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Abstract
In recent years, the rapid development of machine learning (ML) based on data-driven or environment interaction 
has injected new vitality into the field of meta-structure design. As a supplement to the traditional analysis 
methods based on physical formulas and rules, the involvement of ML has greatly accelerated the pace of 
performance exploration and optimization for meta-structures. In this review, we focus on the latest progress of 
ML in acoustic, elastic, and mechanical meta-structures from the aspects of band structures, wave propagation 
characteristics, and static characteristics. We finally summarize and envisage some potential research directions of 
ML in the field of meta-structures.

Keywords: Meta-structure, inverse design, machine learning, continuous fiber reinforced composite meta-
structure, additive manufacture

INTRODUCTION
Meta-structures[1] are artificially designed functional structures that meet specific performance requirements 
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and possess physical properties beyond the capabilities of natural materials. Based on different disciplines, 
acoustic meta-structures[2], mechanical meta-structures[3], electromagnetic meta-structures[4], and other 
types can be distinguished. Acoustic meta-structures[5], including phononic crystals, acoustic metamaterials, 
and acoustic metasurfaces, have emerged as an elegant means of manipulating acoustic and elastic waves. 
Through special structural designs, researchers can achieve dynamic characteristics that are not found in 
natural materials, enabling novel operations such as mechanical wave blocking[6], absorption[7,8], 
focusing[9,10], robust energy harvesting[11,12], negative refraction[13], invisibility[14,15], topological transmission[16], 
and more. The significant advancement in the field of acoustic meta-structures can be attributed primarily 
to the extensive research conducted on electronic crystals and photonic crystals. Matter waves and 
electromagnetic waves exhibit band structures separated by bandgaps under the action of Bloch periodic 
potential fields formed by the above structures. Bandgap formation is attributed to the Bragg scattering 
mechanism, which results from destructive interference between scattered waves caused by periodic 
structures. Phononic crystals[17,18], which are formed by the periodic distribution of materials or structures in 
space, can exhibit bandgaps that effectively block or attenuate the propagation of mechanical waves as an 
extension of the aforementioned concept. The subsequent development of localized resonant phononic 
crystals enables the formation of low-frequency hybridization bandgaps through scatterer resonance, 
independent of the periodicity of the structure itself[19]. The local resonance mechanism has triggered a 
revolutionary innovation in the realm of acoustic metamaterials[20]. On the one hand, the bandgap frequency 
is determined by the resonant unit frequency, providing theoretical support for developing compact 
structures with vibration and noise reduction functions in limited space requirements. On the other hand, it 
has been proven to possess new physical properties with locally resonant parameters, resulting in equivalent 
excotic properties. This has stimulated extensive research on negative mass density[21], negative bulk 
modulus[22,23], and double-negative parameters[24,25].

In the past decade, guided by the goal of achieving efficient regulation of low-frequency acoustic/elastic 
waves through thin and lightweight structures, researchers have developed acoustic metasurfaces by 
designing subwavelength functional unit arrays to form phase gradients based on the generalized Snell's 
law[26]. Acoustic metasurfaces[27] include reflective, absorptive, and transmissive types, which can achieve 
functions such as acoustic/elastic wave focusing[28], cloaking[29,30], low-frequency perfect absorption[31,32], 
asymmetric transmission[33], self-bending[34], and so forth. Compared with phononic crystals and acoustic 
metamaterials, acoustic metasurfaces have the characteristics of ultra-thin, planar, low loss, and strong 
designability, which make it possible to develop extremely miniaturized acoustic functional devices.

Recently, the concept of topological insulators in condensed matter physics has been added to the design of 
acoustic meta-structures for regulating mechanical waves[35-39]. Due to the existence of bandgaps, mechanical 
waves within specific frequency ranges are not allowed to propagate. In these bandgaps, acoustic meta-
structures can be considered as insulators of mechanical waves. The topological properties of bandgaps can 
be characterized by calculating topological invariants and can generally be classified as topological trivial 
and topological non-trivial bandgaps[40,41]. On the structural boundaries with the above two bandgaps, 
certain frequencies of waves within the bandgap are allowed to propagate, which are the so-called 
topological edge states. Supported by topological mechanisms, topological edge states have robust 
transmission characteristics, such as defect immunity, unidirectional waveguides, and backscatter 
suppression effects[42,43]. The in-depth studies of topological states have broadened the application prospects 
of acoustic meta-structures to a certain extent.

The research on mechanical meta-structures primarily centers around the three material parameters of 
elastic modulus, shear modulus, and Poisson's ratio in order to attain exceptional static performance[3]. 
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Natural solid materials typically exhibit positive elastic and shear moduli, which are related by Poisson's 
ratio, typically falling between 0 and 0.5. The mechanical meta-structures designed through origami and 
kirigami structures[44], chiral structures[45], lattice structures[46], honeycomb structures[47], and other methods 
can constrain and adjust the overall elastic deformation, thus exhibiting unconventional equivalent 
characteristics, such as negative stiffness, negative compression, negative Poisson's ratio, multi-stability, and 
so forth. Mechanical meta-structures greatly enrich the way of regulating statics performance and provide 
support for the design and application of engineering vibration suppression, impact resistance, energy 
absorption, and structural protection devices.

The process of analyzing the wave or mechanical properties of a certain meta-structure is a forward 
problem, which can be easily realized through theoretical, experimental, or commercial software analysis. 
However, designing structures with specific properties considering practical application backgrounds can 
essentially be attributed to inverse problems[48]. The traditional strategy for solving inverse problems usually 
relies on trial and error supported by experimental and computational modeling techniques, which require 
a significant amount of time and resource costs. Subsequently, some heuristic optimization methods that 
relied on global search were developed, such as genetic algorithms (GA)[49], simulated annealing 
algorithms[50], particle swarm optimization algorithms[51], and so forth. These methods can effectively 
identify the meta-structure parameters corresponding to the target property and can be modified to adapt to 
different goals. However, their performance generally depends on the specific problem, usually lacking 
stability and being prone to falling into local optima.

With the deepening of artificial intelligence (AI) research, the improvement of computer hardware 
performance, and the emergence of open-source deep learning frameworks, machine learning (ML) 
algorithms have been rapidly developed and widely applied, and advanced methods, such as deep neural 
networks (DNNs) and reinforcement learning (RL), have emerged. The development of ML has shown a 
strong ability to circumvent the shortcomings of traditional methods, leading to an interdisciplinary 
revolution, including biology[52], finance[53], materials science[54], computational chemistry[55], computational 
mechanics[56], etc. Certainly, the meta-structure design scheme based on intelligent algorithms has become 
an important core to break through the bottleneck of inverse problems and promote the development of the 
field. In the past several years, some review articles have introduced the latest progress of ML-enabled meta-
structure design from different aspects, for instance, the progress of ML-enabled nanophotonics and 
photonic devices in an all-round way[57-66]. Furthermore, Khatib et al. introduced the progress in the field of 
designing electromagnetic meta-structures by ML[67]. Jiao et al. discussed the advent and prospects of ML in 
the field of mechanical meta-structures[68]. Jin et al. introduced some basic ML algorithm principles and 
reviewed intelligent on-demand design of phononic metamaterials[69]. Subsequently, Muhammad et al. and 
Liu et al. successively updated the progress of ML in phononic crystals and metamaterial[70,71]. From the 
works in recent years, the field of integrating ML in the design of acoustic, elastic, and mechanical meta-
structures has developed rapidly, but there is still a lack of comprehensive review that directly takes design 
objectives as the classification standard, which is helpful to understand the latest progress of various inverse 
design problems in this field.

In this review, we draw attention to a series of recent results on ML inverse design of acoustic, elastic, and 
mechanical meta-structures from the perspective of design objectives. We first introduce the background of 
the development of ML and how basic algorithms can be combined with meta-structures for inverse design. 
Then, we summarize the latest progress from three aspects: design of band structure in infinite meta-
structures, design of wave propagation characteristics in finite meta-structures, and design of static 
characteristics in mechanical meta-structures. Finally, we summarize the current status of this cutting-edge 
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cross-disciplinary field and discuss potential future development prospects.

BACKGROUND OF ML
AI is committed to enabling machines to acquire and expand human intelligence. The development of AI 
can be traced back to the proposal of this concept at the Dartmouth Conference in 1956, but related 
research has already begun earlier. It has gone through periods of symbolism, connectionism, and 
behaviorism[72]. Early researchers constructed expert systems by feeding human experience into machines 
through programming, which is a symbolic approach. Although expert systems perform well in 
environments with strong logic, such as mathematical deduction, this approach cannot obtain new 
knowledge beyond input, and human intelligence is acquired through autonomous learning rather than 
direct input. Therefore, researchers turned to exploring ways to enable machines to autonomously acquire 
knowledge starting in the 1980s, a concept known as ML[73]. At this time, connectionism represented by an 
artificial neural network (ANN) algorithm ushered in the peak of development. Artificial neurons were 
proposed in 1943[74], followed by the development of a variable strength criterion for inter-unit connections, 
which led to the formation of a perceptron model[75]. In 1986, the success of the back-propagation training 
algorithm enabled the multilayer perceptron (MLP) model to have nonlinear processing capability[76]. On 
this basis, researchers began to explore the deepening of neural network models. Recurrent neural networks 
(RNN)[77] with time series prediction function and convolutional neural networks (CNN)[78] with image 
processing function were successively proposed. The deepening of the model has brought about an 
explosive increase in training difficulty, but this dilemma has been effectively overcome with the 
improvement of computer computing power. Since 2006, research on ANNs has entered the era of deep 
learning[79], and the emergence of many open-source deep learning frameworks has greatly reduced the 
learning cost of algorithms. Over the past decade, a large number of DNN models have emerged, such as 
generative adversarial networks (GAN)[80], condition GANs (CGAN)[81], tandem neural networks (TNN)[82], 
and so forth. RL, originating from behaviorism[83], has gradually emerged in the context of the flourishing 
development of deep learning. The basic principle is that the agent takes different actions to change its own 
state and corrects its behavior based on environmental feedback, thereby selecting the optimal strategy to 
achieve the goal. RL is seen as the future development direction of AI and has achieved great success in 
fields such as Go programs[84] and autonomous driving[85].

The advantage of DNNs lies in their ability to learn potential laws implicitly from data, especially for 
nonlinear mapping problems with unclear or complex physical mechanisms, and the design of meta-
structures belongs to such problems. Unlike the process of calculating property from structural parameters 
in a forward problem, inverse design, which involves extrapolating the property back to the structure, often 
finds it difficult to obtain analytical solutions based on clear functional relationships. However, with the 
nonlinear processing ability of data-driven neural networks, the design parameters of the structure can be 
quickly obtained by taking the target property as input.

For situations where high-dimensional data or image data are used as property inputs, CNNs are often used 
to reduce the number of connections between neurons, thereby reducing the computational complexity of 
the computer. Autoencoders (AE) can be used to extract features from high-dimensional property data for 
further wave or mechanical analysis. In the inverse design meta-structure paradigm, there may be a problem 
that one property corresponds to multiple sets of structural parameters, which leads to the convergence 
failure of neural network training.

The proposal of TNN effectively solves this problem by freezing the training parameters of the pre-trained 
forward network and cascading it after the inverse network[82]. The subsequently developed probabilistic 
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TNN can obtain multiple reasonable structures as alternative solutions based on inputs. Additionally, in 
order to deal with the situation of only small-scale data, researchers introduced transfer learning into meta-
structure design[86,87]. Transfer the model trained from similar data sources to the target data for retraining, 
thereby reducing the demand for target data without affecting the training results.

Another solution is to rely on GAN[80] and CGAN[81]. In this solution, the generator of GAN takes random 
vectors as input, initiates the generation of a structure, and then sends the generated structure and real 
structure to the discriminator for authenticity discrimination to guide model updates. After adversarial 
training of the generator and discriminator, a generator model that can generate the target structure can be 
obtained. While inputting random vectors, the expected property can be input together to enable the 
generator to generate structures under this condition. The combination mode of RL and meta-structure 
inverse design is to regard structural parameters as agents. These agents execute the action of parameter 
changes, determine feedback based on the proximity of the altered property to the design goal, and finally 
explore a parameter path to achieve the goal.

As a summary, the overview diagram of ML in the field of meta-structure for forward performance 
prediction and inverse structure design is shown in Figure 1. In addition, there are various types of ML 
algorithms, some of which may be simple and perform well when dealing with specific problems. For 
example, linear regression obtains sample distribution patterns by fitting data points as closely as possible. 
Logistic regression can compress samples to a specific range through nonlinear functions, thus realizing the 
classification of samples. A decision tree is a tree-structured classifier that classifies samples by representing 
branches of different attributes. Multiple groups of decision trees can form a random forest, which yields 
higher performance and prediction stability. However, the increase in the complexity of the model requires 
more computing time. Readers can refer to relevant literature for more information[73,88,89].

The emergence of some deep learning open-source frameworks, such as TensorFlow[90] and PyTorch[91], 
helps beginners easily grasp the basic usage of ML. These frameworks are integrated through Python 
packages and can be easily called, eliminating the hassle of writing low-level computational code for neural 
networks. Researchers can use some shared ready-made datasets for training and learning, such as 
Handwritten Digit Dataset, CIFAR10, Fashion-MNIST, and so forth. In addition, the commercial software 
MATLAB also has a built-in toolbox for neural networks, which can be easily modeled through the user 
interface.

APPLICATION OF ML IN META-STRUCTURES
Design of band structure in infinite meta-structures
A band structure is the most basic way to describe the acoustic/elastic wave characteristics in meta-
structure, so it is the most direct research idea to carry out the application of ML in meta-structure design 
around a band structure and the wave information it carries. With the maturity of deep learning algorithms 
and open-source frameworks, a large amount of design work has emerged around band structures, which 
can be mainly divided into two categories: design based on complete band structures and design based on 
bandgaps. Table 1 provides a brief overview of ML for the design of band structures in infinite meta-
structures.

Complete band structures
For the design of complete band structures, one type of work is to predict the corresponding band structure 
of a meta-structure from a forward perspective to replace the analytical process. Liu and Yu[92] used MLP 
and radial basis function neural networks (RBF-NN) to predict the band structures of one-dimensional 
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Table 1. A brief overview of design based on band structures in infinite meta-structures

Design
type Algorithm  Meta-structure and performance Description                                                                                  Year

MLP
RBF-NN

RBF is suitable for single parameter prediction, while MLP
can meet multi-parameter prediction[92]

2019

CNN Construct digital structure genomes through forward
prediction. Thus, the target property structures can be
quickly extracted from the genomes[93]

2021

GAN 
CNN

Generate optimal structure based on customized dispersion
and accelerate design processes[94]

2022

Complete 
band 
structures

GAN 
CNN

Generate and screen structures with excellent attenuation
performance. The dataset is generated through secondary
mirroring, which lacks flexibility[95]

2022

MLP 
TNN

Compared to MLP, TNN can solve the problem of data
inconsistency and is suitable for multi-parameter inverse
design[96]

2019

GA 
MLP

The model is insufficient to provide accurate predictions
beyond the training data range and only performs well
within local data points[97]

2020

GA 
MLP

The model can obtain the target modular metamaterial but
cannot find the configuration beyond the dataset[98]

2020

Can accurately process data beyond the dataset. Only a 
relatively small region of the design space in RVE is 
explored using a nine-parameter analytical 

Tailoring 
bandgaps

function[99]

2020AE 
MLP
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GA 
MLP

Fast forward search to obtain the maximum bandgap
structure. Performed well in both single-objective and
multi-objective optimization designs[100]

2021

MLP Flexible design of meta-structures based on target bandgap
for vibration isolation. The designed structure has been
experimentally verified[101]

2022

TNN Arch-shaped vibration isolation structure inspired by the
Roman Bridge. The TNN model can design structure
accurately based on target bandgaps and verified through
experiments[102]

2022

RL Efficient interactive inverse design for layered phononic
crystals. For the same model, simply changing the objective
function can easily achieve different designs[103]

2020

RL 
GA

Designing one-dimensional diatomic and hexatomic lattice
chains based on RL. The rate of convergence is much faster
than the baseline GA[104]

2021

RL Designing a one-dimensional phononic beam based on RL.
The model still maintains an efficient and stable exploration
ability in the huge parameter space[105]

2022
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Figure 1. ML in solving the problem of properties prediction and inverse design for meta-structures.

layered phononic crystals and compared their efficiency and accuracy. The input parameters of the neural 
networks are one to three selected from the filling fraction, mass density ratio, and shear-designed structure. 
The accuracy in predicting band structures is achieved using a single parameter (fill fraction), while in the 
case of multiple parameters, MLP outperforms RBF-NN.

Another type of work is to use trained forward models to assist in the selection of alternative structures after 
inverse design. Zhang et al. constructed a digital structural genome using CNN to achieve structural 
screening with specified elastic wave properties[93]. For representative volume elements (RVEs) of size 5 × 5, 
each unit has two coding forms, with a total of 225 possible configurations, which makes it difficult to find 
configurations with target elastic wave properties. Their approach is to calculate the band structures of a 
small portion of RVEs using a finite element method and extract wave properties to construct a dataset. 
Then, by using data-driven CNN to predict the elastic wave properties of all possible configurations, a 
digitally structured genome is constructed. For a set of target elastic wave properties, the corresponding 
structure can be found in the genome. Jiang et al. proposed a novel way to inverse design similar digitally 
coded metamaterials, as shown in Figure 2A[94]. This work can be divided into three steps: first, train CNN 
to predict the band structures; second, train GAN to generate digitally coded metamaterials from band 
structures; and finally, take out the generator of GAN and connect it with CNN. The overall workflow is as 
follows: the generator takes random noise and target band structures as inputs, generating a series of 
alternative structures. Predict the corresponding band structures of all candidate structures through CNN 
and then compare them with the target band structure to screen the best structure. Almost at the same time, 
Han et al. employed the same design process to realize inverse design of digitally coded metamaterials with 
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Figure 2. ML for the design of band structure in infinite meta-structures. (A) Combining GAN and CNN to realize inverse design of
digitally coded metamaterials with anticipated band structures[94]. Reproduced with the permission of Ref.[94] Copyright 2022,
Elsevier. (B) Design phononic crystals with anticipated bandgaps by combining AE and MLP[99]. Reproduced with the permission of
Ref.[99] Copyright 2020, Elsevier. (C) Design phononic crystals with anticipated bandgaps by combining GA and MLP[100]. Reproduced
with the permission of Ref.[100] Copyright 2023, Taylor & Francis. (D) Employ MLP to design lightweight meta-structures with low-
frequency broadband vibration isolation functions[101].

optimal wave attenuation[95]. It is worth noting that this work characterizes the wave attenuation ability of 
the structure through complex band structures. Although the design process focuses on the real part of the 
band structures, the final screening process from alternative structures is achieved by comparing the 
imaginary part of band structures.

Tailoring bandgaps
From an application perspective, it is usually not necessary to determine the complete band structures but 
only focuses on the wave information provided by the bandgaps in the band structures. In contrast, the 
design based on bandgaps simplifies the difficulty of model training and has a stronger design purpose, so a 
lot of work has been carried out in this area.

Liu et al. employed MLP and TNN to achieve inverse design from bandgaps to structures for the layered 
phononic crystals[96]. The basic conclusion is that for inverse design with single (filling fraction) or dual 
(shear modulus ratio and mass density ratio) parameters, MLP and TNN perform equally. However, for 
inverse design with three parameters, TNN has obvious advantages, while MLP has difficulty in 
convergence. This is due to the increase in the number of design parameters deepens the nonlinearity of the 
mapping, leading to the gradual exposure of data inconsistency issues. As mentioned in the introduction, 
TNN can effectively solve this training bottleneck. Dong et al. proposed using GA to optimize MLP 
architecture for fast prediction of bandgap width[97]. The starting point of this study is to serve as an efficient 
means to avoid the significant computational costs required for repeated finite element analysis of elastic 
meta-structures. Wu et al. explored a design and optimization scheme of modular metamaterial using 
ML[98]. In their work, modular metamaterials are composed of a certain number of four candidate materials 
through different configurations to form phononic crystals. By using GA and MLP, they realize the optimal 
configuration design of one-dimensional and two-dimensional (2D) modular metamaterial according to the 
bandgap target. Li et al. combined an AE with MLP to achieve 2D phononic crystal design with anticipated 
bandgaps, as shown in Figure 2B[99]. The RVE of phononic crystals is generated through random functions, 
and the band structure data are obtained through a finite element method. The implementation of this 
design consists of three steps. Firstly, the AE is trained to extract the topological features of the RVE 
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configuration. Secondly, an MLP model is trained to describe the relationship between the anticipated 
bandgap and topological features. Finally, the encoder in the AE is replaced with MLP. Miao et al. 
conducted another study on the design of 2D phononic crystals described by random functions, as shown in 
Figure 2C[100]. In this work, they first employed MLP to predict the bandgap and then used MLP combined 
with GA to achieve the inverse design of the structure. In the inverse design scheme, GA is taken as the 
main body, and the fitness function is constructed with the predicted bandgap of MLP and the target 
bandgap in the iterative process, and the optimal individual that can adapt to the target bandgap is obtained 
through iteration.

In terms of meta-structure design with high-quality vibration reduction function, Jin et al. employed MLP 
to inverse design the Archimedes spiral meta-structure with deep subwavelength vibration isolation 
function, as shown in Figure 2D[101]. The double-layer corrugated core sandwiched structure between two 
spiral plates can provide low-frequency bandgaps through a local resonance mechanism. However, it is 
difficult to analyze the relationship between the bandgap and the parameters of the spiral plate. The trained 
MLP model avoided the analytical process of inverse design and obtained a structure with low-frequency 
broadband vibration isolation performance, which showed good consistency with the experiment. On et al. 
modified the TNN architecture and realized the design of arch meta-structure with anticipated bandgap 
vibration reduction function[102]. Specifically, they inverted the pre-trained forward network and inverse 
design network in traditional TNN, where the input is a structural parameter, while the intermediate layer 
outputs the bandgap frequency. After training, preserving the inverse network of the backend can achieve 
the design of bandgap frequencies to structures.

The application of RL in band structures is mainly to maximize the bandgap width or optimize the specific 
range and focuses on one-dimensional structures with analytical dispersion relation. According to the 
analytical dispersion relation of layered phononic crystals, Luo et al. used RL to optimize the component 
widths and realized two functions: maximizing the bandgap width and customizing the bandgap range[103]. 
Wu et al. employed RL to optimize the masses of one-dimensional atomic chains to achieve custom 
bandgaps[104]. He et al. analyzed the longitudinal wave dispersion of periodically variable cross-section 
beams and optimized three length parameters using RL to achieve maximum bandgap width[105].

Design of wave propagation characteristics in finite meta-structures
Different from the ideal infinite period meta-structures, the meta-structures in practical engineering can 
only be composed of periodic or aperiodic finite distributions. Analyzing the propagation characteristics of 
acoustic/elastic waves in finite meta-structures is an important step toward achieving practical engineering 
applications for meta-structures. In this section, we review the finite meta-structure design works around 
propagation characteristics. Table 2 provides a brief overview of ML for the design of wave propagation 
characteristics in finite meta-structures.

Enhancing noise reduction
Arranging sound absorption structures is one of the main methods for controlling environmental noise, 
which can be divided into porous sound absorption structures, resonant sound absorption structures, and 
special sound absorption structures, and has been widely used. The ability of a structure to absorb sound 
energy is usually characterized by calculating its sound absorption coefficient. Due to the complexity and 
diversity of the structure, design is an important step to meet practical needs. Researchers have conducted 
extensive explorations in this area using ML. For example, Donda et al. employed CNN to characterize the 
acoustic absorption performance of acoustic absorbing metasurfaces[106]. Subsequently, they implemented 
the inverse design of the metasurface using CGAN[107]. Zhang et al. realized the accelerated topological 
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Table 2. A brief overview of design based on wave propagation characteristics in infinite meta-structures

Design type Algorithm Meta-structure and
performance Description Year

CNN Predicted the absorption spectra of metasurfaces based on
CNN and conducted experimental verification[106]

2021

CNN 
CGAN

Prediction of sound absorption spectra of absorbers based
on CNN and inverse design based on CGAN[107]

2022

GAN The generated structures can have completely new
configurations and rich local features. They can be in good
agreement with experimental results[108]

2021

TNN Overcoming the data inconsistency caused by the complex
coupling effect between Fabry Perot channels, the
experimental results are in good agreement[109]

2022

RL Exploring deep subwavelength broadband sound absorption
meta-structures based on RL, replacing the artificial selection
of structural parameters. The accuracy of the design was
verified through sound absorption experiments[110]

2022

RL Employing RL to optimize the huge parameter space with
nine aperture parameters to design broadband sound
absorption meta-structures, and further validated through
experimentation[111]

2023

CNN Inverse design of the absorber based on the target
absorption spectrum by employing a one-dimensional CNN
model. The difficulty lies in the selection of neural network
structure and hyperparameters[112]

2021

TNN Inverse design of the absorber based on the target
absorption spectrum by employing TNN. The model uses
fewer hyperparameters and has higher accuracy and
efficiency than traditional CNN[113]

2023

MLP
gaussian
sampling

The inverse design incorporating probability sampling can
obtain all possible structures. The transmission spectrum
measured in the experiment is highly consistent with the
predicted results, and the accuracy of the report is better
than models such as ANN and GAN[114]

2020

Enhancing noise 
reduction
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CGAN Applying CGAN to generate sound insulation structure. The
generated structure may not fully conform to physical laws,
and the dataset may have a few duplicate samples[115]

2021

TNN TNN effectively handles the increase in non-inconsistency of
the dataset caused by non-local coupling effects[116]

2021

TNN
gaussian
sampling

Introducing probability sampling in the middle layer of TNN,
the design parameters have high flexibility, diversity, and
robustness[117]

2022

TNN
gaussian
sampling

A probabilistic model is a powerful tool to solve data
inconsistency and has strong robustness to sensitive
parameter design[118]

2021

CNN 
GA

Employing CNN to achieve inverse design of metasurfaces
based on multi-point sound pressure and the accuracy report
is better than GA[119]

2021

MLP Replace the physical unit with MLP and transfer the input
response, material properties, and output response of the
whole system through the connection between MLPs[104]

2021

Advanced control of 
wave propagation 
characteristics

MLP MLP captures the relationship between the input and output
wave responses of physical units to construct the overall
structure and replace the time-consuming numerical
simulation process[120]

2022

Clustering Through clustering algorithms, topological classification is
carried out according to the real characteristics of the
system, without prior knowledge and calculation of
topological invariant[121]

2020

MLP Inverse design of phononic plate with anticipated bandgap
width and topological property Using MLP. The quality of the
edge state can be freely controlled through the preset
bandgap width[122]

2021

TNN TNN overcomes data inconsistency and supports inverse
design structures based on topological properties to achieve
custom interface states[105]

2022

Optimizing 
topological states
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TNN

 

Experimental verification of the accuracy of using TNN to 
inverse design interface states[123]

2022

MLP 
GA

Efficient implementation of edge state design for specific or
maximum bandwidth corresponding structures[124]

2022

design of metaporous materials with broadband sound absorption performance by GAN[108]. Liu et al. used 
cascaded inverse and forwarded CNN to achieve the inverse design of acoustic absorbing devices with 
coiled Fabry-Perot channels, which is based on the same principle as a fully connected TNN 
architecture[109]. Jin et al. used RL to optimize a lightweight sound absorption multi-function integrated 
meta-structure with perforated fish-belly panels[110]. Subsequently, they used this method to optimize a spiral 
plate sandwich structure that integrates lightweight, vibration reduction, and sound absorption 
functions[111]. Mahesh et al. proposed a one-dimensional CNN inverse design scheme for low-frequency 
Helmholtz resonate sound absorber[112]. Afterward, they further constructed a TNN architecture using 
inverse and forward one-dimensional CNNs for inverse design of a similar sound-absorbing structure[113].

Sound insulation is another method of controlling noise, with the objective of blocking or attenuating the 
transmission of acoustic waves. It typically relies on the transmission coefficient to characterize the 
performance of the sound insulation structure in blocking sound energy. For the design enabled by ML in 
sound insulation meta-structures, Luo et al. provided a paradigm of fuzzy design to overcome the problem 
of data inconsistency, as shown in Figure 3A[114]. Specifically, they combine MLP with mixed Gaussian 
sampling, mapping a target transmission spectrum to multiple sets of Gaussian sampling parameters 
through MLP and then linearly overlaying these Gaussian distributions to obtain a mixed Gaussian 
distribution. All acoustic meta-structures corresponding to the local maximum values are alternative 
structures that meet the target transmission frequency spectrum. Gurbuz et al. used a random algorithm to 
generate binary images of units composed of fluid elements and solid elements and obtained the 
transmission loss spectra through the finite element method[115]. Then, by training CGAN to capture the 
potential relationship between transmission loss spectrum and unit geometry, they carried out inverse 
design of the structural units to achieve the required sound insulation purpose.

Advanced control of wave propagation characteristics
Subwavelength scale metasurfaces may experience significant losses due to the presence of viscous friction 
and narrow acoustic channels. The diffraction acoustic meta-grating designed based on diffraction theory 
can improve the control efficiency of the acoustic metasurface. Ding et al. employed the TNN model to 
achieve inverse design of non-local metasurfaces for acoustic wave diffraction characteristics[116]. They 
explored the coupling effect between all subunits rather than nearest-neighbor coupling, demonstrating the 
ability of non-local metasurfaces to reshape the acoustic field. Meanwhile, the implementation of this work 
effectively demonstrates the ability of TNN to support the design of non-local coupled metasurfaces, 
especially in the face of complex coupling effects that greatly increase the degree of nonlinearity. In another 
work, Du et al. designed acoustic meta-grating wavelength division multiplexing by using an improved 
TNN architecture[117]. Specifically, they introduced probability sampling in the TNN architecture, which 
divides the design space into two layers instead of the traditional one layer for design parameters. Among 
them, the latter layer is the design parameters of the structure, obtained by sampling from the Gaussian 
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Figure 3. ML for the design of wave propagation characteristics in finite meta-structures. (A) Fuzzy design of acoustic meta-structures
by combining MLP with Gaussian mixture sampling[114]. (B) Employ MLP to realize global transfer matrix prediction of active
metabeams[120]. Reproduced with the permission of Ref.[120] Copyright 2020, Elsevier. (C) Employ MLP to realize the design of
metaplates with robust edge states[122]. (D) Design of Valley Hall acoustic topological insulator by combining MLP and GA[124].

distribution parameters of the previous layer. The probabilistic TNN model has a strong generalization 
ability, greatly reducing the design cost of acoustic meta-grating wavelength division multiplexing. It 
demonstrates the flexibility, diversity, and robustness of design parameters.

The acoustic cloak technology aims to reduce the sound signals generated by objects in order to reduce the 
detectability of the sound detection system and achieve the effect of stealth. Ahmed et al. implemented a 
design of a multilayer core-shell acoustic cloak using probabilistic TNN architecture, demonstrating its 
effectiveness in solving the problem of high sensitivity of stealth cloaks to design parameters[118]. Stealth 
requirements weaken or even eliminate the disturbance of objects to the sound field, while in some practical 
needs, it is desired to freely weaken or enhance the sound field in certain specific areas. In this aspect, 
Zhao et al. proposed a CNN-based inverse design of metasurface phase gradient to achieve the regional 
control of sound field enhancement or attenuation[119].

In addition, research has attempted to enable MLP to learn the physical mechanisms of a single unit and 
then use it to construct a functional analysis of wave propagation in the overall structure. For example, 
Wu et al. used MLP to learn the input-output relationship of longitudinal waves in non-uniform thin rod 
elements and then assembled multiple MLP elements to construct a non-uniform overall structure[104]. A 
series of cascaded MLP units describe the input-output relationship of the overall structure and then use 
optimization algorithms to determine the design parameters of each individual unit. Similarly, Chen et al. 
used MLP for transfer matrix prediction of active metabeam elements, as shown in Figure 3B[120]. In their 
work, the metabeam unit is constructed by affixing a piezoelectric material on the main beam and 
connecting a negative capacitance circuit. By using COMSOL software to obtain transfer matrices for 
different capacitance values and frequencies, a dataset is constructed and used for MLP training. The global 
transfer matrix of the array elements can be obtained by connecting multiple groups of MLP in sequence, 
then the output and input signals of the whole metabeam can be connected.
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Optimizing topological states
A topological state is also an important form of wave characteristics in finite structures. We now turn to 
focus on some recent design works on topological states. Generally speaking, topological invariants can 
characterize topological properties of structures, but their definition and calculation are often difficult. In 
essence, topological properties certainly exist in structural features, so exploring topological properties from 
actual structures instead of relying on topological invariants is another idea for topological classification. 
Long et al. demonstrated an unsupervised clustering algorithm for extracting topological features of 
phononic crystals, thereby classifying topological properties[121]. He et al. achieved the inverse design of 
phononic crystal thin plates with anticipated bandgap width and topological property based on MLP, as 
shown in Figure 3C[122]. By designing two units with a broadband common bandgap, they constructed a 
highly robust localized edge state for bending wave transmission. This group subsequently proposed using 
TNN to achieve the inverse design of phononic beams from topological properties to structure[105]. The 
topological properties of the bandgap were characterized by the reflection phase, and the interface states of 
one-dimensional phononic beams were predicted and constructed using TNN. Afterward, 
Muhammad et al. also completed a similar work[123]. Du et al. realized the inverse design of Valley Hall 
acoustic topological insulator by combining MLP and GA, as shown in Figure 3D[124]. Specifically, they first 
trained regression neural networks and classification neural networks for predicting bandgap and 
topological properties, respectively. Then, two neural networks are put into the optimization process of GA 
to obtain two structures with opposite topological properties under a common bandgap for constructing 
edge states.

The application of ML in Hermitian systems mentioned above is still in the initial stage, and more 
achievements need to be further expanded. At the same time, we have also found that ML has recently made 
some attempts in non-Hermitian systems. Yu et al. used diffusion maps to unsupervised manifold learning 
of topological phases in non-Hermitian systems[125]. Different from the unsupervised method, there are also 
some works that demonstrate training ANNs for supervised prediction of non-Hermite topological 
invariants[126-128]. The essential difference between unsupervised and supervised is that the former does not 
need labels and directly extracts topological invariant from the on-site elements of the model, while the 
latter relies on the calculated topological invariant as labels to construct data sets. In non-Hermitian 
systems, an exception point (EP) is an important feature that represents the critical point at which the 
system transitions from a real eigen-spectrum to a complex eigen-spectrum[129]. In the latest work, Reja et al. 
introduced neural networks for the characterization of EP[130]. They proposed a method called summed 
phase rigidity (SPR) to characterize the order of EPs in different models. Then, they trained MLP models to 
realize the prediction of EPs for two-site and four-site gain and loss models.

Design of static characteristics in mechanical meta-structures
Mechanical meta-structures have become an emerging growth point in the field of ML-enabling design due 
to their extreme statics performance. Combined with ML, meta-structures with excellent mechanical 
properties can be obtained through design optimization by adding, deleting, or changing. Table 3 provides a 
brief overview of ML for the design of static characteristics in mechanical meta-structures.

A lot of work has been carried out around the 2D mechanical meta-structures. These structures are usually 
designed and optimized on a plane to obtain specific shapes or material compositions with specific 
mechanical properties. CNN, as a high-quality model for image feature extraction, is widely used in the 
design of 2D mechanical meta-structures. Gu et al. proposed a self-learning CNN model to search for high-
performance hierarchical mechanical structures[131]. This model can continuously learn patterns from high-
performance structures, ultimately achieving design results superior to the training set. Hanakata et al. 
reported a design study on stretchable graphene kirigami, as shown in Figure 4A[132]. The cutting density and 
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Table 3. A brief overview of design based on static characteristics in mechanical meta-structures

Design
Type Algorithm Meta-structure and Performance Description Year

CNN                                                                                              The inverse design of high toughness hierarchical structures based
on CNN greatly saves computational time compared to traditional
finite element methods[131].

2018

CNN Effectively searching for the optimal cutting mode for stretchable 
graphene kirigami structures under given yield strain and stress 
conditions based on CNN models[132].

2018

Supervised 
AE

Generate the structure by passing potential variables to the decoder. 
It is expected to find new structures, but the prediction of mechanics 
performance beyond the dataset may be biased[133].

2020

CNN
CNN for predicting 2D metamaterials with the best mechanical 
properties. The model exhibits robustness in terms of accuracy and
inference time[134].

2020

DCGAN 
CNN

Combine DCGAN and CNN for designing microstructures. The 
model has high efficiency and can flexibly control geometric 
constraints[135].

2019

CNN 
GA

Combining CNN and GA can find Pareto's optimal structural design 
using a relatively small dataset, even with complex nonlinear 
constraints[136].

2021

2D 
structure

CNN 
GAN

Inverse design of 2D metamaterial based on predefined Poisson's 
ratio. The model can generate structures beyond the dataset and 
exhibit responses similar to real structures[137].

2022
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MLP Realize accurate prediction of variable thickness curved beams and 
their properties. Efficient and accurate optimization design results 
were obtained with different optimization objectives[138].

20201D/3D 
structure

GAN Generate lightweight and high load-bearing performance lattice 
structures using GAN and conduct experimental verification[139].

2021

Figure 4. ML for the design of static characteristics in mechanical meta-structures. (A) Searching for the graphene kirigami with the
best stretching performance through gradual training of CNN[132]. Reproduced with the permission of Ref.[132] Copyright 2018, the
American Physical Society. (B) Combining CNN and GA to realize lattice metamaterial design satisfying additive manufacturing
constraints[136]. (C) Design of curved beams with best mechanical properties based on MLP and optimization methods[138]. Reproduced
with the permission of Ref.[138] Copyright 2020, Elsevier. (D) Design of lightweight lattice structures by GAN-based inverse design
framework[139].

cutting position control the elastic stretchability of graphene kirigami. They first trained CNN through 
supervision to predict the stretchability of graphene kirigami expressed by yield strain. Then, in the inverse 
design, the CNN is trained using the dataset obtained from molecular dynamics calculations, and the model 
is gradually trained using the best performance predicted by the CNN. In subsequent research[133], they 
proposed a supervised AE to design graphene kirigami. Kollmann et al. reported the 2D metamaterial 
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design with either maximum bulk modulus, maximum shear modulus, or minimum Poisson's ratio using 
CNN[134]. The dataset of their work is generated by the topology optimization framework based on the 
energy homogenization method and periodic boundary conditions.

To optimize the structure to obtain a 2D structure with the best mechanical properties, CNN is often 
combined with GAN or GA. Tan et al. reported a model in which deep convolutional GANs (DCGAN) are 
used to generate candidates adhering to geometric constraints, while CNN associates microstructures with 
properties[135]. After training, combine the two models for inverse design microstructural materials with 
specific mechanical properties. Garland et al. demonstrated the design of structural lattice metamaterial 
combining CNN and GA to meet the constraints of additive manufacturing, as shown in Figure 4B[136]. In 
addition, Wang et al. and Chang et al. also used this design paradigm to realize the inverse design of shell-
based mechanical metamaterial and auxetic metamaterial with zero Poisson’s ratio, respectively[140,141]. 
Tian et al. proposed the combination of CNN and GAN to achieve customized Poisson's ratio meta-
structure design[137]. CNN is trained to predict the global Poisson's ratio response of a given meta-structure, 
while GAN realizes the structural inverse design of the anticipated Poisson's ratio response through 
adversarial training.

In addition, some works have been done to design and optimize specific mechanical properties of one-
dimensional or three-dimensional (3D) meta-structures. Liu et al. demonstrated a design work of curved 
beams based on MLP and optimization methods, as shown in Figure 4C[138]. The mechanical properties of 
curved beams are characterized by stiffness, forward snapping force, and backward snapping force and are 
controlled by thickness distributions. They first trained MLP to predict the mechanical properties of curved 
beams with variable thickness and then put the trained MLP model into the optimization cycle proposed by 
Gu et al., as mentioned above, to optimize the thickness distribution with the best mechanical 
properties[131]. Challapalli et al. demonstrated the GAN-based inverse design framework for optimizing 
lightweight lattice structures, as shown in Figure 4D[139]. The basic idea of this framework is to add initial 
conditions, boundary conditions, and forward regression to the real data distinguished by discriminators to 
obtain structural units with excellent performance. The new dataset is then used for GAN training, and the 
process is iterated repeatedly to obtain the structure with the best mechanical performance.

CONCLUSION AND OUTLOOK
In this review, we have discussed the combination and synchronous development of ML and meta-structure 
and reviewed the recent flexible applications of ML algorithms in the fields of acoustics, elastic, and 
mechanical meta-structures from the aspects of band structures, wave propagation characteristics, and static 
characteristics. Through analysis, we have come to the following main conclusions:

(1) The forward performance prediction of meta-structures can usually rely on analytical formulas or 
simulation software. The purpose of introducing ML is to save time and computing resources or to provide 
a forward computing part for some combined inverse design schemes. The inverse design of meta-
structures is difficult to deal with analytically. DNNs with strong nonlinear modeling capabilities effectively 
solve this problem and can directly serve as alternative models for inverse problems. In addition, RL can 
also serve as an inverse design algorithm in meta-structures to explore structures that meet customized 
performance goals in the parameter space.

(2) A crucial issue in the inverse design process is how to alleviate data inconsistency. There are two main 
ideas. One approach is based on deterministic strategies, with representative approaches being: 1. TNN 
architecture with inverse and forward network concatenation. 2. Combining MLP (or CNN) with an AE. 
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The former achieves mapping from performance to features, while the latter achieves structure 
reconstruction from features. 3. Combining MLP (or CNN) with GA. The former achieves performance 
prediction through pre-training and then adds it to the iterative process of the latter. Another approach is 
based on probabilistic strategies; the main approach is to use Gaussian sampling after the data passes 
through the neural network rather than directly mapping to the structure or introducing Gaussian sampling 
in the middle design layer of the TNN architecture. Compared to deterministic strategies, probabilistic 
strategies have more diverse design choices.

(3) As the functional requirements of meta-structures become more critical, the design of meta-structures 
based on specific goals becomes more and more complex, which makes many advanced algorithms 
constantly develop and combine to meet the requirements. The support of an open-source framework 
makes the development of relevant algorithms for meta-structure design easier, even for the researchers 
without professional backgrounds in ML, which is an important reason for this field in a period of vigorous 
development and growth.

Although the research on the combination of ML and meta-structures has aroused great interest and 
attention in recent years, and many research achievements have been made, there are still many problems 
that restrict further development. The main problems and future directions can be summarized as follows:

(1) Obtaining data is often difficult, especially for problems without analytical solutions or high numerical 
calculation costs. Therefore, it is necessary to develop algorithms that only need small dataset training, such 
as reducing the demand for source data by transfer learning. Additionally, there is currently a lack of 
commonly used datasets in the field of meta-structure design. If researchers can share some datasets of 
conventional meta-structures, it will be easy to achieve data migration and fusion in the future.

(2) ANNs are often seen as black boxes, wherein the input of a set of structural parameters naturally results 
in the output of a corresponding set of performance parameters. Exploring what changes the data has 
undergone in the process of layer-by-layer transmission, in other words, how the structural parameters 
change step by step toward the performance parameters after each layer of operation, is important research 
to uncover the interpretability application of neural networks in the field of meta-structures.

(3) The research on some new physical concepts, such as non-Hermite smart phononic crystals, is in full 
swing in the field of meta-structures. What role ML can play in these new physical mechanisms is a 
question that can be deeply explored at present.

(4) The research of meta-structure mainly involves design and manufacturing. ML can theoretically provide 
excellent design results for various acoustic or mechanical requirements of targets, but most current 
research lacks manufacturing and experimental verification after design. Therefore, more consideration of 
manufacturing and verification is an important prerequisite for the application of this field.

(5) Multifunctional integration is an important direction of the development of meta-structures at present, 
which may involve the coupling of multiple physical fields, such as acoustics, mechanics, electromagnetism, 
and heat. Developing ML algorithms for multifunctional meta-structure design with multi-physical field 
characteristics is not only a challenge but also a promising direction. The path planning problem of 
multifunctional integrated composite meta-structure configuration in 3D printing containing continuous 
fibers is one of the important reasons currently restricting the manufacturing of complex composite 
structures. By introducing ML algorithms to optimize the fiber distribution direction field of continuous 
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fiber path planning, a collaborative optimization scheme between continuous fiber path and functional 
structure configuration can be achieved, which is expected to become an important means for the 
manufacturing of complex composite meta-structures in the future.
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