper clustering methods, as
done in Sec. III.

(4) The results we obtain in Sec. III by means of our filtering
procedure suggest that empirically observed eigenvalue bulks
in financial correlation matrix spectra emerge as a consequence
of the subtle interplay between factor eigenvalues and noise.
More specifically, the whole eigenvalue bulks seem to arise as
superpositions of smaller structures, such as the ones shown
in Figs. 6(a) and 6(b), which merge together according to
the mechanism shown in Fig. 3. So one could safely state
that the empirically observed eigenvalue bulks are not a mere
consequence of noise. As a matter of fact they arise as the noise
dressing of degenerate eigenvalues which do carry information
on the correlation structure of the data under study.
While there would be no difficulty in studying non-Gaussian
multivariate models by means of Monte Carlo simulations,
the analytical results presented in Sec. II B cannot be easily
generalized. In fact, the integrals needed to calculate gc in
(34) in the Gaussian case can be exactly obtained by virtue
of Wick’s theorem, whereas different stochastic models would
require painful calculations.

The diagrammatic method outlined in [28] allows, in
principle, for the exact evaluation of the Green’s function gc for
any finite size N × T , as a function of N and T . Nevertheless,
this is a series of 1/z powers, whose convergence properties
would be interesting to investigate in the near future.
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