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Abstract

We propose a nonparametric method to determine the functional form of the noise

density in discrete-time stochastic volatility models of financial returns. Our ap-

proach suggests that the assumption of Gaussian noise is often adequate, but we do

observe deviations from Gaussian noise for some assets, for instance gold.
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1 Introduction

Simple nonlinear transformations of financial returns, typically interpreted

as measures of volatility, exhibit significant positive autocorrelations, while

autocorrelations in returns themselves are absent beyond a lag of a few minutes

(see, e.g., Pagan, 1996). These statistical regularities have motivated stochastic

volatility (SV) models that decompose returns into the product of a noise term

and a slowly varying volatility factor. Since both the volatility factor and the

noise term are latent variables, any assumption about the probability density

of the noise term will have an influence on the modeling of the volatility factor.

We propose a novel non-parametric method, in the sense that it does not

depend on specifications of the volatility factor, to determine the functional

form of the noise density in the SV decomposition.

2 Stochastic Volatility Decomposition

Financial returns, r(t), are observed at integer multiples of a time resolu-

tion ∆t. The correlation in even functions of r(t), e.g. in absolute or squared

returns, motivates the discrete SV decomposition (see, e.g., Cont, 2001)

r(t) = σ(t) · η(t), (1)

where η(t) is an iid noise term with zero mean, and σ(t) is a positive volatil-

ity factor that is independent of η(t). Our non-parametric approach to the

probability density (pdf) of η(t) assumes that (i) σ(t) is independent of η at

2



previous times,1 and that (ii) σ(t) varies slowly relative to η(t), i.e.

E[σq(t + τ) σq(t)] = E[σ2q(t)] (2)

for τ � τc, where τc � ∆t denotes the characteristic time scale in the dy-

namics of the volatility factor. Since E[|r|2q] may not exist for q > 2, we will

limit q to the interval q ∈ [0, 2]. Finally, in order to estimate error bars in our

empirical applications, we need the additional assumption that (iii) returns

are independent for time separations much larger than τc.

The choice of the stochastic process governing the dynamics of σ(t) is usually

motivated by the desire to simultaneously obtain some degree of analytical

tractability for the volatility process while reasonably describing the empirical

regularities (see, e.g., Shephard, 2005). The choice of the pdf of η is arbitrary;

interpreting the noise as the result of many independent changes, one would

frequently assume Gaussian noise, though other functional forms have been

suggested as well, for instance in the “GARCH-t” model of Bollerslev (1987).

3 Ratio of Moments

In order to obtain information about the noise density, we consider the fol-

lowing observable moment ratio of returns

M(q) =
E[|r(t + τ) r(t)|q]

E[|r(t)|2q]
. (3)

Inserting eq. (1) and utilizing assumption (i), M(q) can be written as

M(q) =
E[σ(t + τ)q σ(t)q]

E[σ(t)2q]
· E[|η(t)|q]2

E[|η(t)|2q]
. (4)
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Under assumption (ii), M(q) depends only on η for small τ , but not on σ:

M(q) ≡ Mη(q) =
E[|η(t)|q]2

E[|η(t)|2q]
. (5)

If the noise is Gaussian, the ratio Mη(q) turns out to be

Mη(q) =
Γ2((q + 1)/2)√
π Γ(q + 1/2)

, (6)

where Γ(·) denotes the Euler gamma function. Notice that Mη(q) does not

depend on the variance of a normally distributed noise factor. Since we are

dealing with ratios of moments, Mη(q) will be parameter-free for any pdf of η

that contains a single scale parameter. Moreover, Mη(2) is the inverse of the

kurtosis of η. Thus a value of Mη(2) smaller (larger) than 1/3 indicates that

the pdf of η is leptokurtic (platykurtic).

4 Empirical Application

In order to judge whether the theoretical prediction of the moment ratio in

eq. (5) is a reasonable description of the empirical moment ratio in eq. (3), we

perform the following procedure. First, we calculate values and errors for the

empirical moment ratio by dividing each time series r(t) into B blocks with size

much larger than τc. In each block, we determine E[|r(t+ τ) r(t)|q] by linearly

extrapolating from the first ten lags to τ → 0, and then divide by E[|r(t)|2q]

to obtain block values Mi(q) for i = 1, . . . , B.2 According to assumption (iii),

the Mi(q) are independent, and we can estimate M(q) by the sample mean

M̂(q) = B−1 ∑B
i=1 Mi(q), and its 95% confidence interval from the sample

variance.3 We apply this method to the following data on logarithmic returns:
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daily DAX values (01/1973–03/2007), DEM/USD exchange rates (01/1974–

12/1998), gold prices (08/1976–07/2007), and various instances of individual

DAX stock prices (01/1974–12/2001), all taken from Datastream. We also con-

sider high frequency DAX values (01/1985–12/1995) taken from Lux (2001).

The value of τc is estimated with an exponential fit from the decay of the auto-

correlation of |r(t)|, and turns out to be in the range τc ∈ [50∆t, 100∆t]. Our

choice of B = 8 represents a trade-off between precision, which is increasing

with B, and statistical independence, which is decreasing with B.4

[Figure 1 here]

Figure 1 compares the prediction for a Gaussian noise factor in eq. (6) with

data M̂(q) computed from daily DAX returns as a function of q, showing

agreement within the 95% confidence level. As a graphical way of illustrating

how sensitive the results are to the assumed pdf of η, we also plot the prediction

for a leptokurtic noise factor with double exponential (symmetric Laplace) pdf,

and a platykurtic noise factor with uniform pdf, which both fail to reproduce

the moment ratio M̂(q). In case of Laplacian noise the predicted moment

ratio is ML(q) = Γ2(q + 1)/Γ(2q + 1), and for uniform noise it is MU(q) =

(2q + 1)/(q + 1)2.

[Figure 2 here]

Figure 2 shows the theoretical moment ratio in eq. (6) and the observed mo-

ment ratio M̂(q) for a number of assets in our data sample. While the assump-

tion of Gaussian noise seems reasonable for DAX data at various frequencies

and for the DEM/USD exchange rate, we do observe deviations for gold and

some individual shares in the DAX, for instance in the case of Siemens stock.
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The deviations lie below the Gaussian curve (6), favoring a more leptokurtic

pdf of the noise factor, which raises the question why the interpretation of

the noise as an aggregate of many independent changes on time scales shorter

than ∆t fails for certain assets. Moreover, since our approach is independent of

the volatility process σ(t), the finding of a leptokurtic noise component would

imply that the leptokurtic nature of returns cannot be adequately captured

by embodying heavy tails in σ only.5

5 Conclusion

Our nonparametric method suggests that the assumption of a Gaussian noise

component in SV models is a reasonable choice, at least in many cases for

which we had data, for instance the DEM/USD exchange rate or the Ger-

man stock index at various frequencies. Gold and some of the individual DAX

stocks, on the other hand, exhibit empirical moment ratios that appear to

deviate from the assumption of a Gaussian noise component. Depending on

the particular goals of a financial engineer or econometrician, leptokurtic spec-

ifications of the noise component might prove useful, and the moment-ratio

approach presented in this letter provides a quick way to calibrate other noise

densities.

We are grateful to Thomas Lux for providing us with his cleaned set of high

frequency DAX data, and to Vasyl Golosnoy for useful comments.
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Notes

1Notice that this assumption is violated by GARCH models.

2Instead of extrapolating, we also performed the analysis for the first lag, τ = 1,

and averages of early lags, obtaining very similar results in each case.

3Since we are mostly interested in a qualitative impression of the involved mag-

nitudes, we checked that the autocorrelation of Mi(q) does not show any systematic

deviation from zero, justifying assumption (iii) at least in a first approximation.

4Choosing B = 9, 10, 11 yields very similar values for the error bars.

5The theoretical value of M(2) in GARCH(1,1) turns out to be larger than the

empirical value. Thus our findings would in a sense corroborate the results of Boller-

slev (1987), who finds that a GARCH(1,1) model often provides a better fit if the

noise term is student-t rather than normally distributed.
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Fig. 1. Theoretical predictions for the moment ratio Mη(q) under the assumption of

a Gaussian (solid line), a uniform (dashed line), and a double-exponential (dashed

dotted line) distribution of the noise factor η. The empirical moment ratio has been

computed from daily DAX returns during the period 1973–2007, and the error bars

correspond to 95% confidence intervals.
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Fig. 2. Moment ratio under the assumption of Gaussian noise, Mη(q), compared

to the actual moment ratio computed from various asset returns, M̂(q). For better

visibility, data and curves are shifted by 0.5 each time. The error bars correspond to

95% confidence intervals. The series show, from top to bottom, the moment ratio for

the DAX at 10-day, hourly, and 10-minute frequencies; returns to Siemens shares,

the DEM/USD exchange rate, and gold are all measured at daily frequencies.
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