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Abstract
Nowadays, despite the large volume of worldwide academic research on var-

ious aspects of metal cutting the control of workpiece precision still relies on
machine-tool operator’s experience and trial and error runs. In order to increase
the efficiency of machining systems, many empirical models based on Artifi-
cial Intelligent (AI) approaches have been proposed in the past, where important
process improvements were reported. This paper overviews the AI approaches
applied in machining operations to predict part accuracy in terms of dimensional
deviations and surface roughness. Successful techniques applied in this field such
as Artificial Neural Networks, Fuzzy Logic, Adaptive-Network-based Fuzzy In-
ference Systems and Bayesian Networks are briefly reviewed and compared to
facilitate its use. For each AI approach, the most relevant research works are de-
scribed and based on those works some guidelines are proposed for its implemen-
tation. In addition, advantages and drawbacks of each approach are summarised
and a generic guideline for AI approaches selection is proposed.
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1 Introduction

The control of all aspects of product quality is the ultimate technical objective of man-
ufacturing industry. In machining operations, this mainly implies workpiece precision.
Nowadays, despite the large volume of worldwide academic research on various aspects of
metal cutting the control of workpiece precision in industry still relies on the machine-tool
operator’s experience and trial and error runs (van Luttervelt and Peng, 1999). The diffi-
culties in realising true predictive models to estimate part accuracy in machining arise from
the extreme physical phenomena inherent in the process. Machining generates a highly
inhomogeneous plastic flow where local stresses generate high rates of plastic deforma-
tion that give rise to inhomogeneous thermal fields, high temperatures and pressures. This
type of complex plastic flow is difficult to predict even with sophisticated numerical soft-
ware (Ivester et al., 2000). These difficulties have forced model development to rely on
various levels of empirical input data taken from machining tests in order to model process
variables of industrial interest. Recently, the application of mathematical models based
on Artificial Intelligence (AI) to learn/acquire the relationships between cutting parameters
(e.g. cutting speed, feed rate, depth of cut, lubrication, etc.) and process variables (e.g.
cutting force, acoustic emission, sound, vibration, spindle power, cutting temperature, etc.)
have been successfully applied and it is expected that their potential use could solve many
of the problems encountered in modelling with conventional techniques. Interestingly, in
1998 a CIRP keynote (van Luttervelt et al., 1998) about modelling of machining operations
stated the importance of new modelling techniques based on AI. The keynote remarked that
in future the application of AI in machining would develop machine-tools with the ability
to predict the job quality and take appropriate corrective actions based on sensory feedback.
However, present technology is still far away from that goal and the development of a re-
liable prediction strategy for predicting part accuracy is a challenge to be met on the way
of developing an artificially intelligent and unmanned machine-tool (Risbood, Dixit and
Sahasrabudhe, 2003).

Surprisingly, in spite of the promising field of AI applied in machining, there is no re-
view on AI applied to part accuracy prediction, and only Benardos and Vosniakos’s (2003)
and Lu’s (2008) research works scarcely deal with this topic. In order to overcome this lim-
itation, this paper reviews the AI approaches applied in machining operations to predict part
accuracy in terms of dimensional deviations and surface roughness. Successful techniques
applied in this field such as Artificial Neural Networks, Fuzzy Logic, Adaptive-Network-
based Fuzzy Inference Systems and Bayesian Networks are briefly reviewed and compared
to facilitate its use. For each AI approach, the most relevant research works are described
and based on those works some guidelines are proposed for its implementation. In addition,
advantages and drawbacks of each approach are summarised and a generic guideline for AI
approaches selection is proposed.

2 Part accuracy in machining

2.1 Macro-geometrical part accuracy: Geometrical/Dimensional errors

Many sources of geometrical/dimensional errors affect the final part accuracy in ma-
chining. These errors can be classified into two categories namely quasi-static errors and
dynamic errors (Ramesh, Mannan and Poo, 2000). Quasi-static errors are those between
the tool and the workpiece that are slowly varying with time and related to the structure
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of the machine tool itself. These sources can be summed up about 70 percent of the total
error of the machine-tool and they include the geometric/kinematic errors, thermal errors,
cutting-force-inducederrors, tool-wear-induced errors, fixturing errors, etc. (Ramesh, Man-
nan and Poo, 2000). On the other hand, dynamic errors are fast-changing errors caused by
sources such as spindle error motion, vibrations of the machine structure and controller er-
rors which are more dependent on the particular operating conditions of the machine. Fig.
1 shows the usual quasi-static and dynamic error sources in machining.

In order to assure minimal geometrical/dimensional deviations, these factors should be
monitored to quantify the final deviation from the nominal part values. In this field most
of the works conducted have been focused on analytical and mechanistic approaches (e.g.
Chen (2000); Raghu and Melkote (2005); de Lacalle et al. (2004)) and a lower number
of works have been carried out using empirical approaches based on AI techniques (e.g.
Ouafi, Guillot and Bedrouni (2000); Risbood, Dixit and Sahasrabudhe (2003); Warnecke
and Kluge (1998)).

Figure 1 Error sources affecting macro-geometrical part accuracy. Quasi-static errors can be
summed up about 70 percent of the total volumetric machine error.

2.2 Micro-geometrical part accuracy: Surface roughness

According to international standards (DIN4760, 1982), surface roughness refers to de-
viation from the nominal surface of the third up to sixth order. First- and second-order
deviations refer to form (i.e. flatness, circularity, etc.) and to waviness respectively, and are
due to machine-tool errors, deformation of the workpiece, vibration and workpiecematerial
inhomogeneities. Third- and fourth-order deviations refer to periodic grooves, cracks and
dilapidations, which are connected to the shape and condition of the cutting edges, chip
formation and process kinematics. Fifth- and sixth-order deviations refer to workpiece ma-
terial structure, which is connected to physical-chemical mechanisms acting on a grain and
lattice scale (slip, diffusion, oxidation, residual stress, etc.).

The importance of surface roughness in machining relies on its great influence on the
tribological properties, fatigue strength, corrosion resistance and aesthetic appeal of the
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product (Risbood, Dixit and Sahasrabudhe, 2003). In spite of the great efforts to predict
surface roughness, the complex mechanism behind the formation of surface roughness -
more than 20 factors affects surface roughness generation, Fig. 2- makes unreliable to
evaluate it through any analytical formulae. In order to overcome this limitation, many
researches have developed predictive and empirical models based on sensor systems and
AI approaches (e.g. Risbood, Dixit and Sahasrabudhe (2003); Abburi and Dixit (2006))
instead of analytical or mechanistic models (e.g. Grzesik (1996); Stephenson and Agapiou
(1997)).

Figure 2 Factors affecting surface roughness generation -adapted from Benardos and Vosniakos’s
(2003) research work-.

3 AI approaches for part accuracy prediction

Many different AI approaches have been successfully applied for part accuracy pre-
diction in the past. Among them, four AI approaches represent more than the 90% of the
research works reported in the literature (see Fig. 3). These approaches are Artificial Neu-
ral Networks, Fuzzy Logic, Neuro-Fuzzy systems, and Bayesian networks, and they will
be briefly reviewed in the next subsections, reporting the recent research works in this field.
Special interest is paid on Artificial Neural Networks, where the Multi-Layer Perceptron
Neural Network (MLP NN) has been applied in more than half of the references related to
part accuracy prediction. Recently, other AI techniques are gaining popularity such as evo-
lutionary programming methods (Colak, Kurbanoglu and Kayacan, 2007) and Polynomial
Networks (Chang et al., 2006) but their analysis are out of the scope of this paper.

The literature review distinguishes the AI application according to micro- and macro-
geometrical predictions. Micro-geometrical estimation should deal with an important stochas-
tic behaviour and non-linear relationships between many different cutting parameters and
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Figure 3 Frequency of usage of Artificial Intelligence approaches in part accuracy prediction.
References from ISI Web of Knowledge (2003-2008)

process variables, specially in milling operations, which means that many different AI tech-
niques could be properly applied. However, macro-geometrical estimations tend to be more
heuristic and they are mostly restricted to the application of ANN approaches. For these es-
timations, knowledge extraction methods are less important since the main goal is to adjust
non-linear functions according to clearly defined variables such as temperatures (thermal
expansion) or forces (deflections).

3.1 ANN approach

3.1.1 Introduction

An Artificial Neural Network (ANN) is essentially a mathematical model that mimics
the human reasoning and neurobiology. This powerful modelling technique is called as
an ”universal function approximator” due to its capacity to adjust any function. A neural
network has a parallel-distributed architecture with a large number of neurons and connec-
tions which can learn non-linear relationships between variables from experimental data.
ANNs are mostly used for pattern recognition, classification and systems modelling with
applications ranging from simple signal processing to medical diagnosis (Kasabov, 1996).

The classification of the ANN architectures are defined by the arrangement of the inter-
neuron connections and the nature of the connections. Basically, feed–forward and feed–
back networks can be distinguished. Feed–forward networks are static in the sense that they
produce only one set of output values rather than a sequence of values from a given input.
Popular feed–forward neural networks are Multi-Layer Perceptron (MLP) and Radial Basis
Function nets (RBF). Unlike feed–forward networks, recurrent or feed-back networks are
dynamic systems. When a new input pattern is presented, the neuron outputs are computed.
Because of the feed-back paths, the inputs to each neuron are then modified, which leads the
network to enter a new state (Jain, Mao and Mohiuddin, 1996). Popular recurrent networks
are Kohonen’s Self-Organising Maps (SOM), Hopfield networks and ART models.

An ANN model learns/acquires the relationship between variables through a learning
process which can be viewed as a problem of updating network architecture and connection
weights so that a network can efficiently perform a specific task. The network usually
must learn the connection weights from available training patterns. Three main learning
paradigms are distinguished: supervised, where training examples comprise input vectors x
and the desired output vectors y; unsupervised, where only input vectors x are supplied and
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the neural network learns some internal features from the whole dataset; and hybrid, where
it is combined the supervised and unsupervised learning.

An example of a generic MLP NN is shown in Fig. 4 together with two ANN mod-
els developed by Raksiri and Parnichkun (2004) and Benardos and Vosniakos (2002) for
dimensional deviation and surface roughness prediction respectively.



   







  










 






















































 












 

 









  





















 























Figure 4 Generic scheme of a multi-layer perceptron artificial neural network with n inputs, j
hidden layers and m outputs. Examples reported by Raksiri et al. (2004) and Benardos et al. (2002)
for dimensional deviation and surface roughness prediction respectively.

3.1.2 ANN Models applied to part accuracy prediction

•Macro-geometrical part accuracy

Macro-geometrical errors in machining have been commonly estimated in the past by
ANN networks due to their ability to capture nonlinear relationship between experimental
variables.

In turning operations, special attention was paid to cutting-force induced deflections.
Azouzi and Guillot (1997) presented a sensor fusion system based on a MLP NN to pre-
dict dimensional deviations in turning operations by monitoring vibrations, acoustic emis-
sion, and cutting forces. The ANN model prediction was assessed with an error varying
from 2 and 20 µm under different process conditions. The ANN model used only the
cutting forces measurements as input, discarding the acoustic emission and vibration mea-
surements.Warnecke and Kluge (1998) included the cutting-tool wear as additional input to
keep under control the dimensional tolerances in a turning process. The research work com-
bined an analytical model to predict the deformation of the workpiece and machine, and an
empirical model based on ANN to predict the flank wear and the dimensional deviations
due to tool wear. The ANNmodel for cutting-tool wear prediction used as inputs the cutting
parameters and the acoustic emission measurements from the cutting-tool. The width of the
wear mark was predicted with a precision of ±20 µm and consequently, the displacement
of the cutting edge caused by tool wear and dimensional deviations was forecasted with a
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precision of ±2 µm. Ouafi, Guillot and Bedrouni (2000) expanded the previous works by
including the three main sources of dimensional deviations in turning operations namely
geometric, thermal and dynamic errors. In order to monitor and estimate these errors, they
presented a multilayer feed–forward neural network which fused sensor information from
a dynamometer and several thermistors. The neurocompensation approach improved the
machine accuracy by reducing the maximum error without compensation from 70 µm to
less than 4 µm.

In milling operations the dimensional deviations tend to be greater than turning oper-
ations due to the higher complexity of cutting tool movements. Raksiri and Parnichkun
(2004) presented an off-line error compensation model considering geometric and cutting
force induced errors in a 3-axis CNC milling machine for slot cutting operations with flat
end mills. In this work, three positional errors, 9 angular errors, 6 straightness errors and 3
squareness errors were measured by laser interferometer in order to estimate the geometric
machine-tool error. Function approximation by back-propagation neural network was used
to approximate the geometric error model, where the positions x, y and z of the measuring
point were the input of the network and the geometric error in x, y and z axis were the
output of the network. The investigation of cutting force induced error was carried out in
x forward and backward directions and y forward and backward directions using a cutting
force sensor and a camera. The experimental results showed that the machine accuracy was
improved significantly, decreasing the machining errors from 200-300 µm to less than 40
µm.

The limitations of traditional feed-forward NNs such as their fixed architecture and the
difficulties of these feed–forward models to deal with time have led to the application of
other connectionist models (Bernauer and Demmou, 1993). Mize and Ziegert (2000) de-
veloped a neural network ART to predict and compensate the tool point errors of a 3-axis
machining centre using discrete temperature readings from the machine’s structure as in-
puts. A combination of kinematic error modelling, curve fitting, and neural networks were
used to maintain the machine’s three-dimensional accuracy within 67.4 µm, regardless of
the thermal state. Similarly, a dynamic feed-forward NN was developed by Chang et al.
(2006) to predict thermal deformation in machine tools. The dynamic ANNmodel showed
a more accurate dimensional deviation prediction than a conventional neural network, de-
creasing the maximum prediction error from 5 µm to 3 µm.

•Micro-geometrical part accuracy
Surface roughness has been commonly predicted by empirical models using AI techniques,
specially ANNs. Low cost and non-intrusive sensors such as accelerometers and acoustic
emission sensors have been intensively studied in order to let surface roughness prediction
systems to be implemented in industry. Lee and Chen (2003) developed an on-line surface
recognition system based on neural networks and vibration measurements in a turning op-
eration. The MLP neural network with two hidden layers predicted the surface roughness
with high accuracy (90%). Similarly, Kohli and Dixit (2005) developed MLP NN models
for surface roughness prediction in dry and wet turning operations for high speed steel tools
and carbide tools using as feed-back the radial vibration of the tool holder. The networks
were trained by the back-propagation algorithm and the learning rate, the number of neu-
rons in the hidden layer, and the training and testing dataset size were found automatically
in an adaptive manner. In their investigation, special attention was paid to the data filtration
scheme required to build ANN models reliable and accurate. Azouzi and Guillot (1997)
presented a sensor fusion system based on a MLP NN where vibrations, acoustic emission,
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forces and deflexion measurements were analysed and included in the model to predict
both surface roughness and dimensional deviations. The ANN model for surface rough-
ness prediction was assessed with an error varying from 2 to 25% under different process
conditions.

Pal and Chakraborty (2005) presented a surface roughness model based on ANN for a
milling operation where cutting force measurements were included. The inputs of the neu-
ral network model were the cutting speed, feed rate and depth of cut as process parametric
conditions, and the feed and cutting forces as the measured parameters. In the network, the
number of hidden layer, number of nodes in the hidden layer, learning rate, and momentum
coefficient were decided by trial and error. The training procedure was conducted using 20
data sets from 27 combinations of experiments on mild steel work-pieces using high speed
steels as cutting tools. However, the work seems not to clarify the 20 data sets composition
applied. In fact, the optimal neural network structure selected was a 5-5-1 network which
requires at least 30 free parameters to be learnt (if biases are not considered), so training
data should be composed of more than 30 data sets in order to avoid mathematical indeter-
mination in the neural network training process. In addition, different initialisation weights
during training were not provided, which could report if part of the parameters learnt de-
pend on the initialisation values due to the lack of data training samples. The final surface
roughness model prediction was within an accuracy of ±5%.

Minimal experimental data for modelling purposes was considered by Benardos and
Vosniakos (2002) as an important issue to facilitate the implementation of ANN models in
industry. They proposed the application of Taguchi design of experiments, and validated an
ANN model in face milling operations with aluminium alloys to predict surface roughness.
The process factors considered as ANN inputs were: feed rate per tooth, depth of cut,
engagement of the cutting tool, use of cutting fluid and the component of the cutting force
along the direction of the feed. The results of this study (mean squared error less than
1.86%) confirmed the high accuracy of ANNs for modelling machining operations with
considerably few experimental data. Benardos also presented a trial an error procedure
to obtain an optimal number of layers and neurons avoiding overfitting through the early
stopping methodology.

One of the most important limitations of ANN models is the selection of the proper
ANN structure which leads to the best ANN model. Most of the investigations presented
in the literature applied a trial and error procedure as it is presented in Benardos and Vosni-
akos’s (2002) research work. However, other researchers propose the development of MLP
NN models using Bayesian regularisation with Levenberg-Marquardt training algorithm to
partly overcome this problem. In Ozel and Karpat’s (2005) research work, the Bayesian
regularisation method was applied to determine the optimum number of neurons in the hid-
den layer of ANN models in order to predict the surface roughness and tool wear in hard
turning operations using Cubic Boron Nitride (CBN) tools.

A part fromMLP NN, other types of ANNmodels have been applied for surface rough-
ness prediction with less efforts. For example, Sonar, Dixit and Ojha (2006) developed a
RBF NN for predicting the surface roughness in a turning process, and they compared its
performance with a MLP NN. Although the RBF network was simpler and required a less
computational time, its performance was slightly inferior than the MLP NN.

Another important limitation of ANN models which prevents their application in in-
dustry is related to their performance when the machining process varies. Risbood, Dixit
and Sahasrabudhe (2003) trained different MLP network topologies in a turning process
for both surface roughness and dimension deviation prediction. He incorporated into the
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network cutting forces measurements and radial vibrations although the cutting forces were
finally discarded due to their insignificance in the prediction accuracy. The networks devel-
oped were trained by back–propagation algorithm, with sigmoid and pure linear functions
as transfer and output functions respectively. The best network after testing different neu-
ron combinations was a MLP with three neurons in a hidden layer, with a maximum error
in the surface roughness prediction of 18.21%. A similar ANN structure was developed
for dimensional deviation prediction, and the model was validated with a prediction error
less than 40 µm. Interestingly, this work reported that a change on the cutting-tool geom-
etry required few additional experiments to adapt the ANN model to the new machining
process. In addition, other changes were studied such as a change from dry to wet turn-
ing and a change from HSS to carbide tools. For these cases, the ANN model had to be
training again in order to be able to predict the surface roughness of these new machining
processes, showing the limitations of these models for industrial applications. Recently,
Abellan-Nebot et al. (2008) studied how the prediction error of a surface roughness ANN
model increases when cutting-tool changes occur. It was tested that for slight cutting-tool
changes the ANN model was able to be re-trained by few experimental data in order to in-
crease the prediction reliability. However, severe cutting-tool changes where other factors
such as run-out effects may show up require to develop an ANN model from the scratch
to keep the prediction accuracy with a reasonable error. Zhong, Khoo and Han (2006) also
tested how the surface roughness prediction error by an ANN model varies when the ma-
chining operation is conducted in different machine-tools. The experimentation showed an
increase of the average prediction error from 15.2% to 24.4% when the model was applied
in a lathe different from the one where the model was trained.

Finally, other interesting research works compare the effectiveness of ANN models for
part accuracy prediction versus other modelling techniques. Tsai, Chen and Lou (1999)
developed an in-process based surface recognition system to predict the surface roughness
of machined parts in the end milling process. The parameters included in the prediction
model were the spindle speed, feed rate, depth of cut and the vibration average per revo-
lution measured by an accelerometer. Different models were developed using both MLP
NN and statistical multiple regressions for comparison purposes. The experimental results
concluded that the ANNmodels behaved better under all tested situations. Other interesting
comparisons were conducted by Li, Guan and Li (2004), where the dimensional deviation
in end milling operations was predicted by an RBF NN, an hybrid RBF NN and an AN-
FIS model. The results reported a prediction error of 15%, 25% and 5% when using the
RBF, the hybrid RBF and the ANFIS model respectively. ANN models were also com-
pared with Bayesian networks and statistical multiple regressions by Abellan-Nebot et al.
(2006b) and Correa, Bielza and Pamies-Teixeira (2008b). The conclusions of these works
seem contradictory since Abellan-Nebot et al. (2006b) reported a higher accuracy of ANN
models versus BN since they used both methodologies as function approximators. How-
ever, Correa, Bielza and Pamies-Teixeira (2008b) showed that BNs achieve the best results
from the point of view of classifier goodness applied to the problem of quality prediction in
high-speed milling processes.

3.1.3 Guidelines for ANN Modelling

According to previous research studies on ANN models for part accuracy prediction,
some important guidelines can be extracted when applying neural networks:

• ANN Type:
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Surface roughness and dimensional deviation prediction are commonly considered
as a function approximation problem. This problem is successfully dealt with feed–
forward neural networks such as MLP and RBF, specially by the former which is the
most common ANN type applied for part accuracy prediction (see Fig. 3). There are
special cases where RBF networks could be recommended versus MLP since these
networks present a fast training convergence, better generalisation and no local min-
ima problems (Kasabov, 1996). However, finding the appropriate number of hidden
nodes in RBF networks are specially complex. In addition, too many or too few
hidden nodes will prevent RBF networks from properly approximating the data. The
hidden nodes in RBF tend to have many times more neurons than a comparable feed–
forward network with sigmoid mapping functions in the hidden layer. As a result, the
larger the input space (in terms of number of inputs, and the ranges those inputs vary
over) the more radial basis neurons required. A comparison between MLP NN and
RBF NN applied to surface roughness prediction is shown in Sonar, Dixit and Ojha’s
(2006) research work. In this work, it was observed that the performance of the
RBF NN was slightly inferior compared to MLP NN, although the RBF NN training
procedure was simpler and required less computational time.

• ANN Structure:

There is no optimal ANN structure of MLP networks for surface roughness and/or
dimensional deviation prediction and the optimal structure is considered as a trial
and error problem. In spite of the considerable research done to investigate whether
additional hidden layers increase the learning capacity or speed of the network, there
is no convincing theoretical argument in favour of additional hidden layers, and no
example has been given of a mapping problem that can be solved with multiple hid-
den layers but not with just a single hidden layer (Kasabov, 1996). Furthermore,
White’s theorem states that one layer with non-linear functional relationship is suffi-
cient to map any non-linear functional relationship with a reasonable level of accu-
racy (Eberhart, Simpson and Dobbins, 1996).

• Number of hidden neurons in hidden layer:

The number of neurons in the hidden layer is the most critical parameter affecting
the accuracy of the network. Too few neurons can lead to underfitting whereas too
many neurons can contribute to overfitting, in which all training points are well fitted
but the fitting curve oscillates wildly between these points. So there exists an opti-
mum number of neurons in the hidden layer, which has less training error, as well
as acceptable value of testing error. Ozel and Karpat (2005) applied a systematical
approach for choosing the number of hidden neurons by using the output parame-
ters of Bayesian regularisation algorithm. By applying this algorithm it is assumed
that the resultant neural network has enough number of parameters to represent the
training set. On the other hand, ANN theory also recommends to remove hidden
units whose weights change very little from their starting values. These nodes hardly
participate in the learning process, and they can be removed to simplify the network
(Freeman and Skapura, 1991). In spite of these strategies for choosing the number of
hidden neurons, the number of neurons of ANNmodels related to part accuracy have
been commonly obtained by trial and error procedures using ANN structure combi-
nations of one, two and three hidden layers (e.g. Tsai, Chen and Lou (1999); Pal and
Chakraborty (2005)).
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• Mapping/training functions:
Traditionally, two mapping functions have been widely applied in MLP with back-
propagation: logsig and tansig. Different authors concluded that both logsig and
tansig functions produce almost the same performance and it is not a critical parame-
ter for modelling part accuracy (Kohli and Dixit, 2005; Zhong, Khoo and Han, 2006).
However, other authors consider the mapping function selection an important factor
for ANN models. For example, Oktem, Erzurumlu and Erzincanli (2006) tested in
their work that tangent hyperbolic function leads to a minimum training error for the
prediction of surface roughness.

• Training parameters:

– Training Algorithm:
ANN networks for part accuracy are reduced in size due to the limitations
on experimental data. Levenberg–Marquardt training algorithm (a variation
of the classic back–propagation algorithm) is recommended for those appli-
cations where small and medium size networks are applied instead of gradient
descent algorithm or momentum variation. Through this training algorithm,
ANN part accuracy models can be trained much faster (Benardos and Vosni-
akos, 2002; Ozel and Karpat, 2005; Demuth, Beale and Hagan, 2008) and their
generalisation capability can be improved applying the Bayesian regularisation
algorithm during training.

– Learning rate:
A smaller value of the learning parameter η will cause slow learning, however
it can locate deep minima. A larger value of η will speed up the convergence
but the network may become unstable (Dixit and Chandra, 2003). A number
of researchers have attempted to change η dynamically by taking the feed-back
of convergence behaviour (Haykins, 1994). However, the implementation of
this makes the code complicated, and in most cases the changing learning rate
dynamically did not have a significant effect on convergence speed (Dixit and
Chandra, 2003). Therefore, η is usually found by hit and trial and the same
value of η is used for all cases.

– Initialisation:
Due to the outcome of the training greatly depends on the initialisation of
the weights, this initialisation should be done randomly. In order to com-
pare different ANN performances, each ANN has to be tested with different
initialisations and an average performance has to be evaluated for compari-
son purposes. The Nguyen-Widrow technique is recommended for weights
initialisations (Benardos and Vosniakos, 2002). In addition, advanced meth-
ods for weights initialisations have been also applied for part accuracy predic-
tion (Jesuthanam, Kumanan and Asokan, 2007).

• Generalisation
Early stopping and Bayesian regularisation can ensure network generalisation when
they are applied properly. With early stopping, the choice of the validation set is very
important as it should be representative of all points in the training set. With Bayesian
regularisation, it is important to train the network until it reaches convergence. The
sum-squared error, the sum-squared weights, and the effective number of parameters
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should reach constant values when the network has converged. Using both early
stopping and Bayesian regularisation, it is recommended to train the network starting
from several different initial conditions in order to verify the network robustness.
For function approximation networks with a small data set, Bayesian regularisation
provides better generalisation performance than early stopping (Demuth, Beale and
Hagan, 2008). In order to improve generalisation, both early stopping and Bayesian
regularisation methods are recommended and both of them are usually applied in
ANNmodels for part accuracy prediction (e.g. Benardos and Vosniakos (2002); Ozel
and Karpat (2005)).

• Using a ANN:
When using the ANN predictions for part accuracy prediction, it is important to take
into account not only the predicted value but also the range within the real value can
lie. A methodology to predict the lower and upper bound of any non-linear function
has been proposed by Ishibuchi and Tanaka (1991), which requires a simple modifi-
cation of the back–propagation algorithm. This methodology was applied by Kohli
and Dixit (2005) and Sonar, Dixit and Ojha (2006) to predict the lower and upper
bound of a surface roughness prediction with MLP NN and RBF nets respectively.

• Data sets: For industrial purposes, experimental sample size is restricted so special
attention must be paid in avoiding noisy data and selecting independent data samples.
To avoid faulty data, proper filtration schemes should be applied (e.g. in Kohli and
Dixit (2005)). When sample size is reduced, three data sets should be defined after
experimental acquisition. It is common to allocate 40 percent of experimental sam-
ples as training data samples, 30 percent as validating data and 30 percent as testing
data. Training data are used to learn the proper neural weights; validation data to
decide when to stop training and assure generalisation capability; and testing data to
measure the expected performance of the network when it is put into service. In ad-
dition, the sample size for training should avoid mathematical indetermination. For
this purpose, the training sample size should be reasonably higher than the number
of free parameters to be learnt in the network structure. The number of ANN free
parameters depends on the complexity of the network and it is calculated as shown
in the equation below:

Paramfree =

= (in + 1) × nhd1
+ (out) × (nhdN + 1) +

N∑

i=2

((nhdi−1
+ 1) × nhdi)(1)

where in is the number of inputs; nhdi is the number of neurons at the ith layer; out
is the number of outputs; and N is the number of layers in the neural network.

3.2 Fuzzy Logic

3.2.1 Introduction

One way to represent inexact data and knowledge, closer to human like thinking, is to
use fuzzy rules instead of exact rules when representing knowledge. Fuzzy systems are rule-
based expert systems based on fuzzy rules and fuzzy inference. Fuzzy rules represent in a
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straightforwardway ”commonsense” knowledge and skills, or knowledge that is subjective,
ambiguous, vague, or contradictory (Jain and Martin, 1998). A fuzzy inference system is
composed of five functional blocks: a fuzzification interface which transforms the crisp
inputs into fuzzy inputs; a rule base containing a number of fuzzy if-then rules; a database
which defines the membership functions of the fuzzy sets used in the fuzzy rules; a decision-
making unit which performs the inference; and a defuzzification interface which transform
the fuzzy output into a crisp output. Usually, the rule base and the database blocks are
jointly referred to as the knowledge base.

Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set is a set without a crisp,
clearly defined boundary. It can contain elements with only a partial degree of membership.
A fuzzy set is an extension of a classical set. If X is the universe of discourse and its
elements are denoted by x, then a fuzzy set A in X is defined as a set of ordered pairs
A = {x, µA(x) | x ∈ X}, where µA(x) is called the membership function of x in A and
means the degree that x belongs to A. A membership function (MF) is a curve that defines
how each point in the input space (universe of discourse) is mapped to a membership value
(or degree of membership) between 0 and 1. Some common membership functions are
gaussian distribution functions, sigmoid curve and quadratic and cubic polynomial curves.

Fuzzy if-then rules or fuzzy conditional statements are expressions of the form ”IF x
is A THEN y is B”, where A and B are linguistic values defined by fuzzy sets on the
ranges (universes of discourse) X and Y , respectively. The if-part of the rule ”x is A”
is called the antecedent or premise, while the then-part of the rule ”y is B” is called the
consequent or conclusion. Interpreting an if-then rule involves distinct parts: first evaluating
the antecedent and second applying that result to the consequent which specifies a fuzzy set
be assigned to the output.

An example of fuzzy systems to predict surface roughness is shown in Fig. 5. This
knowledge-based system was developed by Abburi and Dixit (2006) and it considers the
cutting speed, feed rate, vibrations and depth of cut as the input variables. The fuzzy
if-then rules shown were extracted from experimental data and they were checked by an
expert machinist. As it is shown, to predict the surface roughness the inputs are firstly
converted into fuzzy inputs and then, according to the fuzzy rules, the fuzzy inference is
carried out. The final defuzzyfication method converts the surface roughness obtained by
the fuzzy reasoning into a crisp value.









  

















































































 



 



 







  












Figure 5 Fuzzy System developed by Abburi and Dixit (2006) applied to surface roughness pre-
diction. The main parts of a fuzzy system are presented: Fuzzyfication, Knowledge Base (fuzzy
reasoning), Defuzzyfication
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3.2.2 Fuzzy Logic Models applied to part accuracy prediction

Lou and Chen (1999) developed a surface roughness recognition system to predict sur-
face roughness in-process. Their system was applied in end-milling operations and the
input variables included were the spindle speed, feed rate, depth of cut and vibration mea-
surements. Triangular membership functions were applied and a total of 79 fuzzy rules
were extracted directly from experimental data using a product space clustering. The sys-
tem was validated machining 6061 aluminium blocks with high speed steel tools and the
fuzzy model was capable of predicting the surface roughness with more than 96% accuracy.

Chen and Savage (2001) expanded Lou’s work by adding a new set of parameters in-
cluding tool diameter and workpiece material. They also added a methodology to resolve
conflicting rules after extracting them from experimental data. The system demonstrated a
90% accuracy of prediction average testing various tool diameter, tool material, and work-
piece material combinations. In spite of the accuracy decrease, the Chen and Savage’s
(2001) research work shows the reliability of fuzzy models for surface roughness predic-
tion in wide domains.

Iqbal et al. (2007) presented a fuzzy expert system for optimising parameters and pre-
dicting performance measures in a hard-milling process. The expert system was based
on two modules, namely optimisation module and prediction module. The optimisation
module provided the optimal selection of milling parameters, while the prediction module
provided the prediction of performance measures such as cutting forces, tool life and sur-
face roughness. After conducting a fractional design of experiments, the experimental data
were converted to useful information using ANOVA and numeric optimisation, and this
information was used to develop the knowledge-base in form of fuzzy if-then rules.

Similar works were developed for turning operations. Abburi and Dixit (2006) applied
a knowledge-based system for the prediction of surface roughness in turning process with
high speed steels and TiN-coated carbide tools, and rolled steel bars containing about 0.35%
carbon. Instead of using the experimental data to extract the fuzzy if-then rules, a neural
network which was previously trained with the experimental data was used to provide the
inputs for the rule generation module. For each input–ouput neural network data set, a
fuzzy rule was generated, where each variable was assigned to a fuzzy set in which it had
the maximum membership grade. Due to a large number of rules prevent the operators
understand the process, the bank of rules generated was reduced to a smaller set of rules
by using Boolean operations. In addition, an expert machinist interacted to eliminate any
incoherent rule. The system was proved to be slightly inferior to a neural network model
trained in a previous research study. Most of the prediction errors in the validation data
set were tested to be within ±20% accuracy. However, the authors remarked the important
benefits of the fuzzy system due to its extrapolation capability and its applicability for
process planning (i.e, capability to select the process parameters in order to assure a desired
surface roughness).

Kirby and Chen (2007) increased the accuracy of a fuzzy system for surface roughness
prediction purposes by including vibrations into the model. They focused their investigation
on turning operations with diamond-shape carbide tool inserts and 6061-T6511 aluminium
alloy workpieces. The surface roughness prediction obtained by this fuzzy model was more
accurate than previous ones, with an average accuracy of 95%.
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3.2.3 Guidelines for Fuzzy logic Modelling

The if-then rules in the fuzzy inference systems are defined by the expert machinist in
order to incorporate expert knowledge into the model. However, sometimes additional rules
have to be incorporated in order to define completely the fuzzy system. For this purpose,
the fuzzy rules can be extracted from experimental data as it is reported in different works
(Abburi and Dixit (2006), Kirby and Chen (2007), Chen and Savage (2001)). The procedure
consists of generating fuzzy rules from given experimental data, assigning the value of each
input as the maximum membership grade. As many rules extracted are contradictory with
others, different strategies to resolve conflicting rules have to be applied, as it is reported in
Kirby and Chen’s (2007) research work. In addition, the extracted rules have to be reviewed
by the expert machinist to discard any incoherent rule and increase the understanding of
the process. The number of rules learnt has to be reasonable, since a high number of rules
difficulties the understanding of the process, which is the main objective of fuzzymodelling.

The number of membership functions to define each input is closed related to the num-
ber of possible rules extracted. In general, a high number of fuzzy sets representing the
input/output variables improves the resolution and the accuracy of the predictions but in-
creases the number of rules and the complexity of the model (Abburi and Dixit, 2006).
Most of the research works related to part accuracy prediction in the literature present a
number of membership functions around 2-7.

There are many different membership functions to define the fuzzy sets, however it
seems that there is no significative performance improvement according to membership
selection. According to the literature review, most of the fuzzy systems reported applied
triangular membership functions for part accuracy prediction (e.g. Abburi and Dixit (2006),
Chen and Savage (2001)).

3.3 Neuro-fuzzy Systems

3.3.1 Introduction

A neuro-fuzzy system is a fuzzy system that uses a learning algorithm derived from neu-
ral network theory to determine its parameters (fuzzy sets and fuzzy rules) by processing
data samples. Therefore, neuro-fuzzy systems are the result of hybridising neural networks
and fuzzy logic. The learning ability of neural networks let adjust the expert knowledge and
generate fuzzy rules and membership functions automatically. A neuro-fuzzy system can
be viewed as a 3-layer feed–forward neural network. The first layer represents input vari-
ables, the hidden layer represents fuzzy rules and the third layer represents output variables.
Fuzzy sets are encoded as fuzzy connection weights. Sometimes a 5-layer architecture is
used, where the fuzzy sets are represented in the units of the second and fourth layer. A
neuro-fuzzy system can be directly created from the scratch or it can be initialised with
prior knowledge in form of fuzzy rules. Therefore, neuro-fuzzy is considered a technique
to derive a fuzzy system from data or to enhance it by learning from examples. The most
common neuro-fuzzy system applied in part accuracy prediction is a neuro-fuzzy system
with a 5-layer architecture namely Adaptive-Network-based Fuzzy Inference System (AN-
FIS).

An example of a neuro-fuzzy system to predict surface roughness is shown in Fig. 6.
This ANFIS model was developed by Abellan-Nebot (2009) and it was applied for cut-
ting parameter optimisation in high quality machining operations. The cutting speed and

Repositori institucional UJI



16 J.V. Abellan-Nebot

the feed rate were considered the inputs of the system, and the initial membership func-
tions were modified after training, extracting the fuzzy rules which explained the surface
roughness generation.

















     






    
    

    


 









Figure 6 ANFIS model developed by Abellan-Nebot (2009) applied to surface roughness pre-
diction and cutting parameters optimisation. The initial membership functions are modified after
training, extracting the fuzzy rules which explain the surface roughness generation.

3.3.2 Neuro-Fuzzy Logic Models applied to part accuracy prediction

The hybridisation of neural networks and fuzzy systems have been recently applied for
surface roughness prediction. Dweiri, Al-Jarrah and Al-Wedyan (2003) developed an AN-
FIS system to find out the effect of machining variables and number of cutting flutes on the
surface roughness of Alumic-79 in order to predict surface roughness and optimise cutting
parameters. The inputs included in the model were spindle speed, feed rate and depth of
cut, and two membership functions were chosen for each input. The surface roughness
prediction was validated with an error of less than 5%. A similar research work was previ-
ously reported by Al-Wedyan, Demirli and Bhat (2001), where special attention was paid to
identify the best n-rule fuzzy models by a parametric search on the experimental data. The
fuzzy model with the least number of rules with an acceptable error was reached with three
membership functions for each input. Although it is not explicitly reported a validation
procedure, it seems that the prediction model showed a similar error to Dweiri, Al-Jarrah
and Al-Wedyan’s (2003) research work. Lo (2003) applied an ANFIS system to surface
roughness prediction in end milling operations paying special attention to the influence of
different membership functions on the correct rate of surface roughness prediction. Both
trapezoidal and triangular membership functions were studied, and the results reported a
slightly higher correct rate of prediction when triangular functions were applied.

Other research works included sensor measurements in the ANFIS surface roughness
model. Ho et al. (2002) developed an ANFIS model to predict surface roughness by
computer vision in turning operations. The proposed ANFIS-based method outperformed
a previous polynomial network-based method presented in Lee and Tarng (2001) in terms
of modelling and prediction accuracy. The computer vision system, comprising a digital
camera connected to a computer and the appropriate light sources, provided surface images
that were analysed to calculate the arithmetic average of gray levels (number of shades of
gray). This information as well as the cutting parameters were given, for a total of four
inputs, to the ANFIS and the roughness value was then obtained. The performance of the
ANFIS model showed a mean error of 4.6%. Yang et al. (2006) proposed an adaptive
surface roughness control system for end-milling operations based on cutting forces. The
system was composed of two subsystems, one for predicting in-process surface roughness
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and another to control the feed rate that is adapted based on the predicted surface roughness.
Fuzzy regions were defined for each parameter: cutting speed, feed rate, resulting force on
the cutting plane, normal force to the cutting plane, surface roughness deviation and feed
rate deviation.

In spite of the ability in extracting knowledge in form of rules from experimental data,
any of the previous cited research works showed or analysed the learnt rules. Recently,
Abellan-Nebot (2009) presented a cutting parameter optimisation procedure based on AN-
FIS models. For the surface roughness ANFIS model developed, the rules learnt during
training were briefly described and analysed according to an expert machinist’s opinion.

3.3.3 Guidelines for neuro-fuzzy modelling

The number of membership functions which define each variable can be defined by the
expert/designer or can be extracted from experimental data. The number of membership
functions per each cutting parameter input is usually chosen according to the experimental
levels of each input. For example if the experimental data have three levels in the feed rate
parameter, the fuzzy feed rate function should be composed of two membership functions
(Dweiri et al., 2003). However, in case the input has a continuous value, it can be a priori
difficult to identify the number of membership functions. In these cases, it is recommended
the use of a subtractive clustering algorithm. This algorithm identify the best n-rule mod-
els with the least square error from the experimental data, so the number of membership
functions to define these rules are explicitly generated. It is important to tune correctly the
clustering parameters to identify the most important rules since a higher number of rules
produces a higher number of membership functions and therefore, a higher number of ex-
perimental data is required for learning and validating the ANFIS model. An example of
the application of this algorithm is shown by Al-Wedyan et al. (2001).

In general, the number of inputs and the number of membership functions per input
have to be restricted to avoid an excessive number of parameters to be learnt. Excessive
parameters require excessive experimental data which is unfeasible in most of industrial
machining processes. The number of parameters to be learnt in an ANFIS model is defined
by the expression:

Paramfree =
N∑

i=1

(MFSi × Parami) + (N + 1) × Nrules(2)

where N is the number of inputs, MFSi is the number of membership functions for the
input i, Parami is the number of parameters which define the membership function i, and
Nrules is the number of the total rules, which is the combination between the number of
inputs and the number of membership functions per input. For example, three inputs and
two membership functions per input generates 23 rules. Therefore, according to Eq. (2)
an ANFIS model with three inputs and two membership functions per input, where each
membership function is defined by two parameters, requires 44 parameters to be learnt.
Obviously, the number of experimental data have to be considerably higher than the number
of parameters to be learnt.

On the other hand, according to the results reported by Lo (2003), the adoption of differ-
ent membership functions (triangular and trapezoidal) have a slight effect in the prediction
model, but it seems not to be a relevant issue. In his experimentation, the ANFIS model
for surface roughness achieved an accuracy of 96% with triangular membership functions
whereas the accuracy was 93.3% with trapezoidal membership functions.
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3.4 Bayesian Networks

3.4.1 Introduction

Process monitoring in machining requires the assimilation of numerous noisy and in-
complete sources of evidence in order to infer the performance variables. Such inferences
will necessarily be imperfect, and it would be valuable if the conclusions could be aug-
mented with some quantifiable measure of its certainty or uncertainty. Unlike the previous
AI techniques which are commonly used as universal function approximators, probabilistic
inferencing techniques are better suited to deal with this kind of problems where uncer-
tainty must be considered. Above all probabilistic inferencing techniques, Bayesian Net-
works (BNs) are probably the most widely applied technique. A BN provides a convenient
formalism for representing conditional probabilistic relationships between attributes of in-
terest, modelling and evaluating uncertainty (Dey and Stori, 2005).

BN are directed acyclic graphs in which each node represents a random variable that
can take continuous or discrete values depending on the network topology. The nodes in the
network are defined as parents and children whereas the arcs in the network signify the exis-
tence of direct causal influences between the linked variables. If there is a causal link from
node A to B, it is said that B is child of A and B is a parent of A. For each variable A with
parents B1,...,Bn is attached a conditional probability table P(A | B1,...,Bn) which define
the strengths of these causal links. The directionality of the arrows is essential for display-
ing causality and non-transitive dependencies. The causal relationships expressed through
the network structure and the conditional probability tables are based on prior knowledge,
experience, or statistically observed correlations learnt from experimental data (Dey and
Stori, 2005). The BN performance is based on propagation probabilities when it is known
a specific variable state, called evidence. Therefore, BN shows the states of each node and
its associated probability according to the evidences in the network.

Two mainly types of reasoning can be conducted by BNs for part accuracy prediction:
predictive reasoning and diagnostic reasoning. The first reasoning method lets estimate the
probability of each part accuracy range given certain manufacturing requirements such as
cutting speed, depth of cut, etc. The second reasoning method lets estimate which are the
probabilities of unobserved variables if the part accuracy is known (Correa et al., 2008a).

For the sake of understandingBNs, two BN examples reported in Correa et al.’s (2008a)
and Abellan-Nebot et al.’s (2006a) research work are shown in Fig. 7. The networks relate
surface roughness ranges with cutting parameters such as feed rate (fz), cutting speed (Vc),
spindle speed (rpm) and sensor measurements such as forces (FT), vibrations and spindle
load. Both networks are used to predict surface roughness given different evidences. The
first figure shows the probability of machining parts within a smooth, fine, semi-fine and
medium surface roughness quality given the feed rate, the spindle speed and the cutting
forces measurement. The BN network predicts a probability of 0.76, 0.01, 0.20 and 0.01 for
these surface roughness ranges respectively. The second figure shows a similar procedure
where both surface roughness ranges and cutting tool flank wear are predicted. According
to the evidence propagation, the BN network predicts a surface roughness range of 3.3-4.8
µm with a probability of 75% whereas there is a probability of 25% to obtain a surface
roughness higher than 4.8 µm.

Repositori institucional UJI



Artificial Intelligent approaches applied to part accuracy prediction 19

(a) (b)

Figure 7 Examples of BNs models applied to surface roughness prediction. Correa et al (2008a)
presents in Fig. (a) how the surface roughness is inferred knowing as evidences the feed rate, the
forces (FT) and the spindle speed (rpm). The BN predicts a smooth surface roughness with a proba-
bility of 76%. Abellan-Nebot et al (2006a) presents in Fig. (b) how the surface roughness predicts a
range of 3.3 − 4.8 µm with a probability of 75% knowing the process variables cutting speed (Vc),
feed rate (fz), vibration value, machining time and spindle load.

3.4.2 Bayesian Models applied to part accuracy prediction

In spite of the potential use of BNs, their application in machining have been mainly
focused on fault cause diagnosis and tool wear prediction (Dey and Stori, 2005). Recently,
some authors have extended their application to surface roughness prediction since surface
roughness tends to show an important stochastic behaviour. Abellan-Nebot et al. (2006a)
applied BNs for cutting-tool wear diagnosis and surface roughness ranges prediction in
milling operations. They compared three different BN models according to different dis-
cretisation ranges since variables in BN have to be defined in discrete ranges. The variables
included in the model were: spindle speed, feed per tooth, root-mean square vibrations,
root-mean square spindle load , operating time, surface roughness and flank wear. Three
BN models were developed: model-1 for low discretisation (5 discretisated intervals per
variable); model-2 for medium discretisation (7 intervals) and model-3 for high discretisa-
tion (10 intervals). Due to the limited experimental data (134 data records), it was needed
to provide a prior process knowledge during the training step. Fundamental physical re-
lationships were included by adding well-known causal relationships in the BN structure.
The remaining causal relationships were learnt from experimental data by the learning al-
gorithm Necessary Path Condition (NPC). The results showed the importance of the level
of discretisation. Models with high discretisation tended to be more precise but less reli-
able whereas the model with low discretisation presented low precision. The authors con-
cluded that a right trade-off between discretisation and reliability could generate effective
BN models for prediction in this domain. However, they remarked that a higher discreti-
sation requires higher experimental data to learn the conditional probabilistic relationships
which is an important limitation in industrial machining systems.

Correa et al. (2008a) presented BN models for surface roughness prediction where
the discretisation algorithms K-means and Fuzzy K-means were applied. They compared
two BN models to predict the surface roughness ranges of machined parts. The first model

Repositori institucional UJI



20 J.V. Abellan-Nebot

was based on Nave Bayes structure whereas the second model was based on the Tree-
Augmented Nave Bayes (TAN) structure. A data set of 250 records was used for training
and validating both models. The results reported that the TAN structure was able to clas-
sify the surface roughness with an accuracy of 81.2%, slightly higher than the Nave Bayes
structure which achieved an accuracy of 76%. Although the previous research works do not
deal directly with cutting parameters selection for process planning, both studies remarked
the potential use of BNs to recommend the cutting parameters that yield, with certain prob-
ability, a desired surface roughness level.

As a novel approach applied to part accuracy prediction, some authors have recently
compared the performance of BNs with other common approaches such as ANNs or statis-
tical regressions. Correa, Bielza and Pamies-Teixeira (2008b) compared a MLP ANN with
a topology 7-11-4 versus a BN model with a TAN structure for quality detection in high
speed machining processes. The results reported a better performance of the BN classifier
than the ANN classifier, with an accuracy of 96.3% and 94.8% respectively. Two statisti-
cal test were conducted confirming that the BN accuracy was statistically superior to ANN
accuracy. The use of BN was also preferred since this AI technique was easier to interpret
than ANNs. Abellan-Nebot et al. (2006b) also compared the performance of BN versus
ANNmodels. The results showed that the BN model presented similar precision for surface
roughness prediction than the ANN model. However, BN predictions showed 33.7% less
uncertainty than ANN predictions whereas the ANN predictions were more reliable. The
lack of reliability of BN was assumed to be due to the high number of experimental data
required in BN models.

3.4.3 Guidelines for Bayesian Modelling

Predictions with BN are not very accurate, and their accuracy depends on the variable
discretisation ranges. A higher discretisation can lead to a higher predictions accuracy, how-
ever, the experimental data required for modelling increase rapidly with discretisation. As
experimental data in machining is always an important limitation, low discretisation vari-
ables are recommended in order to use enough data to extract the associated probabilities
between cutting and process variables. For discretisation purposes, it is also recommended
the use of discretisation algorithms such as K-means and Fuzzy K-means as it was reported
by Correa, Bielza, de Ramirez and Alique (2008a).

The low accuracy in BN predictions difficulties the use of these models in surface rough-
ness or dimensional deviation predictions. However, BN can be very useful to identify
patterns, so applications such as diagnosis of surface roughness ranges or dimensional de-
viation ranges can be successfully implemented in order to predict if a machined part is
within or outside customer specifications with a certain level of uncertainty.

On the other hand, BN requires a high number of experimental data to learn the model
structure and the conditional probability tables. In order to reduce the experimental data,
previous expert knowledge about the machining process can be added into the network
through predefined causal relationships. Therefore, the learning process can be improved
adding some well-known machining relationships such as: feed rate causes surface rough-
ness, feed rate causes an increase of spindle load, no causal relationship between cutting
parameters (cutting speed, feed rate), etc. (see Abellan-Nebot et al.’s (2006a) research
work). In addition, algorithms to learn BN structure should be properly chosen to deal with
a low number of experimental data. Accordingly, NPC algorithm which is an extension
of the PC algorithm is recommended for part accuracy prediction in Abellan-Nebot et al.’s
(2006a) research work. Through this algorithm, the designer can add his experience fixing
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causal arcs during the learning process. Causal relationships can be also acquired by an
ANOVA analysis as it is reported by Dey and Stori (2005).

4 Guidelines for AI techniques selection

The AI approaches reviewed above have been applied for both surface roughness and
dimensional deviation prediction in machining. However, there are special considerations
that should be taken into account in order to select the most appropriate AI technique for
a given purpose (refer to Fig. 8). According to the literature review, the main advantages
and drawbacks for each AI technique and its recommended application field are defined as
follows:

• Artificial Neural Networks (ANN): Applications where there is no purpose of knowl-
edge extraction, and there is no previous knowledge of the process (or if there is
previous knowledge, this knowledge is not intended to be added into the model). Ap-
plications where a high accuracy prediction is required. Applications where there is
no extrapolation and a good generalisation is required. Applications where the exper-
imental data set is composed of a medium number of samples. Applications where
only the prediction or diagnosis is required, and the inverse problem such as cutting
parameters evaluation to assure a specific output value is not considered. In gen-
eral, ANNs are the main tool for both surface roughness and dimensional deviation
prediction.

• Fuzzy inference systems: Applications where there is enough knowledge from the
process and this knowledge is intended to be added into the model. Applications
where the understanding of the process prevails over the model accuracy. Applica-
tions where extrapolation can occur and the general process behaviour is expected to
be smooth. Applicationswhere the experimental data set is composed of low/medium
number of samples since part of the model is developed using previous knowledge.
Applications where a part from a specific variable prediction, the inverse problem
has to be solved. In general, fuzzy inference systems are used for surface roughness
prediction and cutting parameter selection given a surface roughness specification.

• Adaptive Neuro-fuzzy Inference Systems (ANFIS): Applications where it is desired
to add previous knowledge and/or to extract hidden knowledge from experimental
data in a rule-form. Applications where extrapolation and generalisation ability are
demanded. Applications with a moderate accuracy requirement. Applications where
the experimental data set is composed of a medium number of samples. Applications
where a part from a specific variable prediction, the inverse problem has to be solved.
Since ANFIS are a hybridisation of ANN and fuzzy systems, the recommended ap-
plications are similar to both ANN and fuzzy applications.

• Bayesian Networks (BN): Applications where it is desired to add previous knowledge
and/or to extract hidden knowledge in a form of causal relationships and probabili-
ties. Applications where low accuracy prediction is required but with high reliability.
Applications which have an important stochastic component. Applications where the
experimental data set is composed of large/very large number of samples depend-
ing on the variable discretisation ranges and the expected accuracy. Applications
where partial observations are required, i.e. not all the variables of the model are
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Table 1 Artificial Intelligent Approaches Applied to Part Accuracy Prediction (Surface Roughness and Dimensional Deviation)

Error Error
Reference Process Workpiece Material Cutting Tool AI approach Sensors Factors Analysed Ra (%) DD (µm)

Azouzi and Guillot (1997) T AISI-1018 Carbide inserts MLP NN DYN, ACC, AE, CPB f, v, d, F, D, W, P ! 2-25 ! 2-20
Ouafi et al. (2000) T – – MLP NN DYN, THERC, INT s – – ! <4
Chien and Chou (2001) T 304 Stainless Steel Carbide inserts MLP NN DYN V, f, d ! 4.4‡ – –
Tsai et al. (1999) EM Aluminium 6061 T6 HSS MLP NN ACC s, f, d ! 4‡ – –
Risbood et al. (2003) T Rolled steel bars (0.35% carbon) cobalt-HSS, TiN coated carbide tools MLP NN DYN, ACC v, d, f, D, L/D, X, UL ! 18.2§ ! 51§

Kohli and Dixit (2005) T Rolled steel bars (0.35% carbon) HSS, Carbide inserts MLP NN ACC V, d, f, UL ! 16‡ – –
Lee and Chen (2003) T – Carbide inserts MLP NN ACC s, f, d ! 3.7‡ – –
Ozel and Karpat (2005) T AISI 52100, AISI-H13 Steel Cubic Boron Nitride Tools MLP NN DYN V, f, HRC, EG ! 8‡ – –
Warnecke and Kluge (1998) T Ck 70N Carbide insert TiN-coated MLP NN AE V, d, f – – ! <20
Zhong et al. (2006) T Aluminium, Copper carbide insert TiAlN-coated, PCD, SCD MLP NN – s, d, f, Rake, Nose, WP, Tgrade ! 24.4‡ – –
Oktem et al. (2006) EM Aluminium 7075-T6 PVD Al TiN MLP NN – V, d,ar , f, MTol ! 5.3‡ – –
Lu (2008) T Stainless steel 304L Carbide coated insert RBF NN – V, d, f ! –† – –
Li et al. (2004) EM Aluminium HSS RBF NN – V, d, f, ar – – ! <153

ANFIS – V, d, f, ar – – ! <253

Hybrid RBF NN – V, d, f, ar – – ! <53

Nalbant et al. (2007) T AISI 1030 Cemented carbide cutters RBF NN – d, f, nose ! 2.7‡ – –
Han et al. (2006) T C45 ISO P10 inserts MLP NN DYN V, d, f, D, L/D, z/L – – ! 6.4§
Pal and Chakraborty (2005) T mild steel (0.2% carbon) HSS MLP NN DYN s, f, d ! 5§ – –
Huang and Chen (2003) EM 6061 Aluminium HSS MLP NN DYN s, f, d ! 5.7‡ – –
Chang et al. (2006) G – – Dynamic ANN THERC, DS – – – ! <3§

Yang and Ni (2005) M – – Dynamic ANN THERC – – – ! 3.5!

MLP NN THERC – – – ! 8.5!

Feedback NN THERC – – – ! 7.5!

Jesuthanam et al. (2007) EM Mild steel HSS Hybrid MLP NN ACC s, d, f ! 1.7‡ – –
MLP NN ACC s, d, f ! 2.8‡ – –

Mize and Ziegert (2000) M 6061 Aluminium – ART NN TherC, LBB X̄ , Z̄ – – ! 7.4§

Abburi and Dixit (2006) T Mild steel HSS, carbide tools Fuzzy ACC v, d, f, UL ! 20§ – –
Lou and Chen (1999) EM Aluminium 6061 HSS Fuzzy ACC f, s, d ! 4.3‡ – –
Chen and Savage (2001) EM 6061 Aluminium, 1018 steel – Fuzzy ACC f, s, d, WP, TM, TD ! 10‡ – –
Iqbal et al. (2007) HSM AISI D2 Carbide cutters with PVD Fuzzy – HRC, UL, HE, OR ! – – –
Kirby and Chen (2007) T Aluminium 6061 T6511 Diamond shape carbide tool Fuzzy ACC s, d, f ! 5‡ – –
Kumanan et al. (2008) EM Carbide insert TiN-coated ANFIS ACC s, d, f ! <1§ – –

Hybrid RBF NN ACC s, d, f ! <1§ – –
MLP NN ACC s, d, f ! <1§ – –
RBF NN ACC s, d, f ! <1§ – –

Jiao et al. (2005) T 1045 cold rolled steel coated-carbide tool ANFIS – s, d, f – – ! 4.23‡
Al-Wedyan et al. (2001) M Alumic-79 – ANFIS – f, s, d, Flut ! – – –
Dweiri et al. (2003) M Alumic-79 – ANFIS – f, s, d, Flut ! <5 – –
Lo (2003) EM 6061 Aluminium HSS ANFIS – s, f, d ! Tg:4‡ – –

ANFIS – s, f, d ! Tp:6.7‡ – –
Ho et al. (2002) T S45C steel bars Tungsten carbide tool ANFIS Computer Vision V, f, d ! 4.6§ – –
Abellan-Nebot (2009) M D3 CBN ANFIS – V, f ! – – –
Yang et al. (2006) EM 6061 Aluminium – ANFIS DYN f, s ! 6‡ – –
Ho et al. (2009) EM 6061 Aluminium HSS ANFIS – s, f, d ! 4.06‡ – –
Correa et al. (2008a) EM F114 steel Solid carbide BN DYN Dm, Flut, d, f, s ! 18.81 – –
Correa et al. (2008b) EM Aluminium – BN DYN fz, V, d, Dm, ar , HRC, Gm, Tgm ! 3.71 – –

ANN DYN fz, V, d, Dm, ar , HRC, Gm, Tgm ! 5.21 – –
Abellan-Nebot et al. (2006a) M AISI 1045 TiCN/TiN-PVD coated inserts BN ACC, Current fz, V, Time ! -2 – –
Ra: Surface roughness; DD: Dimension Deviation; f: feed rate; V: cutting speed; d: depth of cut; F: Cutting fluid flow;W: tool wear state;W: workpiece diameter; P: Part-to-part deviation; CPB: Capacitance probes sensors; DYN: Dynamometer; THERC: Thermocouples;
INT: Interferometer; s: spindle speed; EM: End milling;UL: use of lubrication; EG: Edge geometry; HRC: Hardness of workpiece; Rake: Rake angle; nose: Tool nose radius;WP: workpiece material; Tgrade: Tool insert grade; PCD: Polycrystalline diamond tools;
SCD: single crystal diamond tools; ar : radial depth of cut;MTol: machining Tolerance; D: workpiece diameter; L/D: slenderness ratio; X: Tool position; z/L: ratio of tool position;DS: displacement sensors; LBB: laser ball bar X̄: X nominal position;
HE: Tool’s helix angle; OR: cutting orientation (up-down); Z̄: Z nominal position;TM: Tool material; TD: tool diameter; HSM: high speed milling; Flut: Number of cutting flutes; Tg: triangular membership functions; Tp: trapezoidal membership functions;
Dm: cutting-tool diameter; Gm: workpiece geometry; Tgm: tool geometry; fz: feed per tooth;
‡: average error; §: maximum error; 1 : Classification accuracy; !: standard deviation of errors; †: prediction of surface profile, Ra not reported; 2 : predictions with an average range of 0.82µm an reliability of 89%; 3 : predictions reported in %.
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available to estimate the output variable. BN is recommended for surface roughness
ranges prediction in order to detect if the machined parts are within or outside spec-
ifications. BNs are also recommended for cutting parameter selection to meet part
specifications.





























































































Figure 8 Basic guidelines for AI selection according to model requirements.

5 Conclusions

Artificial Intelligent (AI) approaches have been intensively applied in machining pro-
cesses in order to increase part accuracy. In spite of the large volume of academic research
work in this field, there is no review on AI applied to part accuracy prediction and it is
difficult to find a summary of these AI techniques in order to facilitate their use. This paper
has tried to overcome both limitations summarising the main AI approaches applied to part
accuracy prediction namely Artificial Neural Networks, Fuzzy systems, Adaptive-Neuro
Fuzzy Inference Systems, and Bayesian Networks, and the main research works reported in
the literature. In addition, useful guidelines for applying these AI techniques in machining
were provided according to previous research recommendations. To facilitate the use of
AI techniques in intelligent machining, it was also presented a guideline for AI selection,
considering the main advantages and drawbacks of each AI reviewed. This paper can be
considered a brief guide for all practitioners interested in applying artificial intelligence
techniques in machining processes for part quality improvement.
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