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THE CHARACTER OF TOPOLOGICAL GROUPS, VIA

PONTRYAGIN-VAN KAMPEN DUALITY

CRISTINA CHIS, M. VINCENTA FERRER, SALVADOR HERNÁNDEZ,
AND BOAZ TSABAN

Abstract. The Birkhoff-Kakutani Theorem asserts that a topological group
is metrizable if and only if it has countable character. We develop and apply
tools for the estimation of the character for a wide class of nonmetrizable
topological groups.

We consider abelian groups whose topology is determined by a countable
cofinal family of compact sets. These are precisely the closed subgroups of
Pontryagin-van Kampen duals of metrizable abelian groups, or equivalently,
complete abelian groups whose dual is metrizable. By investigating these
connections, we show that also in these cases, the character can be estimated,
and that it is determined by the weights of the compact subsets of the group, or
of quotients of the group by compact subgroups. It follows, for example, that
the density and the local density of an abelian metrizable group determine the
character of its dual group. Our main result applies to the more general case of
closed subgroups of Pontryagin-van Kampen duals of abelian Čech-complete
groups.

Even in the special case of free abelian topological groups, our results ex-
tend a number of results of Nickolas and Tkachenko, which were proved using
laborious elementary methods.

In order to obtain concrete estimations, we establish a natural bridge be-
tween the studied concepts and pcf theory, which allows the direct application
of several major results from that theory. We include an introduction to these
results, their use, and their limitations.

1. Overview and main results

The topological structure of a topological group is completely determined by its
local structure at an element. The most fundamental invariant of the local structure
is the character , the minimal cardinality of a local basis. Metrizable groups have
countable character, and the celebrated Birkhoff-Kakutani Theorem asserts that
this is the only case where the character is countable.

The computation of the character of nonmetrizable groups may be a hard task.
For example, even the character of free abelian topological groups is only known in
very special cases. The free abelian topological group A(X) over a Tychonoff space
X is the abelian topological group with the universal property, that each continuous
function ϕ from X into any abelian topological group H has a unique extension to
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a continuous homomorphism ϕ̃ : A(X) → H .
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As a set, A(X) is the family of all formal linear combinations of elements of X over
the integers. But the topology of A(X) is very complex, and in general, it is not
known how to determine the character of A(X) from the properties of X .

In this paper, we make use of the fact that groups from an important class of
topological groups, whose character estimation was intractable for earlier methods,
contain open subgroups whose Pontryagin-van Kampen duals are metrizable. An
introduction to the pertinent part of this duality theory will be given in Section 5.

A subset C of a partially ordered set P is cofinal (in P ) if for each p ∈ P , there
is c ∈ C such that p ≤ c. In this paper, families of sets are always ordered by ⊆.

All groups considered in this overview are assumed, without further notice, to
be locally quasiconvex. This is a mild restriction, meaning that the group admits
reasonably many continuous homomorphisms into the circle group.

The complete abelian groups whose dual is metrizable are exactly the ones whose
topology is determined by a countable cofinal family of compact subsets.1 The class
of abelian groups containing open subgroups of this type includes, in addition to
all locally compact abelian groups:

- all free abelian groups on a compact space, indeed on any space whose
topology is determined by a countable cofinal family of compact subsets;

- all dual groups of countable projective limits of metrizable, or more gener-
ally Čech complete, abelian groups;

- all dual groups of abelian pro-Lie groups defined by countable systems
[22, 26]; and

- all countable direct sums, closed subgroups, and finite products of groups
from this class [22].

Consider NN with the partial order f ≤ g if f(n) ≤ g(n) for all n. The cofinality
of a partially ordered set P , denoted cof(P ), is the minimal cardinality of a cofinal
subset of P . d is the cofinality of NN with respect to≤. This cardinal was extensively
studied [13, 7], and for the present purposes it may be thought of as some constant
cardinal between ℵ1 and the continuum (inclusive).

For a cardinal κ (thought of as a set of cardinality κ), [κ]ℵ0 is the family of
all countable subsets of κ. The weight of a topological space X is the minimal
cardinality of a basis of open sets for the topology of X . For brevity, define the
compact weight of X to be the supremum of the weights of compact subsets of
X . For nondiscrete (locally) compact groups, the character is equal to the (com-
pact) weight. The main theorem of this paper, stated in an inner language, is the
following.

Theorem 1. Assume that the group G has an open subgroup H such that H is
abelian non-locally compact, and the topology of H is determined by a countable

1I.e., there are compact sets K1,K2, . . . ⊆ G such that each compact K ⊆ G is contained in
some Kn, and for each U ⊆ G with all U ∩Kn open in Kn, U is open in G. Groups satisfying the
first condition are often named hemicompact . Groups satisfying both conditions are often named
kω.
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cofinal family of compact subsets. Let κ be the compact weight of H, and λ be the
minimum among the compact weights of the quotients of H by compact subgroups.
Then: the character of G is the maximum of d, κ, and the cofinality of [λ]ℵ0 .

In particular, if G has no proper compact subgroups (this is the case, e.g., for
A(X)), or more generally, if quotients by compact subgroups do not decrease the
compact weight of G, then the character of G is the maximum of d and cof([κ]ℵ0).

Theorem 1 reduces the computation of the character of G to the purely combi-
natorial task of estimating the cofinality of [λ]ℵ0 . This is a central task in Shelah’s
pcf theory. The last sections of this paper are dedicated to an introduction of this
theory and its applications in our context. In contrast to cardinal exponentiation,
cof([λ]ℵ0) is very tame. For example, if there are no large cardinals (in a certain
canonical model of set theory)2, then cof([λ]ℵ0) is simply λ if λ has uncountable
cofinality, and λ+ (the successor of λ) otherwise. Thus, the axiom SSH , asserting
that cof([λ]ℵ0 ) ≤ λ+, is extremely weak. Moreover, without any special hypotheses,
cof([λ]ℵ0) can be estimated, and in many cases computed exactly.

For brevity, denote the character of a topological group G by χ(G). Following is
a summary of consequences of the main theorem.

Theorem 2. In the notation of Theorem 1:

(1) χ(G) ≤ κℵ0 .
(2) If κ = κℵ0 , then χ(G) = κ.
(3) If λ = ℵn for some n, then χ(G) = max(d, κ).
(4) If λ = ℵµ, for a limit cardinal µ below the first fixed point of the ℵ function,

and µ has uncountable cofinality, then χ(G) = max(d, κ).
(5) If λ = ℵα is smaller than the first fixed point of the ℵ function, then χ(G)

is smaller than max(d+, κ+,ℵ|α|+4).
(6) If SSH holds, then:

(a) If λ < κ or cof(λ) > ℵ0, then χ(G) = max(d, κ).
(b) If λ = κ and cof(λ) = ℵ0, then χ(G) = max(d, κ+).

The proof of these theorems spans throughout the entire paper, but the paper
is designed so that each reader can read the sections accessible to him or her, and
take as granted the other ones, using the index at the end of the paper in case of
need for a definition.

In Section 2, we set up a general framework for studying bounded sets in topo-
logical groups. The level of generality is just the one needed to capture available
methods from the context of topological vector spaces, and import them to the
seemingly different context of separable topological groups with translations by el-
ements of a dense subset. This is done in Section 3, which concludes by showing
that in metrizable groups, precompact subsets of dense subgroups determine the
precompact subsets of the full group, and consequently, the precompact sets in the
group and in its dense subgroup have the same cofinal structure. These are, es-
sentially, the only two results from the first two sections which are needed for the
remaining sections. In a first reading of Sections 2 and 3, the reader may wish to
consider only the special case of topological groups with translations by elements
of a dense subset, since this is the case needed in the concluding results of these
sections.

2It is not even possible to prove, using the standard axioms of set theory, that the existence
of such cardinals is consistent.
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In Section 4, the approach of Section 3 is generalized from separable to arbitrary
metrizable groups. The density of a topological group G, d(G), is the minimal
cardinality of a dense subset of that space. We define the local density of G, ld(G),
to be the minimal density of a neighborhood of the identity element of G. Let
PK(G) denote the family of all precompact subsets of G. The main result of this
section is the following.3

Theorem 3. Let G be metrizable non-locally precompact group. The cofinality of
PK(G) is equal to the maximum of d, d(G), and cof([ld(G)]ℵ0).

In Section 5 we use Theorem 3 and methods of Pontryagin-van Kampen duality
to prove the following theorem.

Theorem 4. Let G be a complete abelian group whose dual group is a metriz-
able non-locally precompact group Γ. Then χ(G) is the maximum of d, d(Γ), and
cof([ld(Γ)]ℵ0 ).

This already puts us in a position to prove, in Section 6, the following result.4

Theorem 5. Let X be a space whose topology is determined by a countable cofinal
family of compact subsets. Let κ be the compact weight of X. Then the character
of A(X) is the maximum of d and cof([κ]ℵ0). In particular:

(1) χ(A(X)) ≤ κℵ0 , and if κ = κℵ0 , then χ(A(X)) = κ.
(2) If κ = ℵn for some n ∈ N, then χ(A(X)) = max(d,ℵn).
(3) If κ = ℵµ, for µ smaller than the first fixed point of the ℵ function, and µ

is a limit cardinal of uncountable cofinality, then χ(A(X)) = max(d,ℵµ)
(4) If κ = ℵα is smaller than the first fixed point of the ℵ function, then

χ(A(X)) is smaller than max(d+,ℵ|α|+4).
(5) If SSH holds, then:

(a) If cof(κ) > ℵ0, then χ(A(X)) = max(d, κ).
(b) If cof(κ) = ℵ0, then χ(A(X)) = max(d, κ+).

Moreover, Nickolas and Tkachenko proved that for Lindelöf spaces X , the char-
acters of the free abelian and free nonabelian topological groups over X are equal
[31]. Thus, Theorem 5 also holds for the free nonabelian topological group F (X).

The result in Theorem 5 that the character of A(X) is the maximum of d and
cof([κ]ℵ0) was previously known only in few, very special cases, for example when
X is compact, or when, in addition to the premise in our theorem, all compact
subsets of X are metrizable [31]. Even in these special cases, their proof (which
used elementary methods) was considerably more difficult than our proof for the
more general theorem.

In Section 7 we develop the remaining Pontryagin-van Kampen theory required
to deduce Theorem 1 from Theorem 4.

Section 8 introduces and applies pcf theory, to obtain the concrete estimations
in Theorems 2 and 5, and Section 9 proves some freedom in these estimations,
answering a problem of Bonanzinga and Matveev raised in a different context.

We note that all estimations in Theorem 2 apply to Theorem 4 as well, which
may be viewed by some readers as the main result of this paper.

3In Theorem 3, which is of independent interest, we do not require that G is locally quasiconvex
or abelian.

4We state Theorem 5 in full because the estimations are slightly simpler than those in Theorem
2.
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2. Bounded sets in topological groups

The unifying concept of this paper is that of boundedness in topological groups.
This concept plays a central role in a number of studies in functional analysis
and topology. In its most abstracted form, a boundedness (or bornology [6]) on a
topological space X is a family of subsets of X which is closed under taking subsets
and unions of finitely many elements, and contains all finite subsets of X .5 The
abstract approach has found applications in several areas of mathematics – see the
introduction and references in [6]. In particular, Vilenkin [37] applied this approach
in the realm of topological groups. Here, we focus on well-behaved boundedness
notions in topological groups, which make it possible to simultaneously extend
some earlier studies in locally convex topological vector spaces as well as seemingly
unrelated studies of general topological groups.

We use the following notational conventions throughout the paper: For a set
X , P (X) denotes the family of all subsets of X , and Fin(X) denotes the family of
all finite subsets of X . An operator t on P (X) is a function t : P (X) → P (X).
Throughout, G is an infinite Hausdorff topological group with identity element e
(or 0 if G is restricted to be abelian), and T is a set of operators on P (G).

Definition 2.1. For an operator t on P (G), write t ∗A for t(A), A ⊆ G. Let T be
a set of operators on P (G).

(1) For F ⊆ T , F ∗A denotes
⋃

t∈F t ∗A.
(2) A set B ⊆ G is T -bounded (bounded , when T is clear from the context) if

for each neighborhood U of e, there is a finite F ⊆ T such that B ⊆ F ∗U .

The following axioms guarantee that the family of T -bounded sets is a bound-
edness notion.

Definition 2.2. A boundedness system is a pair (G, T ) such that G is a topological
group, T is a set of operators on P (G), and the following conditions hold:

(B1) For each open U and each t ∈ T , t ∗ U is open;
(B2) For each neighborhood U of e, T ∗ U = G;
(B3) For each T -bounded A ⊆ G and each t ∈ T , t ∗A is T -bounded;
(B4) For all A ⊆ B ⊆ G and each t ∈ T , t ∗A ⊆ t ∗B;
(B5) For each S ⊆ T with |S| < |T |, there is a neighborhood U of e such that

S ∗ U 6= G;
(B6) For each n, there is a neighborhood U of e such that for all F ⊆ T with

|F | ≤ n, F ∗ U 6= G.

A boundedness system (G, T ) is said to be metrizable if G is metrizable.

Axiom (B5) is assumed since one can restrict attention to a set T ′ ⊆ T of minimal
cardinality such that T ′∗U = G for each neighborhood U of e. Axiom (B6) is added
to avoid trivialities. By moving to the semigroup of operators generated by T , we
may assume that T is a semigroup. We will, however, not make use of this fact.

Precompact sets need not be bounded when G is not complete, but we have the
following.

Lemma 2.3. For each boundedness system (G, T ):

(1) Every compact K ⊆ G is bounded.

5In set theoretic terms, this defines a (not necessarily proper) ideal on X containing all
singletons.
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(2) The family of bounded subsets of G is a boundedness. �

The following two examples of boundedness systems are well known. In these
examples, we identify T with some set of parameters defining the elements of T .
In general, we may identify T with any set S of the same cardinality, by modifying
the definition of ∗ appropriately.

Example 2.4 (Standard boundedness on topological vector spaces). Let E be a
topological vector space. Take T = N, and define n ∗ A = {nv : v ∈ A} for each

A ⊆ V . For example, (B2) holds since limn
1
n
v = ~0 for each v ∈ E. The N-bounded

sets are those bounded in the ordinary sense.

In Example 2.4, if E is a locally convex topological vector space, we may alterna-
tively define n∗A = nA = {v1+· · ·+vn : v1, . . . , vn ∈ A} for eachA ⊆ V , and obtain
the same bounded sets. More generally, for any connected multiplicative topologi-
cal group G, we can take T = N and n∗A = An = {a1a2 · · · an : a1, a2, . . . , an ∈ A}.
Let U be an open and symmetric neighborhood of e. Then N ∗ U is an open, and
therefore also closed, subgroup of G. Thus, N ∗ U = G.

Example 2.5 (Standard boundedness on Topological groups). Fix a dense subset
T of G of minimal cardinality. For our purposes, it does not matter which dense
subset we take. Define t ∗ A = tA = {ta : a ∈ A} for all t ∈ T,A ⊆ G. The
T -bounded sets are the precompact subsets of G. Axiom (B6) holds because our
groups are assumed to be infinite Hausdorff.

When a topological group also happens to be a topological vector space, the term
standard boundedness system on G has two contradictory interpretations. When
we wish to use the one of topological vector spaces, we will say so explicitly.

The two canonical examples were combined by Hejcman [24], who considered
the case T = D × N, where D is a dense subset of G, and (d, n) ∗ A = dAn. The
T -bounded sets are the standard bounded sets when G is a topological vector space,
and the precompact sets when G is a locally compact group.

Definition 2.6. Let (G, T ) be a boundedness system. A set A ⊆ G is κ-bounded
(with respect to T ) if, for each neighborhood U of e, there is S ⊆ T such that
|S| ≤ κ, and A ⊆ S ∗ U . The boundedness number of A in (G, T ), denoted bT (A),
is the minimal κ such that A is κ-bounded.

Axiom (B6) asserts that bT (G) ≥ ℵ0.
For the standard boundedness system (G, T ) on a topological group G (Example

2.5), bT (G) does not depend on the choice of the dense subset T . Indeed, we have
the following.

Definition 2.7. For a topological group G and a set A ⊆ G, b(A) is the minimal
cardinal κ such that for each neighborhood U of e, there is S ⊆ A such that |S| ≤ κ,
and A ⊆ SU .

Lemma 2.8 (folklore). Let (G, T ) be a standard boundedness system on G. Then:

(1) bT (A) = b(A) for all A ⊆ G.
(2) If A ⊆ B ⊆ G, then b(A) ≤ b(B).

Proof. (2) Clearly, bT (A) ≤ bT (B). Thus, it suffices to prove (1).
(≥) Fix a neighborhood U of e in G. Let V be a neighborhood of e in G, such

that V = V −1 and V 2 ⊆ U . Let S ⊆ T be such that |S| ≤ bT (A), and A ⊆ SV . By
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thinning out S if needed, we may assume that for each s ∈ S, sV ∩A 6= ∅. For each
s ∈ S, pick an element as ∈ sV ∩ A. Then s ∈ asV , and thus sV ⊆ asV

2 ⊆ asU .
Let S′ = {as : s ∈ S}. Then S′ ⊆ A, |S′| ≤ |S| ≤ bT (A), and A ⊆ SV ⊆ S′U .

(≤) Similar, using that T is dense in G. �

Lemma 2.9. For a standard boundedness system (G, T ) on a topological group,
|T | = d(G). �

Thus, if (G, T ) is a boundedness system withG a σ-compact group, then bT (G) =
ℵ0. But if G is (nonmetrizable and) not separable, then for the standard bounded-
ness system on G, |T | = d(G) > ℵ0. That is, for each neighborhood U of e there is
a countable S ⊆ T such that S ∗ U = G, but there is no such S independent on U .

Recall that for infinite cardinals κ and λ, κ · λ = max(κ, λ).

Proposition 2.10. Let (G, T ) be a boundedness system. Then

bT (G) ≤ |T | ≤ χ(G) · bT (G).

In particular:

(1) For metrizable G, |T | = bT (G).
(2) b(G) ≤ d(G) ≤ χ(G) · b(G).
(3) For metrizable G, b(G) = d(G).

Proof. |T | ≤ χ(G) · bT (G): Let {Uα : α < χ(G)} be a neighborhood base of G at
e. For each α < χ(G), let Sα ⊆ T be such that |Sα| ≤ bT (G), and Sα ∗ Uα = G.
Let S =

⋃
α<χ(G) Sα. For each neighborhood U of e, S ∗ U = G. If follows that

|T | = |S| ≤ χ(G) · bT (G).
For (2) and (3), consider the standard boundedness system on G. �

Thus, when considering metrizable groups, we may replace bT (G) by |T |, or by
d(G) when the standard boundedness system is considered.

We give some examples, using the (multiplicative) torus group T = {z ∈ C :
|z| = 1}.

Example 2.11. The inequalities in Proposition 2.10 cannot be improved, not even
for the standard boundedness system (Item 3 of the proposition) on powers of the
torus: For compact groups G of cardinality 2κ, b(G) = ℵ0, and d(G) = log(κ),
where log(κ) is defined as min{λ : κ ≤ 2λ} [11, Theorem 3.1].

Thus, for infinite κ, b(Tκ) = ℵ0, d(T
κ) = log(κ), and χ(Tκ) = κ. The inequality

ℵ0 ≤ log(κ) ≤ κ cannot be improved: Let c = 2ℵ0 .

(1) κ = ℵ0 gives b(G) = d(G) = χ(G) = ℵ0.
(2) κ = c gives b(G) = d(G) = ℵ0 < χ(G) = c.
(3) κ = c

+ gives b(G) = ℵ0 < d(G) = log(c+) < χ(G) = c
+.

(4) κ = iω gives b(G) = ℵ0 < d(G) = χ(G) = iω.
6

3. When T is countable

Methods and ideas from the context of topological vector spaces, developed by
Saxon and Sánchez-Ruiz [34], and by Burke and Todorcevic [9], generalize in a
straightforward manner to general boundedness systems (G, T ) with T countable.

6The cardinal iω is defined as the supremum of all cardinals in, n ∈ N, where i1 = 2ℵ0 and
for each n > 1, in = 2in−1 .
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Even for the standard boundedness systems on topological groups, some of the
obtained results were apparently not observed earlier.

Definition 3.1. (G, T ) is locally bounded if there is in G a neighborhood base at
e, consisting of bounded sets.

Definition 3.2. Let P,Q be partially ordered sets. P � Q if there is an order-
preserving f : P → Q with image cofinal in Q. P is cofinally equivalent to Q if
P � Q and Q � P .

If P � Q, then cof(Q) ≤ cof(P ).

Definition 3.3. Let (G, T ) be a boundedness system. BddT (G) is the family of
T -bounded subsets of G. BddT (G) is considered with the partial order ⊆. When
(G, T ) is a standard boundedness system, BddT (G) is the family of precompact
subsets of G, which we denote for simplicity by PK(G).

Remark 3.4. If G is T -bounded, then BddT (G) is cofinally equivalent to the sin-
gleton {1}.

For a function f : X → Y and A ⊆ X,B ⊆ Y , we use the notation f [A] =
{f(a) : a ∈ A}, and f−1[B] = {x ∈ X : f(x) ∈ B}.

For locally convex topological vector spaces with the standard boundedness
structure, the following is pointed out in [9, Theorem 2.5]. Recall that when T
is countable, we may identify T with N.

Proposition 3.5. If a boundedness system (G,N) is locally bounded and G is un-
bounded, then BddN(G) is cofinally equivalent to N.

Proof. Fix a bounded neighborhood U of e, such that for each finite F ⊆ N, F ∗U 6=
G. Define ϕ : G→ N by

ϕ(g) = min{n : g ∈ n ∗ U}.

The functions K 7→ maxϕ[K] and n 7→ ϕ−1[{1, . . . , n}] establish the required
cofinal equivalence. �

Systems which are not locally bounded are more interesting in this respect.
Assume that G is metrizable, and let Un, n ∈ N, be a neighborhood base at e.

Definition 3.6. Ψ : G→ NN is defined by

x 7→ ϕx(n) = min{m : x ∈ m ∗ Un}.

For a bounded set B ⊆ NN, f = maxB ∈ NN is defined by f(n) = max{g(n) :
g ∈ B}. Define functions BddN(G) → NN and NN → BddN(G), respectively, by

K 7→ maxΨ[K];

f 7→ Ψ−1[{g ∈ NN : g ≤ f}].

Both functions are monotone, and the image of the latter is cofinal in BddN(G).
For locally convex topological vector spaces with the standard boundedness

structure, the following is proved in [34, Proposition 1] and in [9, Theorem 2.5].

Theorem 3.7. Let (G,N) be a metrizable non-locally bounded boundedness system.
Then BddN(G) is cofinally equivalent to NN.
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Proof. As compact sets are bounded, it suffices to show that there is a neighborhood
base Un, n ∈ N, at e, and for each f ∈ NN, there is a compact K ⊆ G, such that
f ≤ maxΨ[K].

Let Un, n ∈ N, be a descending neighborhood base at e. As U1 is not bounded,
we may assume (by shrinking U2 if needed) that there is no m such that U1 ⊆
{1, . . . ,m} ∗ U2. Continuing in the same manner, we may assume that for each n,
there is no m such that Un ⊆ {1, . . . ,m} ∗ Un+1.

Given f ∈ NN, choose for each n an element xn ∈ Un \ {1, . . . , f(n)} ∗ Un+1.
As the original sequence Un was descending to e, xn converges to e, and thus
K = {xn : n ∈ N} ∪ {e} is a compact set as required. �

Corollary 3.8. Let G be a separable metrizable non-locally precompact group. Then
PK(G) is cofinally equivalent to NN.

Definition 3.9. For a topological space X , C(X,T) is the group of all continuous
functions from X to T with pointwise multiplication, endowed with the compact-
open topology. That is, a neighborhood base at the constant function 1 is given by
the sets

{f ∈ C(X,T) : (∀x ∈ K) |f(x)− 1| < ǫ},

where K is a compact subset of X , and ǫ is a positive real number.

A Polish group is a complete, separable, metrizable group. We give two well
known examples of non-locally compact Polish groups, and where it is not imme-
diately clear (without Corollary 3.8) that PK(G) is cofinally equivalent to NN.

Example 3.10. Let L be a Lie group, for example T or the group of unitary n× n
complex matrices. Let K be a compact metric space. C(K,L) is a Polish group,
with the metric given by the supremum norm. C(K,L) is not locally compact
(unless K is finite). By Lemma 3.7, the family of compact subsets of C(K,L) is
cofinally equivalent to NN.

Example 3.11. Consider the group SN of permutations on N, where for each finite
F ⊆ N, the set UF of all permutations fixing F is a neighborhood of the identity.
This defines a neighborhood base at the identity permutation, and thus a topology
on SN. SN is a (nonabelian) Polish group, and it is not locally compact. Thus, its
compact subsets are cofinally equivalent to NN.

For f, g ∈ NN, f ≤∗ g means: f(n) ≤ g(n) for all but finitely many n. b is the
minimal cardinality of a ≤∗-unbounded subset of NN. b is uncountable, and can
consistently be any regular uncountable cardinal (details are available in [13, 7]).

For locally convex topological vector spaces with the standard boundedness
structure, the following is Corollary 2.6 of [9].

Corollary 3.12. Let (G,N) be a metrizable boundedness system.

(1) For each F ⊆ BddN(G) with |F| < b, there is a countable S ⊆ BddN(G)
such that each member of F is contained in a member of S.

(2) Each union of less than b bounded subsets of G is a union of countably
many bounded subsets of G.

Proof. The statements are immediate when G is locally bounded. Thus, assume it
is not. Then (1) follows from the cofinal equivalence of BddN(G) and NN, and (2)
follows from (1). �
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Definition 3.13. A group G is metrizable modulo precompact if there is a precom-
pact subgroup K of G, such that the coset space G/K is metrizable.

Example 3.14. All Čech-complete groups, and all almost-metrizable groups, are
metrizable modulo precompact.

For nonabelian G, the coset space G/K need not be a group since we do not
require K to be a normal subgroup. However, the concept of boundedness extends
naturally to the coset space G/K, and we have the following.

Lemma 3.15. Let K be a precompact subgroup of G, and π : G → G/K be the
canonical quotient map.

(1) If P ∈ PK(G), then π[P ] ∈ PK(G/K).
(2) If Q ∈ PK(G/K), then π−1[Q] ∈ PK(G).
(3) PK(G) is cofinally equivalent to PK(G/K).

Proof. (1) Precompactness of K is not needed here: Let U be a neighborhood of
eK in G/K. As π−1[U ] is a neighborhood of e in G, there is a finite F ⊆ G such
that P ⊆ Fπ−1[U ]. Then π[P ] ⊆ π[Fπ−1[U ]] = FU .

(2) Let U be a neighborhood of e in G. Take a neighborhood W of e such
that W 2 ⊆ U . As K is precompact, there is a neighborhood V of e such that
VK ⊆ KW .7 As K is precompact, there is a finite I ⊆ G such that K ⊆ IW .
π[V ] is a neighborhood of eK in G/K. Take a finite subset F of G such that

Q ⊆ π[F ]π[V ]. Then π−1[Q] ⊆ π−1[π[F ]π[V ]] = FKVK ⊆ FK2W = FKW ⊆
FIW 2 ⊆ FIU , and FI is finite.

(3) If P ∈ PK(G), then Q = π[P ] ∈ PK(G/K), and π−1[Q] ∈ PK(G), and
contains P . Thus, the map Q 7→ π−1[Q] shows that PK(G/K) � PK(G). Similarly,
if Q ∈ PK(G/K), then P = π−1[Q] ∈ PK(G), and Q = π[P ] ∈ PK(G/K), and
thus the map P 7→ π[P ] gives PK(G) � PK(G/K). �

Corollary 3.16. Let G be a separable, metrizable modulo precompact, Baire group.
If G is a union of fewer than b precompact sets, then G is locally precompact.

Proof. By Lemma 3.15, we may assume that G is metrizable. By Corollary 3.12, G
is a union of countably many precompact sets. As the closure of precompact sets is
precompact, we may assume that these sets are closed. As G is Baire, one of these
sets has nonempty interior. It follows that there is a precompact neighborhood of
e. �

If every bounded subset of a normed space is separable, then the space is separa-
ble. Dieudonné [12] asked to what extent this can be generalized to locally convex
topological vector spaces. Burke and Todorcevic answered this question completely,
by showing that the same assertion holds in all locally convex topological vector
spaces if, and only if, ℵ1 < b [9]. One direction of this assertion is generalized as
follows.8

Theorem 3.17. Let (G,N) be a metrizable boundedness system, and d(G) < b. If
all bounded subsets of G are separable, then G is separable.

7This is standard: Take a neighborhood W0 of e with W 2
0 ⊆ W , and then take a finite F ⊆ K

such thatK ⊆ FW0. For each g ∈ F , e·g = g ∈ FW0, and thus there is a neighborhood Vg of e with

Vg · g ⊆ FW0. Take V =
⋂

g∈F Vg. Then V F ⊆ FW0, and thus V K ⊆ V FW0 ⊆ FW0W0 ⊆ FW .
8Theorem 3.17 is trivial when applied to standard boundedness systems on topological groups,

but is nontrivial in general.
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Proof. Assume otherwise, and let D be a discrete subset of G of cardinality ℵ1. As
ℵ1 < b, we have by Corollary 3.12 that D is a union of countably many bounded
sets. Thus, D has a (discrete, of course) bounded subset of cardinality ℵ1. �

Lemma 3.18. Using the notation of Definition 3.6: For all m1, . . . ,mn ∈ N,
Ψ−1[{f ∈ NN : f(k) ≤ mk, k = 1, . . . , n}] is open. �

Proposition 3.19. For each sequence xn → x in G, there is a subsequence {yn}
of {xn} such that ϕyn

converges to a function f ≤ ϕx.

Proof. By Lemma 3.18, ϕxn
(1) ≤ ϕx(1) for all but finitely many n. Thus, there is

m1 ≤ ϕx(1) such that I1 = {n : ϕxn
(1) = m1} is infinite. Inductively, given the

infinite Ik−1 ⊆ N, we have by Lemma 3.18 that ϕxn
(k) ≤ ϕx(k) for all but finitely

many n ∈ Ik−1, and thus there is mk ≤ ϕx(k) such that Ik = {n ∈ Ik−1 : ϕxn
(k) =

mk} is infinite.
For each k, pick ik ∈ Ik with ik > ik−1. Then ϕxi

k
→ f , where f(k) = mk ≤

ϕx(k) for all k. �

The next result tells that if the group has a small dense subset, then the bounded
subsets of its completion are determined by the bounded subsets of any dense
subgroup of G. A special case of it was proved by Grothendieck [23], and extended
in [9, Theorem 2.1], for G a separable metrizable locally convex topological vector
space.

Theorem 3.20. Let (G,N) be a metrizable boundedness system, and d(G) < b.
Let D be a dense subset of G. For each bounded K ⊆ G, there is a bounded J ⊆ D
such that K ⊆ J .

Proof. Assume that G is locally compact, and let U be a compact neighborhood
of e. Take a finite F ⊆ N such that K ⊆ F ∗ U , and let J = D ∩ (F ∗ U). Then
K ⊆ J .

Next, assume that G is not locally compact. As d(G) < b, there is K ′ ⊆ K
such that |K ′| < b and K ⊆ K ′. For each x ∈ K ′, let {xn} be a sequence in D
converging to x. By Proposition 3.19, we may assume that {ϕxn

} converges to a
function ϕ′

x ≤ ϕx. {xn : n ∈ N} ∪ {x} is compact and thus bounded. Take gx such
that ϕxn

≤ gx for all n.
As |K ′| < b, there is h ∈ NN such that gx ≤∗ h for all x ∈ K ′. We require also

that all elements of Ψ[K] are ≤ h. For each x ∈ K ′, ϕxn
≤ h for all but finitely

many n: Indeed, let N be such that gx(k) ≤ h(k) for all k > N . For all but finitely
many n,

ϕxn
(1) = ϕ′

x(1) ≤ ϕx(1) ≤ h(1), . . . , ϕxn
(N) = ϕ′

x(N) ≤ ϕx(N) ≤ h(N),

as x ∈ K, and for k > N , ϕxn
(k) ≤ gx(k) ≤ h(k). Thus, for J = D ∩ Ψ−1[{f ∈

NN : f ≤ h}], we have that K ′ ⊆ J , and therefore also K ⊆ J . �

It seems that the following special case of Theorem 3.20 was not noticed before.

Corollary 3.21. Let G be metrizable, and H be a dense subgroup of G. For each
precompact K ⊆ G, there is a precompact J ⊆ H such that K ⊆ J .

Proof. As K is precompact and G is metrizable, K is separable. As H is dense in
G and K is separable, there is a countable D ⊆ H such that K ⊆ D. We may
assume that D is a group. Let G′ = D, and apply Theorem 3.20 to G′ and D to
obtain a bounded J ⊆ D such that K ⊆ J . �
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Example 3.22. Consider the permutation group SN from Example 3.11. By Corol-
lary 3.21, each compact subset of SN is contained in the closure of some precompact
set of finitely supported permutations.

Remark 3.23. There is no assumption on the density of G in corollary 3.21. How-
ever, metrizability is needed: A P -group is a group where every Gδ set is open. For
each complete P -group G with a proper dense subgroup H , and each g ∈ G, {g}
is not contained in the closure of any precompact subset of H . Indeed, if B ⊆ H
is precompact, then B is a compact subset of G, and thus finite (countably infinite
subsets of P -spaces are closed and discrete), and thus B ⊆ H .

For a concrete example, let Z2 be the two element group, and take G = (Z2)
κ

for some κ > ℵ0, with the countable box topology, and let H be the group of all
g ∈ (Z2)

κ which are supported on a countable set.

Corollary 3.21 implies the following.

Corollary 3.24. Let G be metrizable, and H be a dense subgroup of G. Then
PK(H) is cofinally equivalent to PK(G). �

4. The cofinality of the family of bounded sets

For locally convex topological vector spaces with the standard boundedness
structure, the following is proved in [34, Theorem 1] and in [9, Theorem 2.5]. In its
general form, it follows from Proposition 3.5 and Theorem 3.7.

Corollary 4.1. Let (G,N) be a boundedness system.

(1) If G is bounded, then cof(BddN(G)) = 1.
(2) If G is locally bounded and unbounded, then cof(BddN(G)) = ℵ0.
(3) If G is metrizable non-locally bounded, then cof(BddN(G)) = d. �

Lemma 4.2. Let (G, T ) be a boundedness system.

(1) If G is bounded, then cof(BddT (G)) = 1.
(2) If G is unbounded, then:

(a) ℵ0 ≤ cof(BddT (G)).
(b) bT (G) ≤ cof(BddT (G)).
(c) If χ(G) ≤ |T | (in particular, for metrizable G), then |T | ≤ cof(BddT (G)).

Proof of (2). (a) Otherwise, G is the union of finitely many bounded sets, and thus
bounded.

(b) Let κ = cof(BddT (G)). By (a), κ ≥ ℵ0. Let {Kα : α < κ} be cofinal in
BddT (G). For each neighborhood U of e, there are finite Fα ⊆ T , α < κ, such that
Kα ⊆ Fα ∗U . Let S =

⋃
α<κ Fα. Then |S| = κ, and S ∗U contains

⋃
α<κKα = G.

(c) Apply (b) and Proposition 2.10. �

Lemma 4.3.

(1) Let (G, T ) be an unbounded locally bounded metrizable boundedness system.
Then cof(BddT (G)) = |T |.

(2) For each metrizable nonprecompact locally precompact group G, cof(PK(G)) =
d(G).

Proof of (1). Let U be a bounded neighborhood of e. Then {F ∗ U : F ∈ Fin(T )}
is cofinal in BddT (G), and thus cof(BddT (G)) ≤ |Fin(T )| = |T |. Apply Lemma
4.2. �
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Definition 4.4. For a set X , Fin(X)N is the set of all functions f : N → Fin(X).
This set is partially ordered by defining f ⊆ g as f(n) ⊆ g(n) for all n.

cof(Fin(X)N) depends only on |X |.

Lemma 4.5. Let (G, T ) be a metrizable boundedness system, and let κ = |T |.
Then:

(1) Fin(κ)N � BddT (G).
(2) cof(BddT (G)) ≤ cof(Fin(κ)N).
(3) cof(PK(G)) ≤ cof(Fin(d(G))N).

Proof of (1). Fix a neighborhood base Un, n ∈ N, at e. For each f ∈ Fin(κ)N,
define

Kf =
⋂

n∈N

f(n) ∗ Un.

Then each Kf ∈ BddT (G), and {Kf : f ∈ Fin(κ)N} is cofinal in BddT (G). �

The following concept is central for the main results of this section.

Definition 4.6. The local density of a group G is the cardinal

ld(G) = min{d(U) : U is a neighborhood of e in G}.

G has stable density if ld(G) = d(G).

G has local density κ if, and only if, G has a local base at e, consisting of elements
of density κ.

Lemma 4.7. ld(G) is the minimal density of a clopen subgroup H of G. Thus, G
has stable density if, and only if, d(H) = d(G) for all clopen H ≤ G.

Proof. Let U ⊆ G be an open neighborhood of e, with d(U) = ld(G). Take H =
〈U〉. H is an open subgroup of G, and is thus also closed. �

Example 4.8. If G is connected, then G has stable density.

Definition 4.9. Let V be a neighborhood of e in G. A set A ⊆ G is a V -grid
if the sets aV , a ∈ A, are pairwise disjoint. A is a grid if it is a V -grid for some
neighborhood V of e.

The intersection of a precompact set and a grid must be finite.

Lemma 4.10. Let G be a metrizable group with stable density. Let κ = d(G), and
U be a neighborhood of e.

(1) For each λ < κ, U contains a grid of cardinality greater than λ.
(2) If cof(κ) > ℵ0, then U contains a grid of cardinality κ.

Proof. (1) Let V ⊆ U be a symmetric neighborhood of e, such that for each S ⊆ G
with |S| = λ < κ, SV 2 does not contain U .

By Zorn’s Lemma, there is a maximal V -grid A in U . As V is symmetric,
U ⊆ AV 2. It follows that |A| > λ.

(2) Let {Vn : n ∈ N} be a symmetric local base at e, and for each n let An be
a maximal Vn-grid in U . The previous argument shows that for each λ < κ, there
is n such that |An| > λ. Thus, supn |An| = κ. As cof(κ) > ℵ0, there is n with
|An| = κ. �
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We are now ready for the main results of this section. Given partially ordered sets
P1, . . . , Pk, define the coordinate-wise partial order on P1×. . .×Pk by (a1, . . . , ak) ≤
(b1, . . . , bk) if a1 ≤ b1, . . . , ak ≤ bk.

Definition 4.11. For cardinals κ, λ, the family

[κ]λ = {A ⊆ κ : |A| = λ}

is partially ordered by ⊆.

Theorem 4.12. Let G be a metrizable non-locally precompact group of stable den-
sity κ. Then:

(1) PK(G) is cofinally equivalent to NN × [κ]ℵ0 .
(2) cof(PK(G)) = d · cof([κ]ℵ0).

Theorem 4.12 follows from the following two propositions.

Proposition 4.13. Let G be a metrizable non-locally precompact group of stable
density κ. Then:

(1) PK(G) is cofinally equivalent to Fin(κ)N.
(2) cof(PK(G)) = cof(Fin(κ)N).

Proof. If cof(κ) > ℵ0, let κn = κ for all n. Otherwise, κn, n ∈ N, be such that
κn < κn+1 for all n, and supn κn = κ.

Let {Un : n ∈ N} be a decreasing local base at e. For each n, there is by Lemma
4.10 a grid An ⊆ Un with |An| = κn.

Let P ∈ PK(G). Then P ∩ An is finite for all n. Thus, we can define Ψ :
PK(G) →

∏
n Fin(An) by

P 7→ f with f(n) = P ∩An

for all n.
Ψ is cofinal: For each f ∈

∏
n Fin(An), P =

⋃
n f(n) ∪ {e} is a countable set

converging to e, and thus compact, and for each n, f(n) ⊆ Ψ(P )(n).
As Ψ is monotone and cofinal, PK(G) �

∏
n Fin(An).

Lemma 4.14. If κn ≤ κn+1 for all n, and supn κn = κ, then
∏

n

Fin(κn) � NN ×
∏

n

Fin(κn) � Fin(κ)N.

To prove the first assertion, map f to the pair (h, f), where h(n) = max f(n) ∩ ω
(or 0 if f(n) ∩ ω is empty).

For the second assertion, map (h, g) to the function

f(n) =
⋃

m≤h(n)

g(m). �

Now, apply Lemma 4.5.

Proposition 4.15. For each infinite cardinal κ:

(1) Fin(κ)N is cofinally equivalent to NN × [κ]ℵ0 .
(2) cof(Fin(κ)N) = d · cof([κ]ℵ0).
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Proof of (1). Fin(κ)N � NN × [κ]ℵ0: Given f ∈ Fin(κ)N, define gf ∈ NN by gf(n) =
max(f(n) ∩ ω) ∪ {0}, and sf =

⋃
n f(n). The map f 7→ (gf , sf ) is monotone and

cofinal.
NN × [κ]ℵ0 � Fin(κ)N: For each s ∈ [κ]ℵ0 , fix a surjection rs : N → s. The

mapping of (f, s) ∈ NN × [κ]ℵ0 to g ∈ Fin(κ)N, defined by

g(n) = {rs(1), rs(2), . . . , rs(f(n))}

for all n, is monotone and cofinal. �

We now treat the general case, using the following observation: If H is a clopen
subgroup of G of density ld(G), then H has stable density, G/H is discrete, and
d(G) = |G/H | · ld(G).

Theorem 4.16. Let G be a metrizable non-locally precompact group.

(1) Let H be a clopen subgroup of G, of density ld(G). Then PK(G) is cofinally
equivalent to Fin(G/H)× NN × [ld(G)]ℵ0 .

(2) cof(PK(G)) = d · d(G) · cof([ld(G)]ℵ0).

Proof. (1) d(H) = ld(G) = ld(H).

Lemma 4.17. For each clopen subgroup H of G, PK(G) is cofinally equivalent to
Fin(G/H)× PK(H).

Proof. Fix a set S ⊆ G of coset representatives, that is such that for each g ∈ G,
|S ∩ gH | = 1. We need to show that PK(G) is cofinally equivalent to Fin(S) ×
PK(H).

For A ⊆ G let S(A) = {s ∈ S : sH ∩ A 6= ∅}.

P 7→


S(P ), H ∩

⋃

s∈S(P )

s−1P




is a monotone and cofinal map from PK(G) to Fin(S)× PK(H).
For the other direction, we can map each (F, P ) ∈ Fin(S)× PK(H) to FP . �

This, together with Theorem 4.12, proves (1).
(2) By (1),

cof(PK(G)) = |G/H | · d · cof([ld(G)]ℵ0).

The statement follows, using that |G/H | ≤ d(G) ≤ cof(PK(G)) (Lemma 4.2). �

Example 4.18. For all cardinals λ ≤ κ, there are metrizable groups G with ld(G) =
λ and d(G) = κ. For example, a product of a discrete group of cardinality κ and
C(Tλ,T).

An extreme example is where G is discrete: We obtain ld(G) = 1, and d(G) =
|G|, and indeed PK(G) = Fin(G/{e}).

cof(Fin(κ)N) also appears, in a different context, in a recent work of Bonanzinga
and Matveev [8]. We will return to this towards the end of this paper.
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5. Abelian groups and Pontryagin-van Kampen duality

In the remainder of the paper, all considered groups are assumed to be abelian,
and we use the additive notation and 0 for the trivial element. In particular, we
identify T with the additive group [−1/2, 1/2), having addition defined by identi-
fying ±1/2.

A character on a topological group G is a continuous group homomorphism from
G to the torus group T. This is a collision in terminology, which may be solved as
follows: Characters on G are its continuous homomorphisms into T, whereas the
character of G is the minimal cardinality of a local base of G at e. The set of all
characters on G, with pointwise addition, is a group.

Let K(G) denote the family of all compact subsets of G. For a set A ⊆ G and a
positive real ǫ, define

[A, ǫ] = {χ ∈ Ĝ : (∀a ∈ A) |χ(a)| ≤ ǫ}.

The sets [K, ǫ] ⊆ Ĝ (K ∈ K(G), ǫ > 0) form a neighborhood base at the trivial

character, defining the compact-open topology. We write Ĝ for the topological
group obtained in this manner.
G is reflexive if the evaluation map

E : G→
̂̂
G

defined by E(g)(χ) = χ(g) for all g ∈ G,χ ∈ Ĝ, is a topological isomorphism. The
Pontryagin-van Kampen Theorem asserts that every locally compact abelian group
is reflexive.

Let K be a compact subset of G. For each n, the set Kn = K ∪ 2K ∪ · · · ∪nK is
compact, and [Kn, 1/4] ⊆ [K, 1/4n]. Thus, the sets [K, 1/4], K ∈ K(G), also form

a neighborhood base of Ĝ at the trivial character.

Definition 5.1. For A ⊆ G, A⊲ = [A, 1/4]. Similarly, for X ⊆ Ĝ, X⊳ = {g ∈ G :
(∀χ ∈ X) |χ(g)| ≤ 1

4}.

Lemma 5.2 ([4, Proposition 1.5]). For each neighborhood U of 0 in G, U⊲ ∈ K(Ĝ).

Definition 5.3 (Vilenkin [37]). A set A ⊆ G is quasiconvex if A⊲⊳ = A. G
is locally quasiconvex if it has a neighborhood base at its identity, consisting of
quasiconvex sets.

For each A ⊆ G, A⊲ is a quasiconvex subset of Ĝ. Thus, Ĝ is locally quasicon-
vex for all topological groups G. Moreover, local quasiconvexity is hereditary for
arbitrary subgroups.
A⊲⊳ is the smallest quasiconvex subset of G containing A, and is closed.
In the case where G is a topological vector space G is locally quasiconvex in the

present sense if, and only if, G is a locally convex topological vector space in the
ordinary sense [4].

If G is locally quasiconvex, its characters separate points of G, and thus the
evaluation map E : G→ Gˆ̂ is injective. For each quasiconvex neighborhood U of

0 in G, U⊲ is a compact subset of Ĝ (Lemma 5.2), and thus U⊲⊲ is a neighborhood
of 0 in Gˆ̂ . As E[G] ∩U⊲⊲ = E[U⊲⊳] = E[U ], we have that E is open [4, Lemma
14.3].

Lemma 5.4. Let G be a complete locally quasiconvex group. Let N̂ be the family

of all neighborhoods of 0 in Ĝ. Then:
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(1) (N̂ ,⊇) is cofinally equivalent to (K(G),⊆).

(2) χ(Ĝ) = cof(K(G)).

Proof of (1). We have seen above that the monotone map ⊲ : K(G) → N̂ is cofinal.

Consider the other direction. Let K ∈ K(G), and take U = K⊲ ∈ N̂ . By
Lemma 5.2, U⊲ ∈ K(Gˆ̂ ). Now,

K ⊆ K⊲⊳ = U⊳ = E−1[U⊲ ∩ E[G]].

As G is complete, U⊲ ∩ E[G] is compact. As G is locally quasiconvex, E is open,

and therefore E−1[U⊲∩E[G]] is compact. Thus, the monotone map ⊳ : N̂ → K(G)
is also cofinal. �

Remark 5.5. As can be seen from the proof of Lemma 5.4, the assumption that
G is complete can be wakened to the so-called quasiconvex compactness property:
That for each K ∈ K(G), K⊲⊳ ∈ K(G).

We obtain the following result, which extends to topological abelian groups a
result of Saxon and Sanchez-Ruiz for the strong dual of a metrizable space [34,
Corollary 2].9

A topological space X is a k-space if the topology of X is determined by its
compact subsets, that is, F ⊆ X is closed if (and only if) F ∩ K is closed in K
for all K ∈ K(G). Every metrizable space is a k-space. A k-group is a topological
group which is a k-space.

Let G be the dual of a metrizable group Γ. If Γ is (pre)compact, then by
Pontryagin’s Theorem, G is discrete, that is χ(G) = 1. Item (1) of the following
proposition is known [11, Theorem 3.12(ii)].

Proposition 5.6. Let G be the dual of a metrizable, nonprecompact group Γ.

(1) If Γ is locally precompact, then χ(G) = d(Γ).
(2) If Γ is non-locally precompact, then χ(G) is the maximum of d, d(Γ), and

cof([ld(Γ)]ℵ0).

Proof. Außenhofer [3] and independently Chasco [10] proved that a metrizable
group and its completion have the same (topological) dual group. Since the density
and local density of a metrizable group are equal to those of its completion, we may
assume that Γ is complete.

Since Γ is metrizable, it is a k-space, and therefore G = Γ̂ is complete [4, Propo-
sition 1.11]. By Lemma 5.4 and the completeness of Γ,

χ(G) = χ(Γ̂) = cof(K(Γ)) = cof(PK(Γ)).

(1) By Lemma 4.3, cof(PK(Γ)) = d(Γ).
(2) By Theorem 4.16 and Theorem 4.15,

cof(PK(Γ)) = d(Γ) · cof(Fin(ld(Γ))N) = d · d(Γ) · cof([ld(Γ)]ℵ0). �

Even for locally quasiconvex G, the evaluation map E need not be continuous.
If it is, then G is isomorphic to its image E[G] in Gˆ̂ .

9As every locally convex topological vector space is connected, it has stable density and there-

fore the concept of local density is not required in [34]. As stated here, our theorem does not
generalize that of Saxon and Sanchez-Ruiz. There is a natural extension of our approach which
implies their result as well, by replacing K(G) with more general boundedness notions on G. For
concreteness, we do not present our results in full generality.
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Definition 5.7. A topological group G is subreflexive if the evaluation map E :
G→ E[G] is a topological isomorphism. In this case, we identify G with its image
E[G] ≤ Gˆ̂ .

Remark 5.8. If G is subreflexive, then G is locally quasiconvex. Indeed, Gˆ̂ is
locally quasiconvex, being a dual group, and therefore so is its subgroups E[G],
which is isomorphic to G.

Lemma 5.9. Let G be subreflexive. Then {K⊳ : K ∈ K(Ĝ)} is a neighborhood
base at e in G.

Proof. Let K ∈ K(Ĝ). K⊲ is a neighborhood of 0 in Gˆ̂ . As G is subreflexive, K⊳

is a neighborhood of 0 in G.
Let U be a neighborhood of e in G. As G is locally quasiconvex, we may assume

that U is quasiconvex. Then K = U⊲ is a compact subset of Ĝ (Lemma 5.2), and
K⊳ = U⊲⊳ = U . �

Proposition 5.10. Let G be subreflexive, and N be the family of all neighborhoods
of 0 in G. Then:

(1) (N ,⊇) is cofinally equivalent to (K(Ĝ),⊆).

(2) χ(G) = cof(K(Ĝ)).

Proof of (1). By Lemma 5.9, the monotone map ⊳ : K(Ĝ) → N is cofinal. The

monotone map ⊲ : N → K(Ĝ) is also cofinal: Let K ∈ K(Ĝ). By Lemma 5.9,
K⊳ ∈ N , and (K⊳)⊲ ⊇ K. �

Even complete subreflexive groups G need not be reflexive. The following corol-
lary tells that, however, Gˆ̂ is not much larger than G. (See also Theorem 7.6 and
Corollary 7.7 below.) Außenhofer made related observations in [3, 5.22]. Ques-
tion 5.23 in [3] asks whether the character group of an abelian metrizable group is
reflexive.

Corollary 5.11.

(1) For subreflexive G with Ĝ complete, χ(Gˆ̂ ) = χ(G).
(2) If G is a locally quasiconvex k-group, then χ(Gˆ̂ ) = χ(G).

Proof. (1) Ĝ is locally quasiconvex. By Lemma 5.4 and Proposition 5.10, χ(Gˆ̂ ) =

cof(K(Ĝ)) = χ(G).

(2) By Corollary 7.4 below, G is subreflexive. As G is a k-group, Ĝ is complete.
Apply (1). �

The first two items in the following theorem are well known.

Theorem 5.12. Let G be a subreflexive group, such that the group Γ = Ĝ is
metrizable. Then χ(G) = cof(PK(Γ)). Thus,

(1) If Γ is precompact, then χ(G) = 1, that is, G is discrete.
(2) If Γ is nonprecompact locally precompact, then χ(G) = d(Γ).
(3) If Γ is non-locally precompact, then χ(G) = d · d(Γ) · cof([ld(Γ)]ℵ0).

Proof. By Proposition 5.10, χ(G) = cof(K(Ĝ)) = cof(K(Γ)). Let ∆ be the comple-
tion of Γ. ∆ is locally quasiconvex too, and metrizable, and thus subreflexive. By
Corollary 3.24, cof(K(∆)) = cof(PK(Γ)).
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It remains to prove that K(Γ) is cofinally equivalent to K(∆). By the Außenhofer-

Chasco Theorem, we may identify ∆̂ with Γ̂. As G is subreflexive, we also identify

G with its image in Gˆ̂ = Γ̂, and similarly for ∆.

K(∆) � K(Γ): Let K ∈ K(∆). Then K⊲ is a neighborhood of 0 in ∆̂ = Γ̂ = Gˆ̂ .
As G is subreflexive, K⊲ ∩G is a neighborhood of 0 in G, and thus (K⊲ ∩G)⊲ ∈

K(Ĝ) = K(Γ). Define Φ(K) = (K⊲ ∩ G)⊲. For each K ∈ K(Γ), K ∈ K(∆) and
Φ(K) ⊇ K. Thus, Φ is cofinal.

K(Γ) � K(∆): Let K ∈ K(Γ). Then K⊲ is a neighborhood of 0 in Γ̂ = ∆̂. Thus,
K⊲⊲ ∈ K(∆ˆ̂ ), and as ∆ is complete, K⊲⊲ ∩∆ ∈ K(∆). Define Ψ : K(Γ) → K(∆)

by Ψ(K) = K⊲⊲ ∩∆. For each C ∈ K(∆), C⊲ is a neighborhood of 0 in ∆̂ = Γ̂,
and thus there is K ∈ K(Γ) such that K⊲ ⊆ C⊲. Then K⊲⊲ ⊇ C⊲⊲ ⊇ C, and
therefore Ψ(K) = K⊲⊲ ∩∆ ⊇ C. This shows that Ψ is cofinal.

(1) and (2) follow, using Lemma 4.3 and Theorem 4.16. �

Theorem 5.12 is stronger than Proposition 5.6: Duals of metrizable groups are
subreflexive, and have a metrizable dual.

6. Application to the free topological groups

A topological space X is hemicompact if cof(K(X)) ≤ ℵ0. X is a kω space if it
is a hemicompact k-space. Denote the weight of a topological space X by w(X).

The following theorem extends several results of Nickolas and Tkachenko [30,
31].10 For example, they proved that if X is compact, then

χ(A(X)) = d · cof([w(X)]ℵ0),

and that if X is a kω space such that all compact subsets of X are metrizable, then
χ(A(X)) = d. Nickolas and Tkachenko’s results were proved by direct methods.
Even in these special cases, their arguments are sophisticated and technically very
involved.

Theorem 6.1. Let X be a kω space of compact weight κ. Then

χ(A(X)) = d · cof([κ]ℵ0).

Proof. Außenhofer [3] and independently Galindo-Hernández [17] proved that for a
class of spaces X containing k-spaces (namely, Ascoli µ-spaces), A(X) is subreflex-
ive. Pestov [32] proved that for a class of spaces X containing kω spaces (namely,

µ-spaces), Â(X) = C(X,T). As X is kω , C(X,T) has a countable local base at 0
(namely, the sets [Kn, 1/n] where {Kn : n ∈ N} is cofinal in K(X)). Thus, C(X,T)
is metrizable.

Moreover, C(X,T) is non-locally precompact. Thus, Theorem 5.12 applies.

Lemma 6.2 (Engelking [14, 3.4.16]). If X is locally compact and w(X) is infinite,
then w(C(X,T)) ≤ w(X).

Lemma 6.3. Let X be a Tychonoff space of compact weight κ. Then:

(1) b(C(X,T)) = b(C(X,R)) = κ.

10See, e.g., the results numbered 2.12, 2.18, 2.22 in [30], and those numbered 2.9, 3.5, 3.7 in
[31].
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(2) If X is hemicompact (or just cof(K(X)) ≤ κ), then

b(C(X,T)) = d(C(X,T)) = ld(C(X,T)) = w(C(X,T)) = κ.

In particular, C(X,T) has stable density.

Proof. For each cofinal family K ⊆ K(X), and for Y = T or R, the mapping
f 7→ (f |K : K ∈ K) is an embedding of C(X,Y ) in

∏
K∈KC(K,Y ).

(1) In the case K = K(X), we have by Lemma 6.2 that

b(C(X,Y )) ≤ b




∏

K∈K(X)

C(K,Y )


 = sup

K∈K(X)

w(C(K,Y )) ≤

≤ sup
K∈K(X)

w(K),

LetK ∈ K(X). Take S ⊆ C(X,Y ) with |S| = b(C(X,Y )), such that S+[K, 1/16] =
C(X,Y ). Then {f−1(−1/16, 1/16)∩K : f ∈ S} is a base of K: Let p ∈ U ∩K, U
open in X . As X is Tychonoff, there is g ∈ C(X,Y ) such that g is 1/4 on X \U and
g(p) = 0. As S+[K, 1/16] = C(X,Y ), there is f ∈ S such that |f(x)−g(x)| ≤ 1/16
for each x ∈ K. It follows that p ∈ g−1(−1/16, 1/16) ∩ K ⊆ U ∩ K. Thus,
w(K) ≤ b(C(X,Y )) for each K ∈ K(X).

(2) By (1), κ = b(C(X,R)) ≤ d(C(X,R)). As C(X,R) is connected, d(C(X,R)) =
ld(C(X,R)). For each ǫ < 1/2 and each compact K ⊆ X , [K, ǫ] is the same in
C(X,R) and in C(X,T). Thus,

κ ≤ ld(C(X,R)) ≤ ld(C(X,T)) ≤ d(C(X,T)) ≤ w(C(X,T)).

In the case where |K| = cof(K(X)),

w(C(X,T)) ≤ w

(
∏

K∈K

C(K,T)

)
= |K| · sup

K∈K
w(C(K,T)) ≤

≤ cof(K(X)) · sup
K∈K(X)

w(K) ≤ κ · κ = κ. �

We therefore have, by Theorem 5.12, that χ(A(X)) is the maximum of d and
cof([κ]ℵ0), where κ = d(C(X,T)) = sup{w(K) : K ∈ K(X)}.

This completes the proof of Theorem 6.1. �

Example 6.4. If X is compact, or locally compact σ-compact, then X is a kω space,
and thus Theorem 6.1 applies.

Together with the results of Sections 8 and 9, we obtain Theorem 5 and the
following.

Corollary 6.5. Let
⊔

nKn be the direct union of compact sets Kn with w(Kn) =

ℵn (e.g., Kn = Tℵn). Fix γ with 1 ≤ γ < ℵ1. It is consistent (relative to the
consistency of ZFC with appropriate large cardinal hypotheses) that

ℵω < b = d = ℵω+1 < χ

(
A

(
⊔

n∈N

Kn

))
= ℵω+γ+1 = c. �

The following deep theorem implies that our results also apply to free nonabelian
groups. Let F (X) be the free (nonabelian) group over X .

Theorem 6.6 (Nickolas-Tkachenko [31]). If X is Lindelöf, then χ(A(X)) = χ(F (X)).
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7. The inner theorem

We begin with an inner characterization of subreflexivity.

Definition 7.1. V ⊆ G is a k-neighborhood of 0 if for each K ∈ K(G) with 0 ∈ K,
V ∩K is a neighborhood of 0 in K.

Lemma 7.2 (Hernández-Trigos-Arrieta [25]).

(1) Let G be a k-group. Every quasiconvex k-neighborhood of 0 is a neighbor-
hood of 0.

(2) Let U be a quasiconvex subset of a locally quasiconvex group G. U is a

k-neighborhood of 0 if, and only if, U⊲ ∈ K(Ĝ).

We obtain the following.

Theorem 7.3. A group G is subreflexive if, and only if, G is locally quasiconvex,
and each quasiconvex k-neighborhood of the identity in G is a neighborhood of the
identity.

Proof. (⇐) Let F ∈ K(Ĝ), and K ∈ K(G). By Ascoli’s Theorem, the restrictions
of the elements of F to K form an equicontinuous subset of C(K,T). Hence, if K
contains 0, then F⊲ ∩K is a neighborhood of 0 in K. Again, taking intersections,
we have that F⊳ ∩K is a neighborhood of 0 in K. Thus, F⊳ is a neighborhood of
0.

(⇒) Let W be a quasiconvex k-neighborhood of 0. Then W⊲ is compact in Ĝ.
As G is subreflexive, W =W⊲⊳ is a neighborhood of 0 in G. �

Lemma 7.2 and Theorem 7.3 imply the following.

Corollary 7.4 (folklore). Every locally quasiconvex k-group is subreflexive. �

For locally convex topological vector spaces and countable weight, the following
result was proved by Ferrando, Ķakol, and M. López Pellicer [16].

Theorem 7.5. Let G be a locally quasiconvex group.

(1) b(Ĝ) is equal to the compact weight of G.

(2) If Ĝ is metrizable, then d(Ĝ) equal to the compact weight of G.

Proof of (1). (≤) As Ĝ ≤ C(G,T), we have by Lemmata 2.8 and 6.3 that b(Ĝ) ≤
b(C(G,T)) = sup{w(K) : K ∈ K(G)}.

(≥) Let K ∈ K(G). Since [K, 1/8] is a neighborhood of the identity of Ĝ, there

is S ⊆ Ĝ with |S| ≤ b(Ĝ), such that S + [K, 1/8] = Ĝ.
S separates the points of K: Let a1, a2 be distinct elements of K. As G is locally

quasiconvex, there is χ ∈ Ĝ such that |χ(a1 − a2)| > 1/4. As χ ∈ Ĝ = S+ [K, 1/8],
there are α ∈ S and β ∈ [K, 1/8] such that χ = α + β. Then |β(a1 − a2)| ≤
|β(a1)|+ |β(a2)| ≤ 2/8 = 1/4, and thus |α(a1 − a2)| ≥ |χ(a1 − a2)| − 1/4 > 0.

Thus, the minimal topology on K which makes all elements of S continuous is
Hausdorff, and asK is compact, its topology (which is minimal Hausdorff) coincides

with it. Thus, w(K) ≤ |S| ≤ b(Ĝ). �

An unpublished result of Außenhofer asserts that, if G is a separable metrizable
group, then all higher character groups of G are separable. This is in accordance
with item (3) of the following theorem.
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Theorem 7.6. Let G be a topological group, and let κ be the compact weight of Ĝ.

(1) If G is subreflexive, then b(G) = b(Gˆ̂ ) = κ.
(2) If G is a locally quasiconvex k-group, then b(G) = b(Gˆ̂ ) = κ.
(3) If G is locally quasiconvex and metrizable, then d(G) = d(Gˆ̂ ) = κ.

Proof. (1) As G ≤ Gˆ̂ , b(G) ≤ b(Gˆ̂ ). By Theorem 7.5, b(Gˆ̂ ) = κ. We prove
that κ ≤ b(G).

Let K be a compact subset of Ĝ. As G is subreflexive, the set

U = (K ∪ 2K)⊳ = {g ∈ G : (∀χ ∈ K) |χ(g)| ≤ 1/8}

is a neighborhood of 0 in G. Let S ⊆ G be such that |S| ≤ b(G), and S + U = G.
S separates points of K: Let χ, ψ ∈ K be distinct. As G⊲ = {0}, there is g ∈ G

such that |(χ− ψ)(g)| > 1/4. Take s ∈ S, u ∈ U , such that g = s+ u. Then

|(χ− ψ)(s)| ≥ |(χ− ψ)(g)| − |(χ− ψ)(u)| > 1/8.

It follows that w(K) ≤ |S| ≤ b(G).
(2) Locally quasiconvex metrizable groups are subreflexive, being locally quasi-

convex k-groups (Corollary 7.4). �

Mikhail Tkachenko pointed out to us that our results imply the following.

Corollary 7.7. For all subreflexive G with Ĝ complete, w(Gˆ̂ ) = w(G).

Proof. This follows from Corollary 5.11 and Theorem 7.6, using the fact w(G) =
b(G) · χ(G) for all topological groups [2]. �

We now turn to characterizing the local density of Ĝ in terms of inner properties
of G.

A mapping is compact covering if each compact subset of the range space is
covered by the image of a compact subset of the domain.

Lemma 7.8. Let H be a compact subgroup of G. Then the canonical projection
π : G→ G/H is compact covering.

Proof. For each compact K ⊆ G/H , π−1[K] is compact. �

Lemma 7.9. Let G be a topological group, and H be a compact subgroup of G.

Then Ĝ/H is topologically isomorphic to H⊲.

Proof. The homeomorphism ϕ : Ĝ/H → Ĝ defined by ϕ(χ) = χ ◦ π is continuous

and injective, and its image is {χ ∈ Ĝ : χ|H = 0} = H⊲.

ϕ is open: Let U be a neighborhood of the identity of Ĝ/H . We may assume
that U = K⊲ for some compact K ⊆ G/H . By Lemma 7.8, we may assume that
K = π[K ′] for some compact K ′ ∈ K(G). We may also assume that K ′ ⊇ H . Then
K ′⊲ ⊆ H⊲, and therefore

ϕ[U ] = ϕ[π[K ′]⊲] = {ϕ(χ) : χ ∈ π[K ′]⊲} = {χ ◦ π : χ ◦ π ∈ K ′⊲} = K ′⊲

is open. �

Lemma 7.10. Let H be an open subgroup of G. Then the topological groups Ĝ/H
and H⊲ are isomorphic.

Proof. As G/H is discrete, the topology on Ĝ/H is the finite-open, and π is finite-

covering. ϕ is open because Ĝ/H is compact. �
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For brevity, denote the compact weight of a group G by kw(G).

Proposition 7.11. Let G be a locally quasiconvex kω group. Then

ld(Ĝ) = min
{
kw(G/H) : H ≤ G compact

}
.

Proof. (≥) Let Γ be an open subgroup of G such that d(Γ) = ld(Ĝ). As G is kω,

Ĝ is first countable and thus metrizable. By Corollary 7.4 below, G is subreflexive.
As kω groups are complete, Γ⊳ = Γ⊲∩G is an intersection of a compact group and
a complete group, and is thus compact.

By Lemma 7.9, Ĝ/Γ⊳ is isomorphic to Γ⊳⊲, which contains Γ. By definition, Γ
separates the points of G/Γ⊳, and therefore so does every dense subset of Γ. Thus,
w(K) ≤ d(Γ) for all compact sets K ⊆ G/Γ⊳.

(≤) Let H be a compact subgroup of G. By Lemma 7.9, Ĝ/H is isomorphic to

H⊲. As H⊲ ≤ Ĝ, it is metrizable, and thus by Corollary 7.5,

d(H⊲) = d(Ĝ/H) = kw(G/H).

As H⊲ is open, ld(Ĝ) ≤ d(H⊲). �

G is locally hemicompact (respectively, locally kω) if G contains an open hemi-
compact (respectively, kω) subgroup. The first item of the following theorem is an
immediate consequence of the Pontryagin-van Kampen Theorem. The second item
is new.

Theorem 7.12. Let G be a locally quasiconvex, locally kω group. Let H be an open
kω subgroup of G, of compact weight κ. Let λ = min{kw(H/K) : K ≤ H compact}.
Then:

(1) If H is nondiscrete and locally compact, then χ(G) = κ.
(2) If H is non-locally compact, then χ(G) is the maximum of d, κ, and

cof([λ]ℵ0).

Proof of (2). As H is open in G, χ(G) = χ(H). G is locally quasiconvex, and

therefore so is H . By Lemma 7.4, H is subreflexive. By hemicompactness, Γ := Ĥ
is metrizable. By Theorem 5.12,

χ(H) = d · d(Γ) · cof([ld(Γ)]ℵ0).

By Theorem 7.5(2), d(Γ) = κ. By Proposition 7.11, ld(Γ) = λ. �

Concrete estimations are given in the overview (Section 1). The remaining sec-
tions provide proofs for these estimations and additional details.

8. Shelah’s theory of possible cofinalities

In this section, we provide estimations for cof([κ]ℵ0), and in the next one, we
establish some freedom in its determination. The estimations given here either
appear explicitly in works of Shelah, or are easy consequences thereof. For the
reader’s convenience, we provide proofs.

Lemma 8.1. For each κ > ℵ0, κ ≤ cof([κ]ℵ0) ≤ κℵ0 .

Proof. cof([κ]ℵ0) ≤ |[κ]ℵ0 | = κℵ0 .
For the other inequality, note that if A ⊆ [κ]ℵ0 and |A| < κ, then |

⋃
A| ≤

|A| · ℵ0 < κ, and thus
⋃
A 6= κ. In particular, A is not cofinal in [κ]ℵ0 . �
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For each cardinal λ, κ = λℵ0 has the property κℵ0 = κ. The most well-known
cases are where κ = 2λ for some λ, but there are many more. E.g., if κℵ0 = κ, then
the same is true for the subsequent cardinal κ+, and therefore also for κ++, etc.
This is also the case when κ is inaccessible. If GCH holds, this is the case for all
cardinals, except for those of cofinality ℵ0.

Corollary 8.2. For each infinite κ with κℵ0 = κ, cof(Fin(κ)N) = cof([κ]ℵ0) = κ.

Proof. If κℵ0 = κ, then κ ≥ c ≥ d. Apply Theorem 4.15 and Lemma 8.1. �

Lemma 8.3. For each κ > ℵ0, cof([κ]
ℵ0) = κ·sup{cof([λ]ℵ0) : λ ≤ κ, cof(λ) = ℵ0}.

Proof. (≥) Monotonicity and Lemma 8.1.
(≤) If cof(κ) = ℵ0, this follows from the fact that κ ≤ cof([κ]ℵ0) (Lemma 8.1).
If cof(κ) > ℵ0, then each countable subset of κ is bounded in κ. Thus,

[κ]ℵ0 =
⋃

α<κ

[α]ℵ0 ,

and therefore cof([κ]ℵ0) ≤ κ · sup{cof([λ]ℵ0) : λ < κ}. The statement for κ = ℵ1

follows, and by induction, for each λ < κ with λ > ℵ1,

cof([λ]ℵ0) = λ · sup{cof([µ]ℵ0) : µ ≤ λ, cof(µ) = ℵ0} ≤

≤ κ · sup{cof([µ]ℵ0) : µ ≤ κ, cof(µ) = ℵ0}. �

Corollary 8.4. For each κ, if cof([κ]ℵ0) = κ, then cof([κ+]ℵ0) = κ+. �

Item (1) of the following corollary is well known [1], and Item (2) was proved,
independently, by Bonanzinga and Matveev [8].

Corollary 8.5.

(1) cof([ℵ0]
ℵ0) = 1, and for each n ≥ 1, cof([ℵn]

ℵ0) = ℵn.
(2) cof(Fin(ℵ0)

N) = d, and for each n ≥ 1, cof(Fin(ℵn)
N) = d · ℵn. �

Already for κ = ℵω, the situation is different. A diagonalization argument as in
König’s Lemma gives the following.

Lemma 8.6 (folklore). For singular κ, cof([κ]cof(κ)) > κ.

Corollary 8.7. If cof(κ) = ℵ0 < κ, then cof(Fin(κ)N) ≥ d · κ+. �

Upper bounds require advanced methods.

8.1. The easy way: Dismissing large cardinals. Consider the following weak-
ening of the Generalized Continuum Hypothesis.

Definition 8.8. Shelah’s Strong Hypothesis (SSH) is the statement that for each
uncountable κ with cof(κ) = ℵ0, cof([κ]

ℵ0) = κ+.

Shelah’s Strong Hypothesis is originally stated as “for each singular κ, the pseu-
dopower of κ is κ+”. Its equivalence to the version presented here, which is much
more convenient for our purposes, is due to Shelah.11 The adjective “Strong” in
SSH means that there is a yet weaker hypothesis, but SSH is in fact quite weak.

11The more involved direction follows from Theorem 6.3 of [36]. For the other direction: If κ

is such that pp(κ) > κ+, then in particular cof[κ]cof(κ) > κ+, and we may (e.g., by Lemmata 3.4
and 3.8 in [33]) arrange that cof(κ) = ℵ0.
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In particular, its failure implies the existence of large cardinals in the Dodd-Jensen
core model.12

Following is the concluding Theorem 6.3 of [36]. The simplicity of the proof
given here is due to the reformulation of SSH.

Theorem 8.9 (Shelah [36]). Assume SSH. For each κ > ℵ0, cof([κ]ℵ0) is κ if
cof(κ) > ℵ0, and κ

+ if cof(κ) = ℵ0.

Proof. The case κ = ℵ1 is Corollary 8.5. Continue by induction on κ: If cof(κ) = ℵ0,
use Shelah’s Strong Hypothesis (as reformulated in Definition 8.8). If cof(κ) > ℵ0,
use Lemma 8.3 and the induction hypothesis to get

cof([κ]ℵ0) = κ · sup{cof([λ]ℵ0) : λ < κ} ≤ κ · sup{λ+ : λ < κ} = κ. �

Corollary 8.10. Assume SSH. For each κ > ℵ0:

cof(Fin(κ)N) =

{
d · κ cof(κ) > ℵ0

d · κ+ cof(κ) = ℵ0. �

Thus, under SSH, the value of cof(Fin(κ)N) is completely understood. We point
out that in Theorem 8.9 and Corollary 8.10, it suffices to assume that Shelah’s
Strong Hypothesis holds for all λ ≤ κ.

8.2. The hard way: Bounds in ZFC. Even without any hypotheses beyond the
ordinary axioms of mathematics, nontrivial bounds on Fin(κ)N can be established
in many cases, using Shelah’s pcf theory [35]. There are several good introduc-
tions to pcf theory. A recent one is [1], whose references include some additional
introductions. The following deep result appears as Theorem 7.2 in [1].

Theorem 8.11 (Shelah). For each α < ℵα, cof([ℵα]
|α|) < ℵ|α|+4 .

In [1], Theorem 8.11 is stated for limit ordinals α, but taking δ = α + ω, we
have that δ < ℵα < ℵδ, and applying Shelah’s Theorem for the limit ordinal δ,
cof([ℵα]

|α|) ≤ cof([ℵδ]
|α|) = cof([ℵδ]

|δ|) < ℵ|δ|+4 = ℵ|α|+4.

Definition 8.12. Let π be the first fixed point of the ℵ function, i.e., the first
ordinal (necessarily, a cardinal) π such that π = ℵπ.

π is quite big: Let π0 = ℵ0 and for each n, let πn+1 = ℵπn
. Then π = supn πn.

Shelah’s Theorem has the following immediate corollaries.

Corollary 8.13. For each α < π, cof([ℵα]
ℵ0) < ℵ|α|+4 .

Proof. By induction on α. For α < ω this follows from Corollary 8.5. Assume that
the assertion is true for all β < α, and prove it for α:

cof([ℵα]
ℵ0) ≤ cof([ℵα]

|α|) · cof([|α|]ℵ0 ).

As α < π, Corollary 8.11 is applicable, and thus cof([ℵα]
|α|) < ℵ|α|+4. Let β be such

that |α| = ℵβ. Then β < π, and thus β < ℵβ = |α|. By the induction hypothesis,
cof([ℵβ ]

ℵ0) < ℵ|β|+4 ≤ ℵ|α|+3 . �

Corollary 8.14. For each successor cardinal κ < π and each α with κ ≤ α < κ+ω,
cof([ℵα]

ℵ0) < ℵκ+3 .

12The failure of SSH at κ implies that in the Dodd-Jensen core model, there is a measurable
λ ≤ κ, moreover o(λ) = λ++. The exact consistency strength of SSH was established by Gitik in
[18, 19].
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Proof. For each β ∈ {κ, κ+ 1, κ+ 2, . . . }, either β = κ and cof(ℵβ) = cof(κ) > ℵ0,
or β is a successor ordinal, and thus cof(ℵβ) = ℵβ > ℵ0. Thus, by Lemma 8.3,

cof([ℵα]
ℵ0) = ℵα · sup{cof([ℵβ ]

ℵ0) : ℵβ ≤ ℵα, cof(ℵβ) = ℵ0} =

= ℵα · sup{cof([ℵβ ]
ℵ0) : β < κ, cof(β) = ℵ0} ≤

≤ ℵα · sup{cof([ℵβ ]
ℵ0) : β < κ}.

By Corollary 8.13, for each β < κ, cof([ℵβ ]
ℵ0) < ℵ|β|+4.

ℵα < ℵ|α|+ = ℵκ+ < ℵκ+3 . Now, for each β < κ, cof([ℵβ]
ℵ0) < ℵ|β|+4 ≤ ℵκ+3.

As cof(ℵκ+3) = κ+3 > κ, the supremum is also smaller than ℵκ+3. �

Corollary 8.15. For each cardinal κ with ℵ0 < cof(κ) < κ < π, and each α with
κ ≤ α < κ+ ω, cof([ℵα]

ℵ0) = ℵα.

Proof. Replace, in the proof of Corollary 8.14, the last paragraph with the following
one: For each β < κ, |β|+4 < κ, and thus ℵ|β|+4 < ℵκ ≤ ℵα. �

Example 8.16. For each n ≥ 1:

(1) For each α < ωn + ω, cof([ℵα]
ℵ0) < ℵωn+3

.

(2) cof([ℵℵωn
]ℵ0) = ℵℵωn

.

Combining Theorem 4.15 and the estimations provided here for cof([κ]ℵ0), we
obtain estimations for cof(Fin(κ)N).

9. Things that cannot be proved about cof(Fin(κ)N)

Bonanzinga and Matveev consider in [8] a property named star Menger , intro-
duced by Kočinac in [28]. Among other results, they prove that for each almost
disjoint family A of subsets of N with cof(Fin(|A|)N) = |A|, the Mrówka space
Ψ(A) is not star Menger. By Proposition 4.15, the condition can be reformulated
as cof([|A|]ℵ0 ) = |A| ≥ d. Corollary 8.15 and Corollary 8.10 imply the following
new result.

Corollary 9.1. Let A be an almost disjoint family of subsets of N.

(1) For each cardinal κ with ℵ0 < cof(κ) < κ < π, and each α with κ ≤ α <
κ+ ω: If |A| = ℵα ≥ d, then Ψ(A) is not star Menger.

(2) Assume SSH. If |A| ≥ d and |A| has uncountable cofinality, then Ψ(A) is
not star Menger. �

In this context, |A| ≤ c, and the following problem is natural.

Problem 9.2 (Bonanzinga-Matveev [8]). Is cof(Fin(κ)N) = d · κ for each infinite
κ ≤ c? In particular, is cof(Fin(κ)N) = d for each infinite κ ≤ d?

It is pointed out in [8] that the answer is positive for κ < ℵω and for κ = c (see
Corollaries 8.2 and 8.5). Thus, clearly the Continuum Hypothesis implies a positive
answer, and the problem actually asks whether the statements are provable without
special set theoretic hypotheses. We first observe that SSH implies a positive answer
to the second part of this problem, and a conditional solution to its first part.

Theorem 9.3. Assume SSH.

(1) For each infinite κ ≤ d, cof(Fin(κ)N) = d.
(2) cof(Fin(κ)N) = d ·κ for all infinite κ ≤ c if, and only if, there is n ≥ 0 such

that c = d
+n, the n-th successor of d.
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Proof. We use Corollary 8.10.
(1) If cof(κ) > ℵ0, then cof(Fin(κ)N) = d ·κ = d. Otherwise, as cof(d) ≥ b > ℵ0,

we have that κ < d, and cof(Fin(κ)N) = d · κ+ = d.
(2) If there is such n, then each κ with d ≤ κ ≤ c has uncountable cofinality,

and thus cof(Fin(κ)N) = d · κ. Otherwise, take κ with cof(κ) = ℵ0 and d < κ ≤ c.
Then cof(Fin(κ)N) = d · κ+ = κ+ > κ = d · κ. �

Theorem 9.3 indicates how to obtain a negative answer to the first part of Prob-
lem 9.2. We use some facts from the theory of forcing. A general introduction is
available in Kunen’s book [29], whose notation we follow. Some more details which
are relevant for us here are available in Batoszyński and Judah’s book [5], and in
Blass’s chapter [7].

Theorem 9.4. It is consistent (relative to the consistency of ZFC) that Shelah’s
Strong Hypothesis holds (in particular, cof(Fin(κ)N) = d for each infinite κ ≤ d),
and there is κ with d < κ < c, such that cof(Fin(κ)N) = cof([κ]ℵ0) = κ+ > d.

Proof. Let V be a model of (enough of) ZFC and of Shelah’s Strong Hypothesis
(e.g., a model of the Generalized Continuum Hypothesis). Let d = ℵα in V . Take
β > α+ ω, and let B(ℵβ) be Solovay’s forcing notion adding ℵβ random reals (see
[5, Chapter 3]). B(ℵβ) is ccc.

Lemma 9.5 (folklore). A generic extension by a ccc forcing notion does not change
cof([κ]ℵ0).

Proof. Let P be a ccc forcing notion, and G be a P -generic filter over V .
Let λ be the cofinality of [κ]ℵ0 in V [G]. Take f : λ×N → κ such that f ∈ V [G],

and the sets {f(α, n) : n ∈ N}, α < λ, are cofinal in ([κ]ℵ0)V [G].
As λ × N and κ belong to V , there is F : λ × N → [κ]ℵ0 such that F ∈ V , and

f(α, n) ∈ F (α, n) for all (α, n) ∈ λ × N [29, Lemma 5.5]. Let F = {
⋃

n F (α, n) :
α < λ}. F ∈ V , and |F| ≤ λ in V .

For each A ∈ ([κ]ℵ0)V , A ∈ ([κ]ℵ0)V [G], and thus there is α such that A ⊆
{f(α, n) : n ∈ N} ⊆

⋃
n F (α, n). Thus, F is cofinal in ([κ]ℵ0)V . This shows that

cof([κ]ℵ0) ≤ λ in V .
This argument also shows that ([κ]ℵ0)V is cofinal in ([κ]ℵ0)V [G]. Thus, cof([κ]ℵ0)

cannot be < λ in V . �

Let G be B(ℵβ)-generic over V . By Lemma 9.5, V [G] satisfies Shelah’s Strong
Hypothesis.

For each f ∈ NN∩V [G], there is g ∈ V such that f ≤∗ g [5, Lemma 3.1.2]. Thus,
in V [G], d is at most ℵα and c is at least ℵβ .

13 Theorem 9.3(2) applies. �

Thus, the answer to the second part of Problem 9.2 is “No.”, and the answer to
its first part is “Yes” if there are no (inner) models of set theory with large cardinals.
To complete the picture, it remains to show that the answer is “No” (to both parts)
when large cardinal hypotheses are available. For the following theorem, it suffices
for example to assume the consistency of supercompact cardinals, or of so-called
strong cardinals . More precise large cardinal hypotheses are available in [21].

13In fact, if we begin with a model of GCH, then in V [G], d = ℵ1 and c = ℵβ , or ℵβ+1 if

cof(β) = ℵ0.
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Theorem 9.6 (Gitik-Magidor [21]). It is consistent (relative to the consistency of
ZFC with an appropriate large cardinal hypothesis) that 2ℵn = ℵn+1 for all n, and
2ℵω = ℵω+γ+1, for any prescribed γ < ω1.

This is related to our questions as follows. As ℵω is a limit cardinal of cofinality
ℵ0, 2

ℵω = (2<ℵω)ℵ0 . If 2ℵn = ℵn+1 for all n, then 2<ℵω = ℵω, and thus 2ℵω =
(ℵω)

ℵ0 = 2ℵ0 · cof([ℵω]
ℵ0) = cof([ℵω]

ℵ0).
Hechler’s forcing H is a natural forcing notion adding a dominating real, i.e.,

d ∈ NN such that for each f ∈ NN ∩ V , where V is the ground model, f ≤∗

d. H = {(n, f) : n ∈ N, f ∈ NN}, and (n, f) ≤ (m, g) if n ≥ m, f ≥ g, and
f(k) = g(k) for all k < m. If G is H-generic over V , then by a density argument,
d =

⋃
(n,f)∈G f |{1,...,n} ∈ NN is as required. H is ccc, and thus so is the finite

support iteration P = (Pα, Q̇α : α < λ), where for each α, Pα forces that Q̇α is
Hechler’s forcing.

Theorem 9.7. It is consistent (relative to the consistency of ZFC with appropriate
large cardinal hypotheses) that

ℵω < b = d = ℵω+1 < cof(Fin(ℵω)
N) = cof([ℵω ]

ℵ0) = ℵω+γ+1 = c,

for each prescribed γ with 1 ≤ γ < ℵ1.

Proof. Use Theorem 9.6 to produce a model of set theory, V , satisfying c = ℵ1 and
cof([ℵω]

ℵ0) = ℵω+γ+1.

Let P = (Pα, Q̇α : α < ℵω+1) be the finite support iteration, where for each α,

Pα forces that Q̇α is Hechler’s forcing. Let G be P -generic over V , and for each
α < ℵω+1, let Gα = G ∩ Pα be the induced Pα-generic filter over V . For each
α, let dα be the dominating real added by Qα in stage α + 1, so that for each
f ∈ V [Gα] ∩NN, f ≤∗ dα.

As P is ccc, cof([ℵω ]
ℵ0) remains ℵω+γ+1 in V [G] (Lemma 9.5). As ℵω+1 has

uncountable cofinality, we have that NN ∩ V [G] =
⋃

α<ℵω+1
NN ∩ V [Gα] [5, Lemma

1.5.7]. It follows that {dα : α < ℵω+1} is dominating in V [G]. Moreover, it follows
that for each B ⊆ NN ∩ V [G] with |B| < ℵω+1, there is α < ℵω+1 such that
B ⊆ NN∩V [Gα], and thus B is ≤∗-bounded (by dα). Thus, in V [G], b = d = ℵω+1.

As the Continuum Hypothesis holds in V , |P | = ℵω+1, and as P is ccc, the value

of c in V [G] is at most (by counting nice names [29, Lemma 5.13]) |P |ℵ0 = ℵℵ0

ω+1,

evaluated in V . In V , ℵℵ0

ω+1 ≤ (2ℵω)ℵ0 = 2ℵω = ℵω+γ+1. Thus, in V [G], c ≤

ℵω+γ+1. On the other hand, in V , as ℵω < d ≤ c, ℵω+γ+1 = cof([ℵω]
ℵ0) ≤ ℵℵ0

ω ≤
c
ℵ0 = c. �

Remark 9.8. For finite γ, which are sufficient for our purposes, a simplified proof of
the Gitik-Magidor Theorem 9.6 is available in Gitik’s Chapter [20]. Following our
proof, Assaf Rinot pointed out to us that starting with a supercompact cardinal
(a stronger assumption than that in [20]), one may argue as follows: Start with a
model of GCH with κ supercompact. Use Silver forcing to make 2κ = κ++ [27,
Theorem 21.4]. Since κ remains measurable, we can use Prikry forcing to make
cof(κ) = ℵ0, without adding bounded subsets [27, Theorem 21.10]. Then GCH
holds up to κ, and cof([κ]ℵ0) = κℵ0 = 2κ = κ++. Then, continue as in the proof of
Theorem 9.7.
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10. Concluding remarks

Most of the results provided here for complete groups, have natural extensions
to incomplete groups. For these extensions, one needs to consider the dual group

Ĝ with [P, ǫ] a neighborhood of the identity for each precompact P ⊆ G. The
extension is sometimes straightforward, using Theorem 3.20.

Similarly, the results of Section 6 extend to completely regular spaces which are
not µ-spaces. Here, one should consider functionally bounded subsets of X instead
of compact subsets of X , and the topology of C(X,T) should be the functionally
bounded-open topology. The main result of this section would then deal with
spaces X having a cofinal family of functionally bounded sets, and whose topology
is determined by its functionally bounded sets. We point out that in this case, the
µ-completion of X is kω, and X is dense in this completion.

With some adaptation, the results presented here for kω groups also apply to
locally convex vector spaces that have a countable cofinal family of bounded sets.
For instance, any countable inductive limit of DF -spaces.

The present work is not the only one where pcf theory arises naturally in a study
of a seemingly unrelated concept. Another recent example is in Feng and Gartside’s
paper [15], where pcf theory turned out essential in a study of a problem motivated
by Hilbert’s 13th problem.
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