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We present a comprehensive theoretical investigation of spin relaxation processes of excitons in photoexcited
self-assembled quantum dots. The exciton spin relaxations are considered between dark- and bright-exciton states
via the channels created by various spin-admixture mechanisms, including electron Rashba and Dresselhaus spin-
orbital couplings (SOCs), hole linear and hole cubic SOCs, and electron hyperfine interactions, incorporated with
single- and double-phonon processes. The hole-Dresselhaus SOC is identified as the dominant spin-admixture
mechanism, leading to relaxation rates as fast as ∼10−2 ns−1, consistent with recent observations. Moreover,
due to significant electron-hole exchange interactions, single-phonon processes are unusually dominant over
two-phonon ones in a photoexcited dot even at temperatures as high as 15 K.
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I. INTRODUCTION

Spin dynamics in semiconductor quantum dots (QDs)
is a subject of interest in the current endeavor to develop
spintronics and quantum information processing applications.1

It has been widely believed for a long time that the discrete
nature of QDs can make the spin relaxation times of confined
carriers long enough for further applications.2 Indeed, the spin
lifetimes of electrons confined in QDs have been experimen-
tally confirmed to reach up to 1 s.3 Based on such long-lived
electron spins, coherently controlled quantum gate devices
made of electrode-defined QDs have been recently realized.4

In quantum photonic applications, InGaAs self-assembled
QDs have been recently demonstrated as useful quantum
light sources used in photonic quantum teleportation and
cryptography.5 The generation rate of single-photon emission
from the dots is, however, severely limited by the undesired
fast spin relaxation of excitons,6,7 reported to be as fast as
∼102 ns in recent experiments.8 Such transitions mainly occur
between bright-exciton (BX) and dark-exciton (DX) states
split by the e-h exchange interaction, which is of hundreds
of µeV.9 What is more, the DX-to-BX transitions have been
shown to be ultimately responsible for spin transitions within
the BX doublet,10 so that they also limit the performance of
entangled photon pair generators.

By contrast to existing extensive research for electrons or
holes in QDs,1 the fundamental understandings of the spin
relaxation processes of excitons in QDs are still incomplete. As
a two-component quasiparticle, the spin dynamical processes
of a quantum-confined exciton involve more complications,
mixing various spin-flip mechanisms and phonon processes via
the intrinsic e-h mutual interactions. To date, only the intrinsic
mixing of heavy- and light-hole states11 and the linear-in-p
spin-orbit coupling (SOC) of valence band holes12 have been
theoretically studied as possible exciton spin-flip mechanisms,
which, however, predict spin relaxation rates far below the
observed values.8

In this work, we attempt to fill the gap between existing
experiments and theoretical predictions. We present a compre-
hensive investigation of spin relaxation of single excitons in
InGaAs self-assembled QDs using both an analytical method

and a numerical exact diagonalization technique, with a
full consideration of e-h exchange interactions, all possible
electron and hole SOCs, hyperfine interactions, and particle-
phonon couplings in single- and two-phonon processes. We
explain the fast exciton spin relaxation observed in QDs in
terms of pronounced hole-Dresselhaus SOCs and e-h exchange
interactions in predominant single-phonon processes.

II. THEORY

A. Model and Hamiltonian

We start with an interacting Hamiltonian for a single neutral
exciton confined in a phonon-free quantum dot:

H 0
X = He + Hh + Veh + V xc

eh + He
SO + Hh

SO. (1)

Here Hj denotes the noninteracting single-electron (j =
e) or single-hole (j = h) Hamiltonian in a parabolic QD:

Hj = p2
j

2mj
+ 1

2mjω
2
j r

2
j,‖ + Vj (zj ) , where pj are the oper-

ators of linear momentum, mj are the effective masses
of particles, ωj parametrizes the lateral confining poten-
tial, Vj (zj ) is the vertical square confining potential of
thickness dz, and rj,‖ = (xj ,yj ) is the in-plane coordi-
nate. Within the model, the single-particle wave function
can be written in a separable form: "

j
n‖,nz

(xj ,yj ,zj ) =
ψn‖ (rj,‖)gnz

(zj ). The in-plane part of Hj yields the ex-
plicit two-dimensional (2D) Fock-Darwin (FD) energy
spectrum ε

j
s = h̄ωj , ε

j
p± = 2h̄ωj , . . ., and the single-particle

wave functions ψs(rj,‖) = 1
l0

√
π

exp(−r2
j,‖/2l2

0),ψp± (rj,‖) =
rj,‖

l2
0
√
π

exp(−r2
j,‖/2l2

0) × e±iφ, . . .,13 where the subscripts s, p+,

and p− indicate the atomiclike s- and p-shell orbitals of
QD with orbital angular momentum projection Lz = 0, + 1,
and −1, respectively, and l0 ≡

√
h̄/meωe =

√
h̄/mhωh is the

characteristic lateral extent of wave functions (as depicted by
the lower-right schematics in Fig. 1).

The terms Veh and V xc
eh are the e-h Coulomb direct and

exchange interactions, respectively. It is mainly the attractive
direct interaction Veh making an e-h pair bind together to form
an exciton. Veh does not, however, affect the spin structure
of exciton states, and we shall treat it as a constant offset
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FIG. 1. (Color online) Exciton spin relaxation rates in the DX
to BX transition and the rates contributed from each spin-flip
mechanism, as functions of the QD size. Results with fixed 'xc

eh =
0.4 meV (dashed line) are also presented for comparison. Inset:
Schematic of the DX to BX conversion channels.

of energy. The fourfold spin degenerate single-exciton states
are split by e-h exchange interaction V xc

eh into a lower-energy
optically inactive doublet with Mz = sz + jz = ±2 (the
so-called DX states |sz = + 1

2 ,jz = + 3
2 〉 = | ↑ ⇑〉 and

|sz = − 1
2 ,jz = − 3

2 〉 = | ↓ ⇓〉) and a higher-energy doublet
with Mz = ±1 (the BX states | ↑ ⇓〉 and | ↓ ⇑〉) with an
energy separation 'xc

eh ∼ 102–103 µeV. V xc
eh thus acts as

an effective field coupled to the exciton spin but, unlike
an externally applied field, itself is associated with the dot
structure. Treating the short-range part of the corresponding
e-h exchange interaction as the dominant component, the
BX-DX splitting 'xc

eh for the low-lying exciton states can be
modeled as14

'xc
eh = 'xc

eh,bulk ×
(
πa∗

B
3)

∫
d3r

∣∣"e
s,0(r)"h

s,0(r)
∣∣2 ∝ l−2

0 , (2)

where 'xc
eh,bulk is the bulk e-h exchange energy and a∗

B the
effective exciton Bohr radius for InGaAs. Note that the
smaller the dot, the larger the 'xc

eh.
The term He

SO (Hh
SO) denotes the electron (hole) SOC. For

electrons, the SOC Hamiltonian consists of the Rashba and
Dresselhaus terms, He

SO = He
R + He

D ,1 being

He
R = (αe/ih̄)(p+σ− − p−σ+), (3)

He
D = −(βe/h̄)(p+σ+ + p−σ−), (4)

where p± ≡ px ± ipy (σ± ≡ σx ± iσy) are orbital (spin)
ladder operators for (s = 1/2) electron and αe (βe) is the
e-Rashba (Dresselhaus) SOC constant.

For holes, we consider the h-SOC Hamiltonian as Hh
SO =

Hh
lin + Hh

D consisting of the relevant p-linear and -cubic
terms:12,15

Hh
lin = −(αh/h̄)(p+σ− + p−σ+), (5)

Hh
D = −(βh/h̄

3)(p+p−p+σ− + p−p+p−σ+), (6)

where αh (βh) is the p-linear (-cubic h-Dresselhaus) SOC
constant. Equations (5) and (6) are expressed in terms of
Pauli operators for the pseudospin of heavy holes defined by
the spin replacement j = 3/2 → sh = 1/2 and jz = ±3/2 →
sh
z = ±1/2. For brevity, the superscripts h for the hole spin

operators are removed. The h-Rashba SOC is irrelevant in the
problem here since Hh−R ∝ p3

± involves only the remote h
states above the d shell.15

The eigenenergies and eigenstates of a spin exciton in a
phonon-free QD can be numerically obtained by solving the
eigenequation H 0

X|X; i〉 = EX;i |X; i〉 using an exact diagonal-
ization method for the matrix of H 0

X in the basis of exciton
configurations built up from the FD orbitals (with a typical
number of FD orbitals ≈ 15 and that of exciton configurations
≈ 900). The parameters used in the calculations throughout
this work are summarized in Table V in the Appendix.

B. Relaxation rates

Next, we consider the QD coupled to the acoustic phonon
bath by introducing the particle-phonon couplings into the QD
system, being

Hj−ph =
∑

νq

Mj
ν (q)(bqe

iq·rj + b†qe
−iq·rj ). (7)

Here q is the phonon wave vector, ν = LD,T D,LP,T P
denote the kinds of phonon modes (longitudinal or transversal
modes of deformation phonons or piezoelectricity phonons),
bq and b

†
q are the phonon creation and annihilation operators,

and M
j
ν are the phonon scattering matrix elements. Table I

summarizes the expressions for M
j
ν (q) as functions of the

phonon wave vector q = (qx,qy,qz) and relevant material
parameters.

The exciton spin relaxation rate for the transition from
DX states to BX ones involving single-phonon processes (as
illustrated by the schematics in the inset of Fig. 1) are evaluated
using Fermi’s golden rule:

τ−1
tot = 2π

h̄

∑

f

∑

j=e,h

∑

ν q

∣∣〈f |V j
νq|i〉

∣∣2
δ(Ef i − h̄ωνq) Nqν

. (8)

TABLE I. Expressions for phonon scattering matrix elements Mj
ν as functions of the phonon wave vector q = (qx,qy,qz) and phonon

parameters for InGaAs. ν(= LD,T D,LP,T P ) denotes the kinds of phonon modes (longitudinal or transversal modes of deformation phonons
or piezoelectricity phonons). . denotes the crystal volume. Other symbols for phonon parameters are summarized in Table V in the Appendix.

ν = LD ν = T D ν = LP ν = T P

|Mj
ν (q)|2 h̄D2

j,LD

2dc
LD

.
q

h̄D2
j -T D

2dc
T D

.

q2
z (q2

x +q2
y )

q3
32π2h̄e2h2

14
ε2dc

LP
.

(3qxqyqz)2

q7
32π2h̄e2h2

14
ε2dc

T P
.

| (qxqy )2+(qyqz)2+(qzqx )2

q5

− (3qxqyqz)2

q7 |
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Here V
j
νq = M

j
ν (q)eiqrj , h̄ωνq is the phonon energy, and |i〉

and |f 〉 are the initial (DX) and final (BX) states, respectively.
Ef i ≡ Ef − Ei is the energy difference between |f 〉 and |i〉.
The δ function in Eq. (8) ensures the resonance condition
h̄ωνq = |Ef i | in the single-phonon processes, which indicates
h̄cνqν0 = 'xc

eh ∝ qν0 (cν is the speed of acoustic phonon).
Nqν

= 1/(eh̄ωνq/kBT − 1) is the phonon population, with T
being the temperature and kB the Boltzmann constant.

III. NUMERICAL RESULTS

A. Single-phonon processes

Figure 1 presents the numerically calculated total rates τ−1
tot

of single excitons in QDs of fixed thickness dz = 3 nm but
with varying lateral sizes. It can be seen that the total spin
relaxation rate of the exciton is at the scale of 10−3–10−2 ns−1

consistent with recent observations.8 For further insight, one
can extract the individual contributions τ−1

j−SO from each j

(electron or hole) SOC term in the total rate τ−1
tot . Among

all spin mechanisms, the p-cubic h-Dresselhaus SOC leads
to the fastest spin relaxation rate, τ−1

h−D ∼ 10−3–10−2 ns−1.
This is 1 order of magnitude higher than that of e-Dresselhaus
SOC (τ−1

e−D ∼ 10−4 ns−1) for self-assembled dots with typical
l0 < 6 nm and faster than those due to intrinsic heavy-hole
(hh)-light-hole(lh) mixing in excitons.8,11 The linear hole SO
interaction, which was proposed as the exciton spin relaxation
mechanism in large QDs,12 is found to be a weak effect in self-
assembled QDs, leading to a slow rate of τ−1

h−lin ∼ 10−6 ns−1.
For spin transitions mediated by the electron-nuclei hyper-

fine (Hy) interaction, an exact diagonalization procedure like
that used for the SOCs is quite challenging because the number
of involved nuclei is over millions. We thus separately evaluate
the spin relaxation rate via the Hy interactions by using the
perturbation method presented in Ref. [16]. The calculated
Hy-interaction-mediated spin relaxation rate of exciton in a
QD is quite slow, τ−1

Hy ∼ 10−8 ns−1, incomparable to the spin
relaxation rate arising from other SOCs.

A remarkable feature of Fig. 1 is that the spin relaxation of
excitons, as opposed to that of single electrons, is not really
suppressed by the reduced dot sizes. Instead, the size effect of
QDs makes the spin relaxation rate even faster. This is because
the smaller the QD, the stronger the Coulomb interaction and
hence 'xc

eh. Larger interlevel spacing translates into larger
density of acoustic phonons, more efficient carrier-phonon
coupling,17,18 and stronger spin-orbital admixture. Further
understanding of this is provided by a perturbational analysis
we carry out in Sec. IV.

B. Two-phonon processes

Next, we examine the influence of two-phonon processes
on the spin relaxation of excitons. The examination of the
two-phonon process effect is necessary here since there has
been evidence that, in the absence of magnetic fields, the spin
relaxation of holes is dominated by two-phonon processes
starting from temperatures below 1 K.19 We consider processes
involving an initial absorption to a virtual state |n〉, followed
by an emission to the final state, as illustrated in the inset of
Fig. 2(a). The main spin-admixture mechanism is hole-
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FIG. 2. (Color online) Exciton spin relaxation rates due to
one- and two-phonon processes as a function of the e-h exchange
interaction (a) and the QD size (b) at T = 15 K. In panel (a), l0 = 5
nm. In panel (b), size-dependent 'xc

eh is taken. The inset in panel (a)
is a schematic of the two-phonon process.

Dresselhaus SOC, and the rates are calculated numerically
using a second-order Fermi golden rule:

τ−1
h−D(2) = 2π

h̄

∑

f

∑

ν q,k

∣∣∣∣∣
∑

n

〈f |V h
νk|n〉 〈n|V h

νq|i〉
(En − Ei − Eq)

∣∣∣∣∣

2

× δ(Ef i + h̄ωνk − h̄ωνq) Nqν

(
Nkν + 1

)
. (9)

Figure 2(a) compares the relaxation rates obtained with one-
and two-phonon processes as a function of 'xc

eh. One can
see that single-phonon processes become rapidly inefficient
for small 'xc

eh, which is due to the decreasing density of
phonon states. By contrast, two-phonon rates remain roughly
constant. This is because there is no resonance condition for
the transition to the virtual state. As a result, even if 'xc

eh is
small, two-phonon processes may rely on the absorption and
emission of energetic phonons, as long as the sum of their
energies matches Ef − Ei . The insensitivity of two-phonon
processes to 'xc

eh is analogous to that of individual holes
to external magnetic fields,19 except that here the role of
the magnetic field is played by the inherent exciton e-h
interaction.

Figure 2(a) shows that, for excitons, two-phonon process
dominate over single-phonon ones only if 'xc

eh is small. To test
if this is actually the case in self-assembled QDs, in Fig. 2(b)
we compare one- and two-phonon rates as a function of the
dot size, considering the size dependence of 'xc

eh. Clearly,
one-phonon processes dominate up to very large dot sizes,
where 'xc

eh becomes small enough. It is worth noting that
one-phonon processes dominate despite the moderately large
temperature, T = 15 K. This is because the e-h exchange acts
as a fairly strong effective magnetic field. In what follows, we
present an analysis for the exciton spin relaxation rates in main
single-phonon processes to provide more understanding of the
numerical data.

IV. ANALYSIS

A. Exciton wave functions

For analysis, we begin with the energy spectrum of an
exciton confined in a QD subject to relatively weak SOCs.
Under the condition, the spin-mixed DX states as possible
initial states can be expanded in the reduced basis formed
by a few relevant exciton configurations and approximately
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expressed as

|X; i〉 ≡ |DX〉
× ∝

(∣∣ψe
s ↑;ψh

s ⇑
〉
− CDX

e-R

∣∣ψe
p+ ↓;ψh

s ⇑
〉

+ iCDX
e-D

∣∣ψe
p− ↓;ψh

s ⇑
〉
+ iCDX

h-lin

∣∣ψe
s ↑;ψh

p+ ⇓
〉

+ iCDX
h-D

∣∣ψe
s ↑;ψh

p+ ⇓
〉)
, (10)

|X; i ′〉 ≡ |DX′〉
× ∝

(∣∣ψe
s ↓;ψh

s ⇓
〉
+ CDX′

e-R

∣∣ψe
p− ↑;ψh

s ⇓
〉

+ iCDX′

e-D

∣∣ψe
p+ ↑;ψh

s ⇓
〉
+ iCDX′

h-lin

∣∣ψe
s ↓;ψh

p− ⇑
〉

+ iCDX′

h-D

∣∣ψe
s ↓;ψh

p− ⇑
〉)
, (11)

where |ψieσe;ψihσh〉 denotes the single-exciton configu-
ration where an electron (a valence hole) occupies the
ieth (ihth) Fock-Darwin orbital with spin σe =↑ / ↓(σh =⇑
/ ⇓), and C

ξ
j -SO(∈ R) are the (real) coefficients of the

coupled configurations of dark exciton (ξ = DX,DX′) aris-
ing from the j -SO couplings (j -SO = e-R,e-D,h-lin,h-D).
For brevity, the normalization constants are not shown in
Eqs. (10) and (11).

Likewise, the spin-mixed bright-exciton (ξ = BX,BX′)
states, as possible final states in Eq. (8), are
written as

|X; f 〉 ≡ |BX〉
× ∝

(∣∣ψe
s ↑;ψh

s ⇓
〉
− CBX

e-R

∣∣ψe
p+ ↓;ψh

s ⇓
〉

+ iCBX
e-D

∣∣ψe
p− ↓;ψh

s ⇓
〉
+ iCBX

h-lin

∣∣ψe
s ↑;ψh

p− ⇑
〉

+ iCBX
h-D

∣∣ψe
s ↑;ψh

p− ⇑
〉)
, (12)

|X; f ′〉 ≡ |BX′〉
× ∝

(∣∣ψe
s ↓;ψh

s ⇑
〉
+ CBX′

e-R

∣∣ψe
p− ↑;ψh

s ⇑
〉

+ iCBX′

e-D

∣∣ψe
p+ ↑;ψh

s ⇑
〉
+ iCBX′

h-lin

∣∣ψe
s ↓;ψh

p+ ⇓
〉

+ iCBX′

h-D

∣∣ψe
s ↓;ψh

p+ ⇓
〉)
. (13)

Figure 3 (4) depicts the schematics of the main low-lying
exciton configurations for a dark-exciton (bright-exciton) state.
By treating each SOC term separately and perturbatively
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FIG. 3. (Color online) Schematics of the main low-lying exciton
configurations coupled by various spin-orbital couplings for the dark-
exciton state |DX〉 defined by Eq. (10).
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FIG. 4. (Color online) Schematics of the main low-lying exciton
configurations coupled by various SOCs for the bright-exciton state
|BX〉 defined by Eq. (12).

in Eq. (10), one can derive the explicit expressions for the
configuration coefficients C

ξ
j -SO in terms of SOC constants

(αj ,βj ), characteristic length of wave function extent l0, energy
quantization of QD ε

j
sp ≡ ε

j
p± − ε

j
s , and BX-DX splitting

'xc
eh. We assume that, prior to the inclusion of SOC effects,

s-shell DX and BX states are split by 'xc
eh. Then, the p-shell

DX-BX splitting is 'xc
eh/2. The smaller splitting follows from

the reduced orbital overlap in the short-range electron-hole
exchange integral,

∫
d3r|"e

p,0(r)"h
s,0(r)|2.14

Higher shells (used in numerical calculations) are consid-
ered to have no sizable DX-BX splitting. The coefficients
C

ξ
j -SO derived under these conditions are summarized in

Table II.

B. Characteristic rate of spin relaxation

Substituting Eqs. (10)–(13) into Eq. (8), the total spin
relaxation rate in the transition from a DX state to BX ones
can be decomposed into the individual rates arising from each
SOC mechanism,

τ−1
j−SO = 2π

h̄
P 2

j -SO

∑

νq

∣∣Mj
ν (q)

∣∣2|〈"p,0|eiq·rj |"s,0〉|2

× δ
(
'xc

eh − h̄ωνq

)
Nqν

. (14)

TABLE II. Explicit expressions for configuration coefficients of
spin-mixed BX and DX states in terms of SOC constants (αj ,βj ),
characteristic length of wave function extent l0, energy quantization
of QD εj

sp ≡ ε
j

p± − εj
s , and BX-DX splitting 'xc

eh. The formulations
are derived by treating separatively and perturbatively each SOC
mechanism. The parameters used in the calculations are summarized
in Table V.

ξ C
ξ
e-R C

ξ
e-D C

ξ
h-lin C

ξ
h-D

DX,DX′ αe/ l0
εe
sp+3'xc

eh/4
βe/ l0

εe
sp+3'xc

eh/4
αh/l0

εh
sp+3'xc

eh/4

2βh/l30
εh
sp+3'xc

eh/4

BX,BX′ αe/ l0
εe
sp−3'xc

eh/4
βe/ l0

εe
sp−3'xc

eh/4
αh/l0

εh
sp−3'xc

eh/4

2βh/l30
εh
sp−3'xc

eh/4
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TABLE III. Explicit expressions for the spin-mixture factors
Pj -SO in Eq. (14) are in terms of SOC constants (αj ,βj ), characteristic
length of wave function extent l0, energy quantization of QD εsp, and
BX-DX spin splitting 'xc

eh.

Pj -SO Pe-R Pe-D Ph-lin Ph-D

3αe/ l0×'xc
eh

2(εe
sp )2

3βe/ l0×'xc
eh

2(εe
sp )2

3αh/l0×'xc
eh

2(εh
sp )2

3βh/l30×'xc
eh

(εh
sp )2

The form factors Pj -SO are yielded by the slight spin admixture
between DX states and BX states and, under the condition of
weak SOC, are derived as

Pe-R ≈
∣∣CBX′

e-R − CDX
e-R

∣∣, (15)

Pe-D ≈
∣∣CBX′

e-D − CDX
e-D

∣∣, (16)

Ph-lin ≈
∣∣CBX

h-lin − CDX
h-lin

∣∣, (17)

Ph-D ≈
∣∣CBX

h-D − CDX
h-D

∣∣. (18)

Note in Eqs. (15)–(18) that it is the asymmetry of the spin
admixture of DX and BX states that makes transitions between
them feasible. Substituting the formulations for C

ξ
j -SO in

Table II into the above equations for Pj -SO, the spin-mixture
factors Pj -SO are expressed as

Pj -SO = 31j -SO'
xc
eh

/
2
(
εj
sp

)2
, (19)

in terms of the characteristic energies of SOCs defined as
1e-R ≡ αe/ l0, 1e-D ≡ βe/ l0, 1h−lin ≡ αh/ l0, and 1h-D ≡
2βh/ l3

0 , energy quantization of QD (εj
sp), and the BX-DX spin

splitting ('xc
eh), as summarized in Table III. The expressions

account for the fact that the probability of the DX-to-BX
spin-state transition directly depends on the relative strength of
the involved SOCs, the BX-DX spin splitting, and the energy
quantization of the QD.

The spin relaxation rate for j -SO coupling can be reformu-
lated as

τ−1
j -SO = 2π

h̄
P 2

j -SO

∑

ν

∣∣M̄j
ν (qν0)

∣∣2
ρν(qν0)Fν(l0,qν0)Nqν0 , (20)

where qν0 = 'xc
eh/(h̄cν) is the magnitude of the wave

vectors, ρν = .
2π2

q2
ν0

h̄cν
∝ 'xc

eh
2 is the density of states of

the resonant phonons involved in the relaxation process

(. denotes the crystal volume), and M̄
j
ν (q) is the

mean q-anisotropic phonon scattering matrix element,
separated from the angular part Iν(θq,φq) in the matrix
element M

j
ν (q) ≡ M̄

j
ν (q)Iν(θq,φq). The function Fν(l0,q) ≡

(1/4π )
∫ 2π

0

∫ π

0

∣∣Iν(θq,φq)
∣∣2 ∣∣〈"p,0|eiq·r|"s,0〉

∣∣2 sin θqdθqdφq

considers the anisotropy of phonon coupling and the
localization of the particle wave function in the QD. Table IV
summarizes the expressions for M̄

j
ν , Iν , ρν , and Fν as functions

of the wave vector of resonant phonons qν0 = (qν0,θqν0 ,φqν0 )
and/or the characteristic length of the wave function extent l0
defined by the 2D parabolic model.

Since |M̄T P |2 ∝ 1/q
T P 0 , while |M̄LD(T D)|2 ∝ qLD(T D)0,

transversal piezoelectric phonon interaction is dominant in
transitions between BX and DX states, which in self-
assembled dots are split by only ∼102 µeV.17 Thus, the total
coupling strength of phonons involved in a spin relaxation can
be estimated by |M̄T P |2ρ

T P
∝ q

T P 0 ∝ 'xc
eh, a product of the

dominant transversal piezoelectric phonon coupling and the
phonon density of states.

The numerical results of Fig. 1 show that the Dresselhaus
SOCs are generally dominant over other possible spin-
admixture mechanisms in exciton spin relaxation. Among
all p-linear terms, the e-Dresselhaus SOC leads to faster
relaxation rates than other Rashba terms since βe 3 αe,αh

(see Table V). Yet, the cubic h-Dresselhaus SOC plays the
main role because of the heavier mass of the hole and the
strong confinement of the dot, as shown by the analysis
below.

Taking the fact that l0qT P 0 4 1 and Nqν0 ≈ kBT /'xc
eh

(since kBT 3 'xc
eh), the characteristic spin relaxation rates

of excitons in a QD via the main e- and h-Dresselhaus SOCs
are derived as

τ−1
e ≈ Kβ2

e m
4
e

(
'xc

eh

)4
l8
0T , (21)

τ−1
h ≈ K(2βh)2m4

h

(
'xc

eh

)4
l4
0T , (22)

respectively, where K ≡ 48πm4
0e

2h2
14kB

35h̄9ε2dc2
T P

is a constant. The domi-
nant role of h-D SOC in the exciton spin relaxation is identified
by the high ratio of τe-D to τh-D ,

τe-D

τh-D
=

(
2βh/ l3

0

βe/ l0

)2

× mh

me

3 1, (23)

TABLE IV. The expressions for the functions Iν , M̄j
ν , ρν , and F in terms of phonon parameters for InGaAs, the wave vector of phonon

qν = (qν,θqν ,φqν ) represented in the spherical coordinate, and the characteristic length of wave function extent l0 defined within the 2D parabolic
model. The symbols and values of the phonon parameters for InGaAs appearing in this table are summarized in Table V.

ν = LD ν = T D ν = LP ν = T P

|M̄j
ν (qν)|2 h̄D2

j,LD

2dc
LD

.
qν

h̄D2
j,T D

15dc
T D

.
qν

96π2h̄e2h2
14

35ε2dc
LP

.
1
qν

128π2h̄e2h2
14

35ε2dc
T P

.
1
qν

|Iν(θqν ,φqν )|2 1 15
4 sin2 2θqν

105
4

(
sin2 θqν cos θqν sin 2φqν

)2
35
16

(
sin4 θqν sin2 2φqν + sin2 2θqν

)

− 315
16

(
sin2 θqν cos θqν sin 2φqν

)2

ρν(qν) .
8π3

4πq2
ν

h̄cν

.
8π3

4πq2
ν

h̄cν

.
8π3

4πq2
ν

h̄cν

.
8π3

4πq2
ν

h̄cν

Fν(l0,qν) 1
6

(
2
5 + 1

l20q2
ν

)−1
1
7

(
1
3 + 1

l20q2
ν

)−1
1
6

(
4
11 + 1

l20q2
ν

)−1
1
6

(
13
33 + 1

l20q2
ν

)−1
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which is explicitly shown to be much greater than 1 for
InAs self-assembled QDs with typical l0 < 10 nm. The above
equations account for the faster exciton spin relaxation rate via
h-SOC than via e-SOC due to the heavier mass of the hole,
which results in the hole having a weaker quantization and a
higher value of spin-mixture factor P , and a strong quantum
confinement of the dot (small l0). For very large QDs, however,
the l0 dependence indicates that e-SOC will eventually become
dominant.15

Figure 5 (solid lines) shows the dominant form factors P 2
h-D ,

|M̄T P |2ρT P , FT P , and NqT P 0 as functions of l0. It is clearly seen
that, with reducing dot sizes, the three former functions make
increasing contributions to the total spin relaxation rate. This
is because the increased 'xc

eh and qν0 in small dots increase
the spin admixture between the DX states and the BX ones,
the number of involved phonons, and the strength of effective
phonon coupling.

C. Power-law dependencies

If 'xc
eh is treated as a constant, Eqs. (21) and (22) predict

decreased relaxation rates by reducing size, which is indeed
the behavior of independent electrons and holes.2 Taking
the size dependence of spin splitting ('xc

eh ∝ l−2
0 ) into

account, however, the power laws Eqs. (21) and (22) are
reformulated as

τ−1
e ∝ β2

e × m4
e × T , (24)

τ−1
h ∝ β2

h × m4
h × l−4

0 × T . (25)
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FIG. 5. (Color online) Calculated (a) spin-mixture function P ,
(b) product of mean phonon coupling and density of states of
involved phonons |M̄|2ρ, (c) correction factor F , and (d) phonon
population Nq

T P 0
as functions of l0 for the dominant h-D SOC and

transversal piezoelectric phonon (TP) couplings. The product of the
four quantities determine the main exciton spin relaxation rates of
QDs as shown by Eq. (20). The results calculated with fixed'xc

eh = 0.4
meV are indicated by dashed lines for comparison.

These power laws account for the features of roughly constant
τ−1
e-R/D and enhanced τ−1

h-D by the reduced size of QDs observed
in Fig. 1. To highlight the significance of the size dependence
of the e-h exchange splitting, Figs. 1 and 5 also show the total
spin relaxation rate calculated with a fixed 'xc

eh = 0.4 meV

TABLE V. Summary of the parameters used in the analysis and numerical calculations for InGaAs quantum dots throughout this work. In
some cases (marked with a superscript ∗) for which only the parameters for binary compounds (InAs or GaAs) are available, the parameters
for InGaAs are determined by taking interpolated values.

Parameter Symbol Value Refs.

Electron effective mass me 0.05 m0
21*

Hole effective mass mh 0.2 m0
19*

Thickness of QD dz 3 nm
Bulk exciton Bohr radius a∗

B 25 nm 22*
Bulk e-h exchange energy 'xc

eh,bulk 4.3 µeV 9

e-Rashba coupling constant αe 0.1 eV·Å 23

e-Dresselhaus coupling constant βe 0.65 eV·Å
h-linear coupling constant αh 11 meV · Å 12*
h-Dresselhaus coupling constant βh 190 eV · Å3 15

Longitudinal sound velocity of acoustic phonon c
LD/LP

4720 m/s 17

Transversal sound velocity of acoustic phonon c
T D/T P

3340 m/s 17

Density of material d 5310 kg/m3 17

Hydrostatic deformation potential constant for electron (ac) De,LD −7.17 eV 21

Hydrostatic deformation potential constant for hole (av + b/2) Dh,LD −2.16 eV 21

Uniaxial deformation potential constant for hole (−3b/2) Dh,T D 3 eV 21

Piezoelectric constant h14 1.41 × 109 V/m 17

Static dielectric constant ε 12.9 17

Dresselhaus constant γD 100 eV · Å3 15*
Split-off gap energy/(band gap energy + split-off gap energy) η 0.35 15*
Heavy-hole and light-hole splitting 'lh

hh 0.15 eV 15*
Luttinger parameter γ2 4.2 21

Conduction band offset Vco 0.3 eV 21*
Valence band offset Vvo 0.2 eV 21*
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(dashed lines). The obtained behavior is drastically different
from that with size-dependent 'xc

eh.

V. SUMMARY

In conclusion, we have calculated the relaxation rates
between DX and BX states in InGaAs QDs for a wide number
of spin-flip mechanisms and shown that hole-Dresselhaus SOC
assisted by single-phonon processes is the dominant channel.
The e-h exchange splitting acts as an internal magnetic field
enhancing SOC mechanisms. Since the splitting grows with
the confinement, the smaller the dot the faster the exciton
spin relaxation. This is contrary to the well-known behavior
of individual electrons or holes, for which relaxation is
suppressed by the confinement.
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APPENDIX: PARAMETERS

Table V summarizes the symbols and values of the
parameters used in the analysis and the numerical calculations
throughout this work. The determination of the Dresselhaus
constant βe follows the formalism βe = γD〈p2

z 〉, where the
bulk Dresselhaus SO constant γD = 100 eV·Å3 is taken for
InGaAs and the term 〈p2

z 〉 is evaluated by solving a one-
dimesional Schrödinger equation for a square well in the
z direction using a finite-difference method.20 The values of
the conduction (valence) band offset Vco (Vvo) for the vertical
square well is given in Table V. The parameterβh is determined
by the evaluation of βh = 3γDγ2〈p2

z 〉/2m0η'
lh
hh, with γ2 as

the Luttinger parameter, m0 as the free electron mass, 'lh
hh

as the energy splitting between heavy holes and light holes,
and the factor defined as η = 'so/(Eg + 'so), where 'so is
the split-off gap energy and Eg is the band gap energy for
InGaAs (see Table V).15
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