GVSOS:
A NEW CLIENT FOR OGC® SENSOR
OBSERVATION SERVICE INTERFACE
STANDARD

Alain Tamayo, Joaquin Huerta, Carlos Granell, Laura Diaz, Ricardo Quirds

Department of Information Systems
Universitat Jaume I, Spain.
alain.tamayo@gmail.com, {huerta, carlos.granell, laura.diaz, quiros}@Isi.uji.es

Keywords: Sensor systems, SOS, Sensor Web Enablement, gvSIG



Abstract

A key problem with sensor networks is achieving interoperability between different
networks potentially built using different software and hardware platforms. Services interfaced
by the Open Geospatial Consortium (OGC) specifications allow GIS clients to access geospatial
data without knowing the details about how this data is gathered or stored. Currently, OGC is
working on a set of interoperable interfaces and metadata encodings known as Sensor Web
Enablement (SWE) that enables the integration of heterogeneous sensor systems and
measurements into geospatial information infrastructures. In this article we present the
implementation of gvSOS, a new module for gvSIG to connect to Sensor Observation Services
(SOS). The gvSOS client module allows gvSIG users to interact with SOS servers, displaying the
information gathered by sensors as a layer composed by features. We present the software
engineering development process followed to build the module. For each step of the process we
specify the main obstacles found during the development such as, restrictions of the gvSIG
architecture, inaccuracies in the OGC specifications, and a set of common problems found in
current SOS server implementations available on the Internet. For most of the problems found

we propose a solution, or at least we present a path that might lead to it.



1. Introduction

Sensor networks, computer networks that provide access to spatially distributed sensors that
monitor physical phenomena like temperature, sound and pressure (Percivall and Reed,
2006)(Chen et al., 2009), are gaining popularity in the development of software applications.
Reasons for the expansion of sensor technology are basically twofold. Recent improvements in
sensor hardware and communications ease the creation of smaller and inexpensive sensors
thanks, for instance, to the use of low-cost processors and integrated radio transmitters (Kanoun
and Trankler, 2004). In addition, sensors are also revolutionising our daily life because they can
be used in a wide variety of applications. Examples include from scientific contexts like
environmental monitoring (Martinez et al., 2004), habitat monitoring (Mainwaring et al,,
2002)(Szewczyk et al., 2004), structural health monitoring (Paek et al.,2005)(Chintalapudi et al.,
2006), seismic detection (Werner-Allen et al., 2005) (Werner-Allen et al., 2006) to focused
applications like augmented reality (Kealy and Scott-Young, 2006) and serious games (LaViola,
2008) applications.

Apart from dealing with the inherent complexity of individual networks, a current problem
already pointed out in the literature (Douglas et al., 2008) (Jabeur et al., 2009) is achieving
interoperability between different sensor networks, since accessing observational datasets is
often limited by incompatibilities between systems and protocols. In the field of environmental
modelling it is common to integrate heterogonous data sources to run and calibrate
hydrological models for a given watershed (Diaz et al., 2008). In such application scenarios
flood gauges, air pollution monitors, meteorological sensor stations are combined with satellite
imagery and other spatial data in order to provide the needed input data for the model. In

practice, however, each remote data source may use distinct encodings, formats and even

3



communication protocols (Chen and Helal, 2008) leading to a lack of standardization and
interoperability problems when multiple sensor networks are combined.

Over the last few years, a lot of work has been devoted to standardise the components and
interfaces. The mechanisms exposed by Spatial Data Infrastructures (SDI) (Masser, 2005) have
been widely adopted to permit interoperable access to geospatial data through service
interfaces like Web Map Service Implementation Specification (WMS) (OGC, 2006), Web
Coverage Service Interface Implementation Specification (WCS) (OGC, 2006a) and Web Feature
Service Implementation Specification (WFS) (OGC, 2005). Using these service specifications, GIS
clients can access geospatial data without knowing details about how this data is gathered or
stored. In this way, data can be shared and reused, users can choose the best tool for the task,
and people with less training can benefit from using geospatial data in more applications (OGC,
2005a).

In the sensor context, standardization also simplifies interoperability issues between
components inside specific networks and the interoperability of different clients with different
networks. The Sensor Web offers a solution to the problem of interconnecting sensor networks.
The Sensor Web (van Zyl et al, 2009) (Liang et al., 2005) (Jabeur et al., 2009) defines an
infrastructure and open standards that provide open access to sensors, sensor networks, and
their observational datasets. The sensor layer in SDIs is being encompassed by a recent initiative
called Sensor Web Enablement (SWE), for “specifying interoperability interfaces and metadata
encodings that enable real time integration of heterogeneous sensor webs into the information
infrastructure” (OGC, 2008). This framework of open standards for exploiting sensor of all types
should allow sensor nodes and their corresponding sensor networks to be monitored and

controlled through web interfaces using GIS clients (Percival and Reed, 2006).



The current systems for the Sensor Web described in the Related Work section still suffer
some problems that limit Sensor Web and SDI integration:

¢ Although observational datasets have been identified as key element in spatial data
infrastructures, they are still isolated in the sense that they are not usually incorporated
in SDI contexts to the same degree as other geospatial data.

e Observational datasets are still disconnected from processing capabilities. This feature
is critical, for instance, in various domains concerned with analysis tasks in risk
management situations where processing raw sensor data to produce meaningful
information is extremely important.

This article deals with the above issues by providing a new module for gvSIG (gvSIG, 2009)
to access observational datasets in the realm of SWE standards and SDI ideals. gvSIG is an open
source SDI thick-client designed for managing geographic information, providing support for
common data formats, including vector and raster spatial data, remote spatial databases, and
standard OGC web services. The Sensor Observation Services (SOS) client module allows gvSIG
users to connect to and interact with SOS servers offering observations and measurements
gathered by sensors. In addition, by providing easy access to sensor data on a client-side
processing tool like gvSIG, we are enabling data processing and data fusion capabilities to fully
exploit the potential of the Sensor Web, letting users and decision-makers process and use real-
time sensor data from heterogeneous distributed sensor systems and networks.

We present the software engineering development process followed to build the module. For
each step of the process we specify the main obstacles found during the development, such as
restrictions of the gvSIG architecture, inaccuracies in the OGC'’s specifications, and a set of
common problems found in current SOS servers implementations available on the Internet. The

rest of the document is structured as follows: Section 2 presents an introduction to OGC



standards related with SWE. Section 3 introduces gvSIG. In Section 4, we present the analysis
and design phases of the SOS client. Further details on the implementation of the main use
cases are presented in Section 5. In Section 6 we discuss some tests and preliminary results.
Section 7 presents related work in the sensor web context. Finally, in Section 8 we present some

conclusions and briefly outline future work.

2. Sensor Web Enablement

Despite of the large number of existing sensor networks deployment, most of them remained
traditionally close to certain sensor communities offering limited mechanisms for
interoperability (OGC, 2008a). The OGC Sensor Web Enablement (SWE) initiative aims to solve
this situation by providing a set of interoperable, standardised interfaces, data encodings and
metadata to make sensor resources openly accessible and available through Internet (OGC,
2008)(Zyl et al., 2009). In essence, interoperable and scalable service-oriented networks
wrapping heterogeneous sensor systems can be implemented based on the models, encodings,
and services of the SWE architecture (OGC, 2007). SWE acts like a middleware between the
physical sensor networks and the software clients operated by final users. In this section we
briefly introduce the specifications related to our implementation.

SWE includes several implementation specifications defining services and encodings.
Implementation specifications for encodings are:

e Observation & Measurement Schema (O&M): It defines standard models and XML
Schema for encoding observations and measurements from a sensor (OGC, 2007a).
e Sensor Model Language (SensorML): It defines standard models and XML Schema for

describing sensor systems and processes. (OGC, 2007b).



o Transducer Markup Language (TransducerML or TML): It defines the conceptual model
and XML Schema for describing transducers and supporting real-time streaming of
data to and from sensor systems (OGC, 2007c).

Implementation specifications for services are:

o Sensor Observations Service (SOS): Standard web service interface for requesting,
filtering, and retrieving observations and sensor system information. (OGC, 2007d).

e Sensor Planning Service (SPS): Standard web service interface for requesting user-

driven acquisitions and observations. (OGC, 2007e).

2.1. Encodings

As mentioned before, O&M defines standard models and XML Schema for encoding
observations and measurements from sensors. Observations are related with (OGC, 2007a):

e a feature of interest, which is a feature representing the real world object which is the
observation target;

e an observed property identifying or describing the phenomenon for which a value is
measured or estimated;

e aprocedure describing the process used to produce the result; and a result containing
the value produced by the procedure.

On the other hand, SensorML defines standard models and XML Schema for describing
sensor systems and processes. One of the main concepts in SensorML is process, which defines
inputs, outputs, parameters, and a method for that process, as well as a collection of metadata
useful for discovery and user assistance. Sensor systems are modelled as a collection of physical

and non-physical processes. The former is concerned with detectors, actuators and sensor



systems, all of which have some relationship with space and time. The latter includes processes

that can be modelled by mathematical operations (OGC, 2007b).

2.2 Services

The SOS specification provide access to observations from sensors and sensor systems in a
standard way that is consistent for all sensor systems including remote, in-situ, fixed and
mobile sensors (OGC, 2007d). The information exchanged between SOS clients and servers
follows the O&M specification for observations and the SensorML specification for sensors or
system of sensors descriptions. Observations are grouped into observation offerings. An
observation offering is a set of related observations that follow some criteria. Unfortunately, the
specification does not provide a more precise definition, or any clear guidance on doing this
grouping.

The SOS implementation specification defines three operation profiles: core profile
(mandatory), transactional profile (optional) and enhanced profile (optional). The core profile
contains three operations: GetCapabilities, DescribeSensor, and GetObservation. These are basic
operations needed for any data consumer to access sensor observations stored in a SOS server.
The GetCapabilities operation common for all OGC services allows clients to retrieve service
metadata from the server. The DescribeSensor operation allows SOS clients to retrieve SensorML
or TML descriptions of a given sensor. The GetObservation operation is used to retrieve sensor
observations from the server. The other two profiles offer operations to support data producers
(RegisterSensor, InsertObservation) and operations to provide clients with a richer interface for
interacting with the server (GetResult, GetFeatureOflnterest, GetFeatureOflnterestTime,

DescribeFeatureOfInterest, DescribeObservationType, and DescribeResultModel.



3. gvSIG

gvSIG! is a full-fledged GIS open source tool that provides support for common data formats,
including vector and raster spatial data, remote spatial databases, and standard OGC web
services. It provides the most common GIS tools such as map navigation, query map
information, distance measurement, thematic cartography, legend edition, labelling, feature
selection, data tables with statistics, geoprocessing tools, CAD and raster processing (Anguix
and Diaz, 2008). gvSIG allows for the combination in a single view of geospatial data with
different formats retrieved from different sources such as local files or an SDI. This software is
developed by the Regional Council for Infrastructures and Transportation of Valencia, Spain,
using Java under the GNU General Public License (GPL). Its name is an abbreviation of

"Generalitat Valenciana, Sistema d’Informacié Geogrdfica” (gvSIG, 2009)

gvSIG is built using a plug-in model where functionality can be added to a generic
framework called Andami that permits building multiple documents interface applications.
Andami is an extensible framework and can be customized using plug-ins to build different
kinds of applications. The GIS-specific behaviour is added to the application by its three main

subsystems (gvSIG, 2009a):

e guSIG: The gvSIG subsystem is the equivalent of the Presentation layer in an
enterprise layered architecture. It handles the interaction between the system and the
user. It provides the user with the graphic representation of geographical data and

the tools to interact with this data.

1 All the information presented here corresponds to gvSIG 1.1.2
9



e FMAP: This library includes all that is needed to handle GIS objects. It includes
classes that can draw layers, assign legends, execute queries, make spatial analysis,

etc.

e  SubDriver: Contains classes to access the different data formats. It handles the
communication with real data sources isolating other layers from the specific details

of the interaction

A gvSIG plug-in is a module containing a set of extensions to add new functionality to the
system. An extension is a Java class implementing the IExtension interface that bridges new
functionality with the existing one (gvSIG, 2009a). Every installed plug-in is located in a single

directory called gvSIG\ extensions and loaded by Andami at start-up.

gvSIG allows users to create projects containing views, tables and layouts. Views contain the
graphical representation of geospatial information and its corresponding legend. Tables contain
the representation of alphanumeric data related with the geospatial information contained in

the views. Layouts are representations of views in a printer friendly format.

4. Analysis and Design

In this section we present the analysis and design phases of the SOS client plug-in gvSOS. We
expose the plug-in’s use case model and high-level architecture followed by a more detailed
view of the main gvSOS layers. gvSOS implements the Core profile of the SOS 1.0.0

specification and other supporting specifications such as SensorML 1.0.1 and O&M 1.0.0.

10



4.1 Use case model

The use case model for gvSOS is very simple, containing only four use cases and two actors.
The use cases are:

e Initialize Extension: This includes the initialization of the extension carried out at
application start-up, when user interface elements related with the extension are
registered (toolbar buttons, menu items, connection wizards, etc.)

e Add SOS Layer: In this use case the user adds a new SOS layer to a gvSIG view. This
process includes the connection to the SOS server, and the selection of the information
will be displayed in the layer.

e Display Sensors Information: Once displayed in a view, sensors can be selected by the
user to ask for further details about them. This information will be displayed in a table
in a different window.

e Display Sensors Observations: The sensors can also be selected to request their
observations. This information can be filtered using temporal or spatial filters,
depending on the server’s capabilities.

The actors involved are End Users that fires use cases related with retrieving and displaying
information about sensors and their observations; and guvSIG, that triggers the plug-in

initialization at system start-up.

4.2 High Level Architecture.

The high-level architecture is similar to the gvSIG architecture. It is arranged as a variation of
the layer pattern (Buschman et al., 1996), containing the same main gvSIG layers as can be seen

in the package diagram in Figure 1:

11



e guSIG-SOS: It contains the plug-in user interface, providing the wizard used by the user
to connect to the SOS server and dialog boxes to request information about sensors and
observations. This package extends the gvSIG subsystem.

e FMap-SOS: This package contains the code for integrating the information received
from the server with the rest of the information in the system. It contains the code to
create and draw layers, drivers for interacting with the remote clients, etc. It is an
extension of the FMap subsystem.

e  RemoteServices-SOS: It implements the low-level communication with the remote SOS
server, isolating the rest of the system from the details of this interaction. This package

is an extension of the SubDriver subsystem.

4.3 Geospatial Data Handling: Fmap layer

The internal functioning of the Fmap package is a rather complex one. Simplifying things we can
say that SOSFeature are the features that are represented in a layer of type FLyrSOS, in this case
they represent individual sensors or sensor systems. FlyrSOS uses an instance of
FMapSOSDriver to recover all the data from the server. Once the data is retrieved, SOSAdapter
processes this information. FMapSOSDriver inherits from ConcreteMemoryDriver, which allows
data to be kept in memory for caching purposes. FMapSOSDriver recovers data from the SOS
server using functionality provided by lower layers. A class diagram showing these
relationships is presented in Figure 2.

At this point a major design challenge was found: the gvSIG architecture provides support
for adding and caching features in ConcreteMemoryDriver, but only information about
geometries and simple attributes values can be included in such features. There is no support

for complex data structures like sensors containing information about observations, with the

12



added complexity that observations hold intrinsically a temporal component. To solve this
problem the sensors descriptions are kept as features following the gvSIG model, but
observations are stored in two nested hash tables. The first table uses the sensor identifier as
key to link the sensor with an internal table containing the observations data. This data uses the
observed property as key to access pair values including the time instant and the measured

value for an observation.

4.4 Geospatial Data Access: SubDriver layer

In this layer, the analysis package RemoteClient-SOS is implemented. The RemoteServices-
SOS package implements the communication with the SOS Server and it resembles most of the
structure of the rest of the OWS extensions already included in gvSIG. The main classes in this
package are SOSClient and SOSProtocolHandler (Figure 3). SOSClient represents the SOS client
end-point, encapsulating the logic for connecting to and requesting operations from the SOS
server. SOSProtocolHandler is in charge of sending all the requests from a SOS client to the
proper server. Only the SOS specification core profile is supported so far. SOSProtocolHandler is a
subclass of the abstract class org.gusig.remoteClient. OGCProtocolHandler, which implements the
common behaviour for all OGC services. SOSProtocolHandler is also abstract and it must be

specialized for every version of the SOS specification.

5. Implementation

In this section we explain in further detail the main use cases. We show how end users can

interact with gvSOS to display sensors and information gathered by them.

13



5.1 “Add SOS Layer” Use Case

We start with the “Add SOS Layer” that is started when, after creating a view, the user wants
to add a new layer. By selecting the option Layer\ Add Layer from the menu or pressing the “Add
Layer” toolbar button a dialog box is shown. Within this dialog box we select the “SOS” tab to
specify the parameters to connect to the SOS server and retrieve the data describing a given
observation offering. The SOSWizard class handles the interaction with the user to establish the
connection with the server and to select the observation offering to be displayed. After
establishing the connection and setting the required parameters, SOSWizard must return to the
gvSIG subsystem the layer to be displayed. This layer contains all of the sensors within the
offering represented as points. The gvSIG subsystem uses this layer to create the view that
shows the information to the user. SOSWizard is composed of several panels and uses some
helper classes to fill them with the necessary data. The most important helper class is
FMapSOSDriver, already mentioned in previous sections.

An example of the final result of these operations is shown in Figure 4. In the view four
layers are included; the first one starting from the bottom contains an ECW image of the Iberian
Peninsula. The second and third layers contain boundaries from Spain and Spanish provinces
respectively. The layer at the top contains sensor systems located in harbours of four Spanish
cities retrieved from a local SOS server used for testing purposes. Sensors systems are

represented as yellow points.

5.2 Show sensors and observations information use cases

Once the layer is displayed the last two use cases can be started by using the mouse to select the

target sensors and then clicking the “See table attributes” button, to get the sensors information,

14



or the “Get Observations” button to get the observations. Information about sensors is
displayed in a table showing the main sensor attributes such as location, input and outputs, etc.
Interaction with the remote server is not necessary to implement this behaviour because
metadata about sensors was already read when the layer was loaded. The Fmap subsystem
implements this behaviour in class FlyrVect, the direct ancestor of FlyrSOS. FlyrVect keeps an
internal table model which is updated every time the layer content changes. This table model is
used by gvSIG to show a table with the stored data at user request.

To display information about observations users must select the sensors first and then press
the GetObservation toolbar button. This action displays a dialog box where the observed
properties to be shown and a set of filters can be specified. The filters included in this version
are only temporal filters, which allow the specification of time intervals or time instants to
constrain the observations. Using the data entered in this dialog box, GetObservation requests for
each sensor are generated and sent to the server. After the observations are read from the server
a dialog box showing them in a table is displayed to the users (Figure 5). In the left side of the
dialog box users have a list with the requested sensors. Depending on the selected sensor, a
table containing observations values is displayed on the right side. This table includes the time
in which every observation was made and the value of the observation. The example in Figure 5
shows the value of the WaterLevel property in a four days period, sampling the property every
twelve hours.

The user can also display this information as a graph, being this in most of the cases a more

convenient solution than just looking into the bare numbers (Figure 6).

15



6. Tests and Preliminary Result

Although the module implementation is not complete yet, tests have been executed to validate
the functioning of some of its components. These tests have revealed some details in the SOS
specification that complicates the implementation of clients and servers:

e In the server capabilities document there is no information about how procedures and
observed properties of an offering are related. The only way to know which observed
property is related with a given sensor is by executing a DescribeSensor operation. This
problem make a user interface where users can select the information to be shown
whether by observed properties or by sensors harder to implement and less responsive.
Considering that users do not have information a-priori about how sensors and
observed properties relate, they must wait for several requests to be issued to and
answered by the server before they could select a given observed property measured by
a given sensor.

e The time attribute for offerings permits specifying a temporal reference system through
the frame attribute. Default ISO 8601 and the Gregorian calendar with UTC are used.
Having only this information does not seem to be enough. ISO 8601 allows several
variations in the dates and times representation with basic and extended formats. After
running some tests with SOS servers available on the Internet, we have observed that
they do not support all possible variations in the date and time formats. Usually only
one or a few variations are supported. This situation can provoke that a client sending
valid ISO 8601 time values to the server may receive “Invalid Time Format” responses.
To solve this problem gvSOS remembers how servers represent time values and convert

any time value sent to it to this format. This problem could be avoided if the capabilities

16



document included more detailed information about the time format supported by the
server.

Some examined server implementations do not use the parameter name sensorld to
identify the sensor or sensor systems to be described using the DescribeSensor operation.
Instead the parameter name procedure is used. This implies that client issuing a correct
request to a server may receive an error message. This name difference seems to be
motivated by the fact that the name sensorld does not necessarily refers to a sensor in
this case. It refers to some of the procedures included in the server’s capabilities

“

document, which according to the SOS specification can be “...sensor systems,
instruments, simulators, etc.”.

Practically no information about temporal filters is included in any of the OGC
specifications. Maybe this is the reason why usually service implementations omit the
FilterCapabilities section from the capabilities document. To complicate matters, filters
specified in a GetObservation request are scattered all around since temporal filters are
included in the sos:eventTime tag, Id and spatial filters are included in the
sos:featureOfInterest tag, and scalar filters are included in the sos:result tag. A solution to
this problem could be to include all of the filters used in a GetObservation request in a
single section, much in the same way it is done in the capabilities document.

The SOS specification states that zero or many temporal filters (eventTime tags) may be
specified in a GetObservation request. There is no mechanism for a SOS client to know
the number of filters supported for a specific server. As a result a client might send a
correct request containing more filters than supported by the server, without any

warranties about what the server will response. A first attempt to solve this issue could

be to include an attribute to every filter category specifying how many filter are

17



supported for the category. This solution could be extended specifying this value for

every individual filter type.

7. Related Work

The fact that SWE specifications are so recent is reflected in the relatively few known
implementations of SWE-based services. OGC keeps a list of products compliant with its
specifications or implementing them. In such list, only a handful of products are listed that
implement the SWE specifications, in either the client or the server versions. On the server side,
SOS implementations are now part of widely known GIS products such as MapServer
(MapServer, 2009), Degree (Degree, 2009), or part of others product suites such as those
produced by 52°North Initiative or the VisAnalysis Systems Technologies (VAST) team, from
the University of Alabama in Huntsville (UAH). A comparison between some SOS servers can
be found in (Chen at al., 2009).

On the client side, the trend so far has been the implementation of custom-made clients to
connect to specific servers. This is due to the fact that building a client using web technologies
such as Perl or PHP, combined with mapping services such as Google Maps is relatively easy.
Another reason is that building a “general-purpose” client, able to interoperate with several
server products, is very hard even if both follow the same specification (see Section 6). Even
though, there are two products including SOS clients that in our opinion must be mentioned:
the 52°North’s OX-Framework and the VAST’s Space Time Toolkit (STT). Both products allow
the connection to several OGC Services, SOS included.

The OX-Framework provides developers with a client architecture where the information of
several kinds of OGC Services can be accessed, visualized and integrated (52North, 2009). The

framework can be used to construct different types of applications such as thick or mobile

18



clients. It can also be extended to support other OGC services by adding new “connectors”.
Currently, different versions of the WMS, WCS, SOS and SAS specifications are supported.

The VAST team has developed multiple tools related with SWE specifications, most of them
specialized in working with SensorML. The most relevant for this discussion is the Space Time
Toolkit (STT), which provides capabilities for integrating spatially and temporally-disparate
data in a highly interactive 3D display environment. Data retrieved from different OGC
services, including SOS, can be handled and visualized using this tool (UAH VAST, 2009).

The combination of gvSOS and gvSIG produces a similar product, but with larger
capabilities. gvSIG does not only provides access to OGC Services, it also provides access to an
enormous number of vector and spatial formats such as: SHP, DGN, DXEF, JPEG2000, DWG, etc.;
and spatial databases such as PostGIS, Oracle and MySQL. Sensor data can be integrated,

processed using different functions, and exported to different formats.

8. Conclusions

We presented details of the development process for a new module for gvSIG to connect to
Sensor Observation Services. The SOS client module allows gvSIG users to interact with SOS
servers, displaying information about sensors and observations in a set of layers composed by
features. Sensors are shown as features in the map and their information can be inspected also
in tabular form. Observations can be inspected through tables or graphs, being the latter a more
convenient choice for users. We also mentioned some details found in the SOS specification
making difficult the implementation of servers and clients. However, the OGC SWE
specifications are a first attempt to make sensor resources broadly available to isolated

communities to foster the integration of sensor data in Spatial Data Infrastructures.

19



Finally, future research should try to align with ongoing sensor experiments as in the context
of GEOSS and the interoperability experiments within the OWS phase-6, which pursue among
other open issues to create geospatial processing workflows combining sensor data with
mainstream GI data. Currently, gvSOS is being extended with the Enhanced Profile of the SOS

1.0.0 specification.

Acknowledgements

This work has been partially supported by the European Commission, Erasmus Mundus
Programme, M.Sc. in Geospatial Technologies, project no. 2007-0064 and by the CENIT Espaiia
Virtual project through the Instituto Geogrifico Nacional (IGN). We would also like to thank to the

Prodevelop staff and to Fran Pefarrubia for their invaluable collaboration.

20



References

52° North 2009 Homepage. WWW document http://52north.org/ (accessed Feb 14, 2009)

Anguix A, Diaz L 2008 gvSIG: A GIS desktop solution for an open SDI. Journal of Geography
and Regional Planning Vol. 1 (3), 41-48

Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M 1996 Pattern-Oriented Software

Architecture Volume 1: A System of Patterns. Wiley

Chen C and Helal S 2008 Sifting Through the Jungle of Sensor Standards. Pervasive

Computing, vol 7, no 4: 84-88

Chen N, Di L, Yu G, Min M 2009 A flexible geospatial sensor observation service for diverse
sensor data based onWeb service. ISPRS Journal of Photogrammetry and Remote Sensing 64 , 234-
242,

Chintalapudi K, Paek J, Gnawali O, Fu T S, Dantu K, Caffrey ], Govindan R, Johnson E, Masri
S 2006 Structural damage detection and localization using NETSHM. In Proceedings of the 5th

international conference on Information processing in sensor Networks (IPSN) Tennessee, USA

Degree 2009 Homepage. WWW document http://www.deegree.org/ (accessed Apr 14, 2009)

Diaz L, Granell C and Gould M 2008 Case Study: Geospatial Processing Services for Web-
based Hydrological Applications. Geospatial Services and Applications for the Internet. Springer

Science+Business Media: New York, pp 31-47

Douglas J, Uslander T, Schimak G, Esteban ] F and Denzer R 2008 An Open Distributed

Architecture for Sensor Networks for Risk Management. Sensors, vol. 8, no 3: 1755-1773.

gvSIG 2009 Homepage. WWW document http://www.gvsig.gva.es. (accessed Feb 14, 2009)

gvSIG, 2009a Guia de referencia para gvSIG 1.1. WWW document

http://www.gvsig.org/web/docdev/reference. (accessed Feb 14, 2009)

Jabeur N, McCarthy ] D, Xing X and Graniero P A 2009 A knowledge-oriented meta-
framework for integrating sensor network infrastructures. Computers & Geosciences, vol 35, no 4:

809-819

21



Kanoun O and Trankler H-R 2004 Sensor Technology Advances and Future Trends. IEEE

Transactions on Instrumentations and Measurements, vol 53, no 6: 1497-1501

Kealy A and Scott-Young S 2006 A Technology Fusion Approach for Augmented Reality

Applications. Transactions in GIS, vol 10, no 2: 279-300.

LaViola ] ] 2008. Bringing VR and Spatial 3D Interaction to the Masses through Video Games.
IEEE Computer Graphics and Applications, vol 28, no 5: 10-15

Liang S H L, Croitoru A and Vincent Tao C 2005 A distributed geospatial infrastructure for

Sensor Web. Computers & Geosciences, vol 31, no 2: 221-231

Mainwaring A, Culler D, Polastre ], Szewczyk R, Anderson ] 2002 Wireless sensor networks
for habitat monitoring. In Proceedings of the 1st ACM international workshop on Wireless sensor

networks and applications. Georgia, USA

Mapserver 2009 Homepage. WWW document http://mapserver.org/ (accessed Apr 14, 2009)

Martinez K, Hart ] K, Ong R 2004 Environmental sensor networks. IEEE computer Vol. 37,

Issue 8, 50- 56
Masser 12005 GIS Worlds: Creating Spatial Data Infrastructures. ESRI Press: Redlands

OGC 2005 OpenGIS® Web Feature Service Implementation Specification. Version 1.1.0. OGC
Document Number 04-094

OGC, 2005a “The Importance of Going Open”. OGC Whitepaper, 2005

OGC 2006 OpenGIS® Web Map Server Implementation Specification. Version. 1.3.0. OGC
Document Number 06-042

OGC 2006a OpenGIS® Web Coverage Service (WCS) Implementation Specification. Version 1.1.0.
OGC Document Number 06-08318

OGC 2007 OGC® Sensor Web Enablement: Overview And High Level Architecture. OGC
Whitepaper
OGC 2007a Observations and Measurements — Part 1 - Observation schema. Version 1.0.0. OGC

Document Number 07-022r1

OGC 2007b OpenGIS® Sensor Model Language (SensorML) Implementation Specification. Version
1.0.0. OGC Document Number 07-000
22



OGC 2007c OpenGIS® Transducer Markup Language (TML)Implementation Specification. Version
1.0.0. OGC Document Number 06-010r6

OGC 2007d Sensor Observation Service. 1.0.0. OGC Document Number 06-009r6

OGC 2007e OpenGIS® Sensor Planning Service Implementation Specification. Version 1.0.0. OGC
Document Number 07-014r3

OGC 2008 Sensor Web Enablement WG, WWW document http://www.opengeospatial.org/

projects/groups/sensorweb (accessed Feb 14, 2009)

OGC 2008a OGC® Sensor Web Enablement Architecture. Version 0.4.0. OGC Document
Number 06-021r4

Paek J, Chintalapudi K, Govindan R, Caffrey J, Masri S 2005 A wireless sensor network for
structural health monitoring: performance and experience. In Proceedings of the 2nd IEEE

workshop on Embedded Networked Sensors, Sydney, Australia

Percival G and Reed C 2006 OGC sensor web enablement standards. Sensors and Transducers

Journal, vol 71, no 9: 698-706

Szewczyk R, Mainwaring A, Polastre J, Anderson J, Culler D 2004 An analysis of a large
scale habitat monitoring application. In Proceedings of the Second ACM Conference on Embedded

Networked Sensor Systems, Maryland, USA

UAH VAST 2009 Homepage. WWW Document

http://vast.uah.edu/index.php?option=com contet&view=frontpage&Itemid=1 (accessed Feb 14,

2009)

Werner-Allen G, Johnson ], Ruiz M, Lees ] and Welsh M 2005 Monitoring volcanic eruptions
with a wireless sensor network. In Proceedings of the Second European Workshop on Wireless Sensor

Networks (EWSN'05), Istanbul, Turkey

Werner-Allen G, Lorincz K, Ruiz M, Marcillo O, Johnson ], Lees ] and Welsh M 2006
Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, Vol. 10, No.

2,18-25.

Zyl, T L van, Simonis, I and McFerren, G 2009 The Sensor Web: systems of sensor systems.

International Journal of Digital Earth, vol 2, no 1, 16 - 30

23



R R

Andami o
<<Package>> |, oo e
i : i e I
I S :
A «<Dependency=» gvSIG : gvSIG-SOS
E <<Package:> 2??????... . <<Package>>
' ' 5ol ; zzDependency=»
' i =<Dependency== E o LY
E 1 ! L 65
! <<Dependencys> Fmap gvsSos <El’;l::ll;§;)e5>>
<<Package>> - - - - <<Package>> I+
: : =<Dependency== : ! <<Dependency>>
: ¥ : 1 ¥
SubDriver RemoteServices-SOS
e, <<Package>> 39'”"&2"“»_ <<Package>>

Figure 1. gvSOS architecture.

24



ConcreteMemoryDriver
FlyrVect
Default Feature
FMapSOSDriver
SOSFeat e
eature R & createClient()
= - v load()  connect()
\,getExtendeGPropen!es{} 1 v getProperties() > & getCapabilities()
v setExtendedProperties() v setProperties() & getObservation()

=Call=>=

R

SOSAdapter()

v getFeature(int) : IFeature

z=Call=>

v getSensors()
« readFeatures()

=Call==

S T

GPEParser SOSClient

Figure 2: Fmap-SOS class diagram.

25




RemoteClient

SOSClient

connect()
getCapabilities()
describeSensor()
getObservation()
getServicelnformation()

00 0C¢

' ==Call==
=<Call==

¥

SOSStatus

A

.
'

z=Call=>

'
.
.
"
"
"

SOSProtocolHandlerFactory

< negotiate(String) : SOSProtocolHandler

A
OGCProtocolHandler
ix<Call> T
SOSProtocolHandler SOSRequest
“ getCapabilities() < sendRequest()
v descriheSen_sor{) & gelHtpGetRequest()
< getObservation() & gelHipPostRequest()
e sendHtpGetRequest])
& sendHttpPostRequest()
OWSSenviceMetadata
< getServiceldentification()
“ getServiceProwider()
< getOperationMetadata()
v getContents()
v pgetFilterCapabilities()
SOSDescribeSensorRequest S0SGetObservationRequest

Figure 3: RemoteServices-SOS class diagram.

26




F view : Harbour Sensors

Figure 4: Sensor systems located in four Mediterranean harbours.

27



Obseryation Time WaterLevel (m)
2005-10-20700.00.00Z a2
2008-10-20712:00:00Z 38
2008-10-21T00:00:00Z 09
2008-10-21T12.00:00Z 31
2008-10-22T00.00:00Z 43
2008-10-22T12.00:00Z o1
2008-10-23T00:00:00Z 03
2008-10-23T12:00:00Z 13

ok | cancel | Showoraph |

Figure 5: Table showing observation times and values.

28



Observations Graph

Meters

-1,5
20-oct-00:00 20-oct-12:00 21-o0ct-00:00 21-oct-12:00 22-oct-00:00 22-0ct-12:00 23-0ct-00:00 23-oct-12:
Time

- Water Level

Exgnrt imaae... Exgort data... Close

Figure 6. Displaying observations on a graph.

29



List of Figures

Figure 1. gvSOS architecture.

Figure 2. Fmap-SOS class diagram.

Figure 3. RemoteServices-SOS class diagram.

Figure 4. Sensor systems located in four Mediterranean harbours.
Figure 5. Table showing observation times and values.

Figure 6. Displaying observations on a graph.

30



