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Abstract:
In this paper we analyze the trade-off between energy and performance for a data-

parallel execution of the LU factorization with partial pivoting on a multi-core proces-
sor. To improve power efficiency, we adapt the runtime in charge of controlling the
concurrent execution of the algorithm so as to leverage DVFS by activating/blocking
idle threads. For a CPU-bounded operation like the LU factorization, experiments on
an AMD 8-core processor report an average reduction around 5% in energy consump-
tion in exchange for a minor, in some cases negligible, increase in the execution time.
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Resumen:
En este trabajo se analiza el compromiso entre el consumo de energı́a y el rendimiento

de la ejecución paralela del algoritmo que implementa la factorización LU con piv-
otamiento parcial en procesadores multiúcleo. Para mejorar la eficiencia energética, se
ha adaptado el runtime encargado de controlar la ejecución concurrente del algoritmo
con el fin de aprovechar la técnica DVFS a través de la activación y el bloqueo de los
hilos que se encuentran en estado ocioso. Para un algoritmo limitado por CPU tal como
la factorización LU, los experimentos con un procesador AMD de 8 núcleos proporcio-
nan una reducción promedio de alrededor del 5% en el consumo de energı́a a cambio
de un menor, en algunos casos insignificante, aumento del tiempo de ejecución.
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Abstract In this paper we analyze the trade-off between energy and performance
for a data-parallel execution of the LU factorization with partial pivoting on
a multi-core processor. To improve power efficiency, we adapt the runtime in
charge of controlling the concurrent execution of the algorithm so as to leverage
DVFS by activating/blocking idle threads. For a CPU-bounded operation like the
LU factorization, experiments on an AMD 8-core processor report an average re-
duction around 5% in energy consumption in exchange for a minor, in some cases
negligible, increase in the execution time.
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1 Introduction
As we target the Exaflop barrier, energy consumption is becoming a major concern.
Reaching such an impressive performance rate using as-of-today most energy-efficient
technology will require more than 590 MWatts [1], which basically amounts for 50% of
the energy produced by a modern nuclear plant. Hardware designers have been highly
sensible to power consumption during the past decade and, thus, state-of-the-art pro-
cessors, memories and disks feature low-power modes to trade-off performance for
energy. On the other hand, most current scientific, engineering and industrial applica-
tions running in high performance computing (HPC) centers are quite oblivious to the
possibilities offered by the underlying hardware, in spite of the significant assets it can
yield [2].

In this paper we address the power-aware solution of dense linear systems, via the
LU factorization with partial pivoting, on multi-core processors. The inclusion of piv-
oting in the LU factorization is necessary to render the algorithm numerically stable in
practice, though it hampers the degree of concurrency of the factorization.3 To over-
3 Although alternative pivoting schemes have been recently proposed to overcome the lim-
ited parallelism of the LU factorization with partial pivoting [8,3], this algorithm remains the
method of reference for the solution of dense linear systems.



come this, the use of a runtime which divides the operation into work units, or tasks,
dynamically keeps track of data dependencies among those, and schedules those tasks
ready for execution to idle cores has revealed itself as a good compromise between cod-
ing complexity and performance. Runtimes for dense linear algebra include the Super-
Matrix runtime for libflame [4] or Quark for PLASMA [7]. More general-purpose
alternatives, applicable also to that particular domain, are being developed within the
StarSs and StarPU frameworks.

There exist a good number of works which have analyzed the trade-off between
energy and performance enabled by dynamic voltage-frequency scaling (DVFS); see,
e.g., [5]. Some of these tackle the execution of a directed acyclic graph (DAG) repre-
senting tasks and data dependencies under certain conditions, in most cases reporting
the theoretical gains which can be expected from this; see [6,9]. In our paper, we move
one step forward, by incorporating DVFS into a production runtime for the domain of
dense linear algebra, which allows us to provide experimental evidence of the impact
on energy. In particular, our paper makes following contributions:

– We leverage DVFS to enable a power-efficient execution of the LU factorization,
where idle threads are set into a blocking state and the corresponding cores are
promoted into a low-power mode, without compromising the computational per-
formance of the execution.

– Our power-saving strategies are integrated into the SuperMatrix runtime [8], of-
fering a practical evaluation of the actual energy savings they can yield for dense
linear algebra kernels.

– Experimental results on an 8-core AMD 6128 processor report the trade-off be-
tween energy and execution time, which can lead to significant power savings for
the LU factorization with partial pivoting, around 5%, for a wide variety of problem
dimensions, with a reduced impact on the time-to-response.

The remainder of this paper is structured as follows. In Section 2 we review the
right-looking algorithmic variant for the LU factorization with partial pivoting and
briefly summarize different alternatives to exploit the concurrency of this algorithm on
a multi-threaded architecture. In Section 3 we present the power-saving techniques and
our approach to accommodate them into the SuperMatrix framework. In Section 4 we
report the computational and energy performances of the algorithm modulated by the
power-aware runtime. Finally, a few concluding remarks close the paper in Section 5.

2 The LU Factorization with Partial Pivoting

2.1 The right-looking algorithm

The LU factorization with partial pivoting of a nonsingular matrix A ∈ Rn×n is given
by PA = LU , where P ∈ Rn×n is a permutation matrix and L/U ∈ Rn×n is unit
lower/upper triangular.

Figure 1 illustrates the blocked right-looking algorithmic variant for the LU factor-
ization using the FLAME notation. There, n(·) stands for the number of columns of
its argument while TRILU(·) denotes the matrix consisting of the elements in the lower
triangular part of its argument with the diagonal entries replaced by ones. We believe



Algorithm: A := LUP BLK(A)

Partition A →

(

ATL ATR

ABL ABR

)

where ATL is 0× 0
while n(ATL) < n(A) do
Determine block size b
Repartition
(
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ABL ABR

)

→
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where A11 is b× b

(
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)

:= LUP UNB

(
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)

A12 := TRILU(A11)
−1

A12 (trsm)
A22 := A22 −A21A12 (gemm)

Continue with
(

ATL ATR

ABL ABR

)

←
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A10 A11 A12

A20 A21 A22





endwhile

Figure 1. Blocked algorithm for the LU factorization.

the rest of the notation is intuitive; see [8]. For simplicity, we dropped the application
of pivoting from the algorithmic description. However, as argued above, pivoting deter-
mines the degree of concurrency as it dictates the panel-wise progress of the algorithm
where, at each iteration, a panel of b columns is factored. The algorithm overwrites
the strictly lower triangle/upper triangle of A with L/U . The factorization of the cur-
rent panel, composed of A11 and A22, can be obtained by calling an unblocked version
of the algorithm (b = 1). Provided 1 " b " n, the blocked algorithm in the fig-
ure performs 2n3/3 + O(n2) floating-point arithmetic operations (flops), mostly cast
in terms of the matrix-matrix product (gemm) A22 := A22 − A21A12. This basic lin-
ear algebra operation is well known to yield high performance on current processors
with a hierarchical organization of the memory as well as a highly efficient, relatively
straight-forward parallelization on multi-threaded parallel architectures.

2.2 Parallelization

A trivial approach to execute the algorithm in Figure 1 in parallel is to link it with a
multi-threaded implementation of gemm. Given that the major part of the computation
is in the update of A22, performance close to that of gemm can be expected when the
number of threads/cores is relatively small. However, the factorization of the panel lies
in the critical path of the algorithm so that, as the computational resources grow in
number, the concurrency of this approach suffers. A simple look-ahead strategy can



be employed to tackle this problem as follows: the block to update is split as A22 =
[

ĀL, ĀR

]

, with ĀL containing b columns, so that the update of ĀL and its factorization
are performed in parallel with the update of ĀR. In practice, this is analogous to shifting
computations from the second iteration (which would compute the LU factorization of
ĀL) into the first one. This scheme is repeated in subsequent iterations. More elaborate
versions of look-ahead advance computations from iterations i + 1, i + 2, . . . into the
i-th iteration, at the expense of greatly complicating the coding.

The SuperMatrix runtime unburdens the programmer from this complexity by au-
tomatically decomposing a libflame routine into tasks and keeping track of the de-
pendencies during the execution. Thus, the operations are not executed in the order they
appear in the code (control-flow parallelism) but in the order dictated by the data depen-
dencies implicit to the algorithm (data-flow parallelism). Identification and scheduling
of tasks are both done dynamically (i.e., at run time), without direct intervention from
the programmer. For this purpose, SuperMatrix proceeds in two stages. During the ini-
tial stage, a symbolic execution of the code produces a directed acyclic graph (DAG)
containing all tasks and dependencies. This information then dictates the feasible order-
ings in which tasks can be executed during the subsequent dispatch stage. To monitor
progress, the SuperMatrix implementation utilizes a pending list which contains those
tasks to be run but which depend on tasks not yet executed. At the beginning of this sec-
ond stage, all tasks except for that corresponding to the factorization of the first panel
are in the pending list. From this structure, a task is moved into the ready list when all
its dependencies are fulfilled. Initially this list contains only the factorization of the first
panel. Idle threads (one per core) continuously check the ready list for work (busy-wait
or polling). When a thread acquires a task, it runs the corresponding job in the asso-
ciated core and, upon completion, checks the tasks which were in the pending queue,
moving them to the ready list in case all their dependencies are now satisfied. Details
on the operation and implementation of the SuperMatrix runtime can be found in [8].

3 Accommodating Power-Aware Techniques into SuperMatrix

Modern Linux distributions leverage DVFS by providing different governors (ondemand,
powersave, etc.) which set idle threads into power-hungry/power-save modes by in-
creasing/reducing their operation frequency and voltage scaling. Operations as those
in the level-3 BLAS (e.g., gemm) are highly CPU-bounded computations so that re-
ducing the operation frequency/voltage incurs an increase in the execution time and,
therefore, yields higher energy consumption, blurring all benefits of a lower-paced ex-
ecution. Despite being a level-3 BLAS-based operation, the picture is different for the
LU factorization with partial pivoting. Due to the existence of task dependencies, idle
periods may appear during the computation of this operation. While this can be ex-
ploited by selecting a given governor for the entire application, in our case we apply a
more effective approach, integrating it into the runtime system.

In particular, our first energy-saving technique works as follows: when a thread sam-
ples whether there is work in an empty ready list, the runtime immediately sets the op-
eration frequency of the associated core to the lowest possible (system call cpufreq).
Later, when the poll receives a positive answer, the frequency is raised back to the high-
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Figure 2. Power consumption of different actions performed by threads.

est, in preparation for the execution of the corresponding job. This operational mode
implies a reduction in the polling rate which is beneficial (polling itself can be viewed
as a waste of energy). Figure 2 illustrates the difference in energy consumption between
a thread that performs polling at 2.0 GHz and one that does the same at 800 MHz on an
8-core AMD 6128 processor (when all remaining cores are idle): from around 95 Watts
to less than 90 Watts. Note also the power consumption of a thread performing polling
at the highest frequency is only slightly smaller than that of one performing useful work
like, e.g. a matrix-matrix product (MKL dgemm). The results in that plot also reveal a
complementary/alternative strategy. In particular, observe that a thread performing the
busy-wait corresponding to polling, even at 800 MHz, still consumes a considerable
amount of energy. However, when the same thread is blocked, the consumption is de-
creased significantly, to 50–55 Watts.

Our second power saving technique replaces the polling state of “inactive” threads
by a power-friendly, blocking one. Whether these theoretical savings yield an actual
gain will depend, however, in the existence/length of idle periods during the execution
of the algorithm and the overhead of blocking/activating a thread. In our implementation
we employ POSIX semaphores to control the active threads. Now, when a thread polling
for a new job from the ready list receives a negative answer (there is no task ready for
execution at the moment), it blocks itself (with the system call sem wait()). When a
thread completes the execution of a task, it updates the dependencies of the tasks in the
pending list; besides, in case this implies moving k tasks from the pending list to the
ready list, this thread will also enforce that there exist k active threads (using system call
sem post() to activate other threads, if necessary). This simple mechanism ensures
that there is basically one active thread per task in the ready list and, key to power
conservation, that no continuous polling is being done on an empty list.
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Figure 3. Thread activity during the execution of the LU factorization with partial pivoting.

4 Experimental Results

All experiments reported in this section were obtained using IEEE double-precision
arithmetic on an 8-core AMD 6128 processor (2.0 GHz) with 24 Gbytes of RAM. The
system runs a Linux Ubuntu 10.04 distribution. Highly tuned implementations of BLAS
and LAPACK were those in MKL 10.2.4. A modified version of SuperMatrix runtime
in libflame version 5.0–r5587 was designed to leverage the two power-saving tech-
niques described in the previous section. Execution times/power measurements cor-
respond to that of routine FLASH LU piv (for the blocked right-looking variant of
the LU factorization with partial pivoting) from this library, linked to the original and
power-aware implementations of the runtime. Matrices were generated with random
entries uniformly distributed in [0, 1], so that pivoting actually occurs during the com-
putation of the triangular factors. Our evaluation includes a variety of (square) matrix
dimensions ranging from 2,048 to 12,288 and the block size b = 512. This block di-
mension was close to optimal for most kernels involved in this factorization.

Power was measured using an internal DC powermeter. This is an ASIC operating
with a sampling frequency of 25 Hz, directly attached to the lines connecting the power
supply unit and the motherboard (chipset plus processors). All tests were repeated 30
times and average values are reported.

Our first experiment evaluates the existence and length of idle periods during the
computation of the LU factorization with partial pivoting on the 8 cores of the AMD
processor, with parallelism extracted by the SuperMatrix runtime. The results in Fig-
ure 3 gather the results from this evaluation. Let’s examine the two extreme cases: when
the problem size is (n=)2,048, 54% of the time there is a single active thread and only
6% of the time all threads are performing work. On the other hand, when the problem
size is much larger, e.g. n=10,240, about 26% of the time there is one active and most
of the remaining period all 8 threads are running. The conclusion from this experiment
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Figure 4. Evaluation of the impact on time and energy of the power-saving strategies.

is that there exists indeed the opportunity of saving energy by carefully controlling the
level of activity of idle threads.

The second experiment measures the actual gains that can be attained by an energy-
aware approach. In this case we compare the original SuperMatrix runtime with a modi-
fied variant that employs semaphores to block idle threads (second technique described
in the previous section). We leave the operation of DVFS in the hands of the OS by
setting the governor to ondemand4 with the default policies to raise/lower frequency
(namely, when the core load exceeds/falls below 95%, the frequency is set to the high-
est/lowest possible; the OS samples core activity with a frequency of 10 ms.). In this
mode, a polling thread is active and, thus, the corresponding core remains at 2.0 GHz;
a thread blocked in a semaphore, instead, is detected by the OS which lowers the oper-

4 Although we evaluated several other governors (powersave, conservative, etc.), they
all offered a significant increase in the execution time which resulted in a much higher power
consumption.



ation frequency of the associated core to 800 MHz. We will refer to these two versions
of SuperMatrix as “polling” and “blocking”. Figure 4 illustrates the effect of the power-
saving strategy both in the execution time and energy consumption. The impact on the
execution time is small, with an increase of 1.6% at most for the smallest problem sizes
while, for others, there is no appreciable difference between the two strategies. On the
other hand, the effect on power efficiency is much more relevant. For the smallest prob-
lem sizes, the number of tasks is relatively low compared with the number of threads,
which results in gaps (idle periods) during the execution of the algorithm, and this trans-
lates into significant energy savings. These inactive periods are reduced as the problem
dimension grows, and the power savings tend to stabilize around 5%.

5 Concluding Remarks

While CPU-bounded computations like, e.g., the matrix-matrix product should be run
at the highest frequency so as to reduce execution time and, therefore, energy con-
sumption, this paper addresses this issue for complex dense linear algebra operations,
where idle periods appear during the execution of the corresponding algorithm due to
data dependencies. In particular, we address the LU factorization with partial pivoting,
and a parallel data-flow runtime-assisted (SuperMatrix) from a production library like
libflame, to analyze the trade-off between performance and energy on a multi-core
platform. Our results show that, for large problem sizes, it is possible to leverage these
inactive periods, reducing energy consumption around 5% with a negligible impact on
the execution time.
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