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Electrostatic charges near the interface between topological (TI) and ordinary (OI) insulators induce 
magnetic fields in the medium that can be described through the so-called method of image dyons 
(electric charge - magnetic monopole pairs), the magnetoelectric extension of the method of image 
charges in classical electrostatics. Here, we provide the expressions for the image dyons and ensuing 
magnetoelectric potentials in a system comprised by two planar-parallel OI-TI interfaces conforming 
a finite-width slab. The obtained formulae extend earlier work in that they account for all different 
combinations of materials forming the slab and its surroundings, including asymmetric systems, as well 
as all possible combinations of external magnetization orientations on the interfaces. The equations are 
susceptible of implementation in simple computational codes, to be solved recurrently, in order to model 
magnetoelectric fields in topological quantum wells, thin films, or layers of two-dimensional materials. 
We exemplify this by calculating the magnetic fields induced by a point charge in nanometer-thick 
quantum wells, by means of a Mathematica code made available in repositories.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction

Since first theoretically predicted [1–3] and experimentaly dis-
covered, [4,5] topological insulators (TIs) have attracted increasing 
attention in condensed matter physics because of their novel, ex-
otic properties, as well as of their potential applications [6]. TIs 
resemble ordinary insulators (OIs) in the sense that they present 
bulk bandgaps, but differ in that TIs also present gapless, metal 
surfaces with boundary (edge or surface) states arranged in a 
massless Dirac spectrum. Noticeably, this spectrum stands out for 
being extremely robust against perturbations and/or surface condi-
tions as long as time-reversal (TR) symmetry is preserved, for this 
robustness comes from bulk properties. When TR symmetry is bro-
ken -say by means of a magnetic perturbation (applied field and/or 
film coating)- in the vicinity of the interfaces, a gap opens in the 
otherwise topologically protected spectrum of the TI surface, lead-
ing to unusual electromagnetic and magnetotransport effects. [7]
One such effect is the so-called topological magnetoelectric effect 
(TME), a collection of phenomena where magnetic fields become 
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the source of electric fields and viceversa. The electromagnetic re-
sponse is then described by modified Maxwell equations, which 
include additional terms that couple an electric field to a mag-
netization and a magnetic field to a polarization of the medium. 
Formally, such a description can preserve the usual form of the 
Maxwell equations, but with modified constitutive relations which 
contain additional cross-terms.

Thus, similarly to ordinary insulators, the Maxwell equations for 
TI can be written (in differential form and Gaussian atomic units) 
as

∇ · D = 4πρ, (1)

∇ × E = −1

c

∂B

∂t
, (2)

∇ · B = 0, (3)

∇ × H = 1

c

∂D

∂t
+ 4π

c
J. (4)

However, when topological insulators are involved, the electric 
displacement vector D is modified by the magnetic induction B
and the magnetic field intensity H is in turn influenced by the 
electric field. Then, the constitutive relations D = εE and H = B/μ

must be modified according to [7–11]

D = εE − P
θα

B (5)

π
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Fig. 1. Schematics of the studied system and related parameters for the particular 
case of a point charge q0 placed within the central (C) slab of width w embedded 
between two semi-infinite media (upper, U , and lower, L, regions). The combina-
tions of the θ parameters under study comprise the cases (θ L , θC , θ L) = (0, π, 0)

(OI-TI-OI) and (π, 0, π) (TI-OI-TI).

H = B

μ
+ P

θα

π
E (6)

where α = e2/(h̄c) ≈ 1/137 is the fine-structure constant, ε and μ
the relative dielectric constant and magnetic permeability, and θ
the magnetoelectric polarizability. In bulk TI, θ = π , while in ordi-
nary media θ = 0, thus recovering the usual constitutive relations. 
Finally, P = sgn[M · n] determines the sign of the magnetoelectric 
coupling. Here, M is a (external) surface magnetization breaking 
locally the TR symmetry, and n the surface unit vector pointing 
out of the TI. [8,11,12]

The unusual physics of the TME has sparked several studies 
over the last years aiming at gaining intuition on how these fields 
behave in different systems with different geometries. [2,8,9,11,13,
14,17–20] Whenever planar interfaces are involved, the method 
of choice to model the TME is the so-called method of image 
dyons, the axionic counterpart of the well-known method of image 
charges in electrostatics. [21]

Recently, Yı̄ng and Zülicke [14] used this method to derive 
analytical expressions for the magnetoelectric fields and probe 
the magnetoelectric response induced by a point charge on a 
thin, quasi-two dimensional slab of magnetoelectric material in 
a vacuum. Thin slabs are convenient models to study the TME 
in suspended layers of two-dimensional (graphene-like) materi-
als [22,23] but also in a richer variety of systems, such as thin 
films [15,16] or topological quantum wells [2,9], where the mate-
rial properties of the surrounding medium can make a difference. 
For this reason, in the present work we reformulate and extend the 
image dyon formalism to describe the magnetoelectric response 
in a more general case. The system is sketched in Fig. 1: a point 
charge (q0) is placed at an arbitrary location of the system com-
posed by a thin slab of material C , sandwiched between an upper 
material (U ) and a lower material (L), each with its own dielec-
tric permittivity and magnetic permeability. The slab can be a TI 
(θC = π ) and the embedding materials OI (θ L = θU = 0), or vicev-
ersa. Thus, general formulae for the dyons involved are provided 
for different combinations of the OI-TI planar interfaces configuring 
the slab, which are versatile enough to account for asymmetries in 
the parameters of the embedding materials, as well as for all possi-
ble combinations of external magnetization orientations at the two 
interfaces. As in the image charge method [21,24,25], the analytical 
nature of the expressions gives intuitive insight into the influence 
of material parameters and slab dimensions on the resulting mag-
netoelectric fields. The equations are implemented in an accessible 
Mathematica code, [26] and are used to provide an overview on 
the formation of magnetic fields in thin slabs induced by a point 
charge.

2. The method of image dyons

The method of image dyons can be thought as an extension of 
the method of image charges, broadly employed in electrostatics to 
account for dielectric discontinuities between adjacent materials in 
2

the determination of the field generated by a nearby electric point 
charge (see e.g. Refs. [21,24,25]). The method consists in simulat-
ing the electrostatic potential V of a dielectrically inhomogeneous 
system as the sum of the contributions of the real charge plus a 
set of virtual (image) charges in a homogeneous dielectric. The im-
age charges are considered as additional sources of electrostatic 
potential that contribute to shape the actual electrostatic field in 
the system, with the particularity that each of these contributions 
is restricted to the region of the space opposite to the location of 
the corresponding image charge with respect to the surface defin-
ing the dielectric discontinuity.

In the case we are dealing with, however, the presence of inter-
faces with magnetoelectrics requires the additional consideration 
of (image) magnetic monopoles accompanying each of the elec-
trostatic image charges to account for the magnetic fields arisen 
in the system. This renders new image objects called dyons dk =
(qk, gk), where qk represents an image charge and gk a magnetic 
monopole, both located at the same position rk .

In systems with no time-dependent fields, Eqs. (2) and (4)
turn into ∇ × E = 0 and ∇ × H = 0. Then, E and B can be ob-
tained from the gradient of their scalar potentials, E = −∇V and 
B = −∇U . [13,27] In such conditions, and paralleling the method 
of image charges, the method of image dyons describes these po-
tentials as

V (r) = 1

ε

[
q0

|r − r0| +
∑

k

qk

|r − rk|

]
, (7)

U (r) = μ
∑

k

gk

|r − rk| , (8)

where, for convenience, the dielectric constant ε and the mag-
netic permeability μ are chosen as those of the region where the 
source charge q0 is located, and k runs over all dyons needed to 
define the potentials. Then, qk and gk values are yielded by ap-
plying boundary conditions (BCs) at the interfaces which account 
for these Ansätze. In the presence of a single TI-OI interface, two 
image dyons suffice to fulfill the boundary conditions. [9,27] By 
contrast, in a finite slab the double interface makes the summa-
tions in Eqs. (7) and (8) constitute infinite series. We elaborate on 
this point below, as a proper derivation of the dyon series implies 
a few conceptual subtleties.

Fig. 2(a) depicts the first few steps of the process carried out 
to obtain the general expressions of the (infinite) series of image 
dyons when the source charge is placed in the upper region, near 
the slab. Here we follow the scheme and nomenclature proposed 
by Yı̄ng and Zülicke. [14] Thus, dyons are expressed as dmν

k , where 
the superscript m = U (L) denotes dyons obtained by mirroring 
in the upper (lower) interface, and ν = + (−) when the location 
of the image dyon is above (below) m. Additionally, the subscript 
k = ±1, ±2, . . . is related to the distance between the image and 
a reference interface. It will become clear from the figure that the 
position of a dyon is given by:

rν
k = (0,0, νsgn(k){z0 + 2[k − sgn(k)]w}), (9)

where z0 is the distance of the source (real) charge to the xy plane 
and w is the width of the slab.

To start the process (Step 1 in Fig. 2(a)), we apply the boundary 
conditions derived from the constitutive relations (5) and (6) to 
the upper interface only, while ignoring the presence of the lower 
interface. That is, DU⊥ = DC⊥ , HU‖ = HC‖ , EU‖ = EC‖ , BU⊥ = BC⊥ . As in the 
image charge method, it is convenient to place the virtual dyons 
as mirror images of the source (i.e., equidistant with respect to the 
interface). We then obtain the first set of image dyons, i.e., dU+

1 at 
z = z0 and dU− at z = −z0, whose contributions to V and U (in 
1
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z < 0 and z > 0, respectively) ensure the proper continuity of the 
fields across the interface.

For the sake of clarity, the regions of z where each dyon con-
tributes to V and U have been shaded in the figure. For instance, 
dU−

1 must be considered only when describing the potentials in the 
region U . Two consequences follow: (i) it becomes clear that the 
summations in Eqs. (7) and (8) will run over specific sets of dyons, 
depending on the region where V and U are calculated; and (ii) 
dU+

1 must be taken into account in the next step, which consists in 
ensuring the fulfilment of the boundary conditions at the lower in-
terface. As shown in Fig. 2(a) (see Step 2), this is accomplished by 
incorporating a new set of dyons, dL+

1 and dL−
2 , equidistant from 

the L interface, and considering both, q0 and dU+
1 as the source 

charges. However, the dyon dL−
2 unbalances the boundary condi-

tions in the upper interface, so that new dyons, dU+
2 and dU−

2 , will 
be needed in order to fix it (Step 3), which, in turn, will provoke 
further imbalances of the BCs in the lower interface. The subse-
quent rearrangements of the potentials and related dyons involved 
let us foresee the infinite character of the method and of the sum-
mations in Eqs. (7) and (8). Fortunately, the convergence of the 
method is fast enough as not to require more than a few steps to 
reach considerable accuracy.

When the source charge is placed inside the slab the proce-
dure becomes somewhat more involved, since now two differen-
tiated, infinite subsets of image dyons appear. This can be seen in 
Fig. 2(b). The first step is similar to the case with the source charge 
outside the slab, and implies the obtainment of the dyons dU+

1 at 
z = z0 and dU−

1 at z = −z0. Hereafter, however, the image mirror-
ing process follows two different paths, each considering dU+

1 or 
q0 as sources, thereby generating the subset of dyons labeled with 
k > 0 and k < 0 subscripts, respectively (see the Figure). The origin 
of this separation is the different location of the afore-mentioned 
source charge and dyon.

Following the process described above, one obtains the loca-
tion of the dyons contributing to V and U in Eqs. (7) and (8). 
The magnitude of the charge and magnetic monopole follow from 
the imposition of the boundary conditions on the due interfaces. 
Because these are individual interfaces, the procedure to this end 
is the same as described elsewhere [27]. Below we provide the 
general expressions for a point charge near or inside a slab. It is 
worth stressing that the sets of equations are independent of the 
particular configuration of the system, i.e., of the topological/trivial 
insulator nature of the slab material. Thus, they apply to both, a 
topologic slab surrounded by ordinary media and an ordinary (e.g., 
semiconductor) slab between topological insulators.

2.1. Image dyons and potentials from a point charge placed near the 
central slab

Without loss of generality, we assume the source charge q0 to 
be located at r0 = (0, 0, z0), with z0 > 0 (upper medium). In such 
a case, the corresponding image dyons dmν

k = (qmν
k , gmν

k ) are ob-
tained by means of the following recurrence relations:

(
qUν

k

gUν
k

)
= βU

⎛
⎝ −ξU −ηU (

2εU μU

μC )α

−νηU ( 2εC

εU μU )α νχU

⎞
⎠

(
qL−

k

gL−
k

)
,

(10)(
qL+

k

gL+
k

)
= β L

⎛
⎝ −ξ L ηL(

2εU μU

μC )α

−ηL( 2εC

εU μU )α −χ L

⎞
⎠

(
qU+

k

gU+
k

)
, (11)

(
qL−

k

gL−

)
=

(
1 0
0 −1

)(
qL+

k−1

gL+

)
, (12)
k k−1

3

with the following initial values:(
qUν

1

gUν
1

)
= βU

(
ξU − 2α2 0

−νηU ( 2
μU )α 0

)(
q0
0

)
, (13)

(
qL+

1

gL+
1

)
= β L

⎛
⎝ −ξ L ηL(

2εU μU

μC )α

−ηL( 2εC

εU μU )α −χ L

⎞
⎠(

q0 + qU+
1

gU+
1

)
.

(14)

Notice that dL−
1 does not exist by construction.

In the above equations, we have defined βm = [(εm + εC )(1/

μm + 1/μC ) + α2]−1, ξm = (εm − εC )(1/μm + 1/μC ) + α2, χm =
(εm + εC )(1/μm − 1/μC ) + α2, and ηm = sgn[k · Mm], which de-
pends on the orientation with respect to the vector k (the unitary 
vector in the positive direction of the z axis) of the external mag-
netization Mm lifting the time reversal symmetry near the corre-
sponding (m = U , L) interface. [8,9,11,12] Note that η should not 
be confused with P in Eqs. (5)-(6). Although they are very closely 
related (both determine the sign of the magnetoelectric terms), 
they are referred to different orientation vectors. Here we used η
in order to obtain more general expressions.

The Ansätze employed for the electric V (r) and magnetic U (r)
potentials, Eqs. (7) and (8), can be expanded in terms of the above 
image dyons as follows:

V U U (r0; r) = 1

εU

⎡
⎣ q0

|r − r0| +
∑

m=U ,L

∞∑
k=1

qm−
k∣∣r − r−

k

∣∣
⎤
⎦ , (15)

V U C (r0; r) = 1

εU

[
q0

|r − r0| +
∞∑

k=1

(
qU+

k∣∣r − r+
k

∣∣ + qL−
k∣∣r − r−

k

∣∣
)]

, (16)

V U L(r0; r) = 1

εU

⎡
⎣ q0

|r − r0| +
∑

m=U ,L

∞∑
k=1

qm+
k∣∣r − r+

k

∣∣
⎤
⎦ , (17)

U U U (r0; r) = μU
∑

m=U ,L

∞∑
k=1

gm−
k∣∣r − r−

k

∣∣ , (18)

U U C (r0; r) = μU
∞∑

k=1

(
gU+

k∣∣r − r+
k

∣∣ + gL−
k∣∣r − r−

k

∣∣
)

, (19)

U U L(r0; r) = μU
∑

m=U ,L

∞∑
k=1

gm+
k∣∣r − r+

k

∣∣ , (20)

where the first superscript in V and U indicates the region in 
which the source charge is located, and the second the region 
in which the potential is described. As explained previously, in 
Eqs. (15)-(20) only the dyons accounting for the fields in each re-
gion are considered.

2.2. Image dyons and potentials from a point charge placed within the 
slab

Now we consider q0 placed at r0 = (0, 0, −z0), with w > z0 > 0. 
In this case, the recurrence relations for the subset of image dyons 
with k > 0 (see section 2) read:(

qUν
k

gUν
k

)
= βU

(
−ξU −ηU (2εC )α

−νηU ( 2
μC )α νχU

)(
qL−

k

gL−
k

)
, (21)

(
qL+

k

gL+

)
= β L

(
−ξ L ηL(2εC )α

−ηL( 2
μC )α −χ L

)(
qU+

k

gU+

)
, (22)
k k
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Fig. 2. Schematic of the first iterations of the image dyon method for a source charge q0 placed near (a) and inside (b) the QW slab. The blue-shaded region vertically aligned 
with each charge/dyon represents the region where its contribution to the potentials has to be considered. The dyons have been offset in the horizontal axis for clarity, but 
they all share the same position in the xy plane. The interface where the boundary conditions are intended to be satisfied in each step is highlighted by a thicker line. In 
(a), the iteration process alternates continuously between the two interfaces U and L, generating an infinite set of image dyons. In contrast, the process in (b) splits after the 
first step into two (infinite) dmν

k subsets: one labeled with k > 0 and the other with k < 0 subscripts. Note that dL−
±1 and dUν−1 do not exist by construction. (For interpretation 

of the colors in the figure(s), the reader is referred to the web version of this article.)
(
qL−

k

gL−
k

)
=

(
1 0
0 −1

)(
qL+

k−1

gL+
k−1

)
, (23)

with the following initial values:(
qUν

1

gUν
1

)
= βU

(
−ξU 0

−νηU ( 2
μC )α 0

)(
q0
0

)
. (24)

For the subset of image dyons with k < 0, the recurrence rela-
tions are given by equations (21) and (22), together with(

qL−
k

gL−
k

)
=

(
1 0
0 −1

)(
qL+

k+1

gL+
k+1

)
(25)

and the initial values:(
qL+
−1

gL+

)
= β L

(
−ξ L 0

−ηL( 2
μC )α 0

)(
q0
0

)
. (26)
−1

4

Note that in this case (q0 in the central slab), dL−
±1 and dUν−1 do 

not exist by construction.
The scalar potentials in terms of these image charges are writ-

ten as

V C U (r0; r) = 1

εC

⎡
⎣ q0

|r − r0| +
∑

m=U ,L

∞∑
k=1

qm−
±k∣∣∣r − r−

±k

∣∣∣
⎤
⎦ , (27)

V CC (r0; r) = 1

εC

⎡
⎣ q0

|r − r0| +
∞∑

k=1

⎛
⎝ qU+

±k∣∣∣r − r+
±k

∣∣∣ + qL−
±k∣∣∣r − r−

±k

∣∣∣
⎞
⎠

⎤
⎦ ,

(28)

V C L(r0; r) = 1

εC

⎡
⎣ q0

|r − r0| +
∑

m=U ,L

∞∑
k=1

qm+
±k∣∣∣r − r+

±k

∣∣∣
⎤
⎦ , (29)
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Fig. 3. Magnetic field induced by a charge q0 = +1 a.u. at the center of an OI 
slab within a TI (TI-OI-TI system) assuming antiparallel orientations of the external 
magnetization on the interfaces, represented by red arrows in (a). (b) [(d)] Stream 
density plots for a w = 10 nm-thick [w = 2 nm-thick] slab. The position of q0 is 
denoted by the green dot, and the thick, white lines indicate the upper and lower 
interfaces of the slab. (c) [(e)] Corresponding z projection of B along the vertical 
axis containing q0, whose position is pointed out by the red arrow. TI materials are 
indicated by the shaded regions. In (c) [(e)] the pink line quantifies the difference 
between the Bz profile for the TI-OI-TI system and that for its OI-TI-OI counterpart.

U C U (r0; r) = μC
∑

m=U ,L

∞∑
k=1

gm−
±k∣∣∣r − r−

±k

∣∣∣ , (30)

U CC (r0; r) = μC
∞∑

k=1

⎛
⎝ gU+

±k∣∣∣r − r+
±k

∣∣∣ + gL−
±k∣∣∣r − r−

±k

∣∣∣
⎞
⎠ , (31)

U C L(r0; r) = μC
∑

m=U ,L

∞∑
k=1

gm+
±k∣∣∣r − r+

±k

∣∣∣ . (32)

3. Topological magnetoelectric field in a quantum well

Building up on the previous equations, the dyons of a thin slab 
can be computed by means of a recurrent procedure. A Mathemat-
ica code implementing such a procedure can be found in Ref. [26].

For illustrative purposes, in this section we use the code to 
study the behavior of magnetoelectric fields induced by a source 
charge on slabs of different materials and thicknesses.

We start by setting representative parameters for the OI 
(εOI, μOI, θOI) = (5, 1, 0) and the TI (εTI, μTI, θTI) = (10, 1, π) ma-
terials in the system. Two slab thicknesses are considered, namely 
w = 10 nm and w = 2 nm. These material parameters and dimen-
sions are representative of thick and thin semiconductor quantum 
wells. We then choose the slab to be made of an OI and the sur-
roundings of TI. In Fig. 3, we study the magnetic field B arising 
from a point charge q0 = +1 a.u. in the center of the slab, assum-
ing that the external magnetization points towards the slab, see 
Fig. 3(a). The figure shows stream density plots of the magnetic 
field, as well as the z-projection of the magnetic field along the 
z-axis (the axis containing the source charge). This magnitude can 
5

Fig. 4. (a)-(e) Same as in Fig. 3 but for q0 placed at z0 = 1 nm above the upper 
interface. (g) [(h)] Same as in (b) [(d)] but for the OI-TI-OI system (f).

be taken as a paradigmatic cross section for the comparison of ab-
solute values of B, because it contains the maximum values of the 
induced field, as can be inferred from the stream density plots.

One can see in Fig. 3 that B is suppressed around q0 and a 
nodal plane for Bz builds up at that location (Figs. 3(b) and 3(c)). 
The same occurs for narrower slabs (Figs. 3(d) and (e)). This result 
is in line with the trends reported in recent works [13,14], and can 
be rationalized in terms of the sense of rotation of the Hall cur-
rents triggered by the point charge on the U and L interfaces. [13]
It should be noted, however, that our calculations do not show the 
vortexlike pattern found in Ref. [14], for any set of material param-
eters (not shown). Regarding the effect of the slab thickness, Fig. 3
shows that narrowing down the slab increases the magnetic field 
strength because the interfaces are closer to the source charge (cf. 
Bz in panels (c) and (e)), and reorients the field (cf. stream density 
plots, panels (b) and (d)).

When the slab is made of a TI material instead (OI-TI-OI con-
figuration), the resulting magnetic fields are similar to those de-
scribed above. The only differences are ascribable to the different 
distribution of the dielectric constants in the system. For the con-
stants we consider, this leads to | B | being slightly smaller. This 



J.L. Movilla, J.I. Climente and J. Planelles Computer Physics Communications 291 (2023) 108826
can be inferred from the pink lines in Fig. 3(c) and Fig. 3(e), which 
represent the difference between Bz for a TI slab and that for an 
OI slab.

Fig. 4(a-e) is analogous to Fig. 3, but now the source charge has 
been moved at a distance z0 = 1 nm on top of the upper interface, 
see panel (a). Magnetic fields build up near the TI-OI interface in 
the vicinity of the source charge, which are fairly unsensitive to 
the thickness of the slab. [13]

Interestingly, for this charge location, switching from an OI slab 
to a TI one brings about qualitative differences. Namely, the stream 
density plots (Figs. 4(g) and 4(h)) show opposite orientations of 
the magnetic field below the lower interface, as compared to the 
OI slab case (Figs. 4(b) and 4(d)). This is a signature of the rele-
vance on the magnetoelectric coupling of the polarization charges 
induced at the interfaces as a result of the different dielectric re-
sponse of adjacent materials. Thus, in the upper interface, near the 
electrostatic source charge, the magnetoelectric coupling is domi-
nated by the direct Coulomb term, yielding a qualitatively similar 
magnetic field distribution. However, in the lower interface, fur-
ther from the source charge, the effect of the surface polarization 
charge prevails. Such polarization charge presents in the OI-TI-OI 
system opposite sign than in TI-OI-TI, thus explaining the opposite 
orientation of the induced magnetic field.

In the examples considered so far, magnetization on the two 
interfaces was antiparallel, i.e., sign[MU · nU ] = sign[ML · nL]. In 
particular, Mm pointed inwards the TI. However, our formalism 
is general enough as to also describe (i) the effect of parallel 
magnetization on the interfaces, and (ii) the asymmetry caused 
by different U and L materials. Fig. 5 presents results obtained 
assuming (i). They are directly comparable with those in Fig. 3, 
for ηU = −1 → ηU = +1 is the only change between them. The 
comparison evidences that the magnetic field distribution presents 
now a preferential orientation dictated by that of M, eliminating 
thus the Bz nodal plane and the vortexlike patterns around the 
interfaces. This is because the Hall currents induced on both in-
terfaces have now the same sense of rotation, and hence reinforce 
|B| throughout the system. This reinforcement entails larger dif-
ferences between the OI-TI-OI and the TI-OI-TI systems (see pink 
lines in Figs. 5(c) and 5(e)), ascribable once again to the different 
spatial distribution of the dielectric response.

The most remarkable feature of the field distribution is its re-
semblance with that of a Pearl vortex, previously reported for a 
single OI-TI interface between two semi-infinite media. [13,20] In-
deed, the slab can be considered as a transition region between 
those presenting the characteristic distribution of a Pearl vortex, 
with the difference that now its prominent features (as e.g., the 
straight stream lines) show up in the same type of material (TI in 
Fig. 5(b)).

The Pearl vortex-like distribution is distorted when asymme-
tries come into play. A representative example can be seen in 
Fig. 6(b), similar to those in Fig. 5 but with q0 moved into the 
upper medium. The distribution of the magnetic field in the vicin-
ity of the U interface evidences a deviation from the ideal profile 
of a Pearl vortex. Indeed, one can observe a slight curvature of the 
z > 0 stream lines near the interface. This effect also occurs when 
the off-centered source charge remains within the central slab (not 
shown). However, in both cases the resemblance of the field dis-
tribution to a Pearl vortex is recovered for thin enough slabs (see 
Fig. 6(d)).

In actual quantum wells, an additional source of asymmetry 
may stem from having different U and L media. This configuration 
(particularly, a TI of finite thickness with two surfaces, with vac-
uum in one side and a semiconductor substrate on the other) was 
proposed as a possible setup to observe the topological magneto-
electric effect through measurements of Faraday and Kerr rotations 
induced on the TR symmetry-breaking surfaces, [28,29] and was 
6

Fig. 5. Same as in Fig. 3 but for the same orientation of the external magnetizations 
at both interfaces.

Fig. 6. Same as in Fig. 4(a)-(e) but for the same orientation of the external magne-
tizations at both interfaces.

later on experimentally realized confirming the expected quantiza-
tion of the magnetoelectric coupling in TIs. [30,31] This scenario 
is studied in Fig. 7, where two different ordinary media given by 
(εU , μU , θU ) = (1, 1, 0) (i.e., vacuum), and (εL, μL, θ L) = (5, 1, 0)

(e.g., a semiconductor), delimit the boundaries of a TI slab with 
(εC , μC , θC ) = (10, 1, π). All calculations in the figure keep q0 at 
the center of the slab. A number of visible differences with respect 
to the case of symmetric material distribution appear. The plots 
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Fig. 7. (a)-(c) [(d)-(f)] Same as in Fig. 3(a)-(c) [Fig. 5(a)-(c)] but for a OI-TI-OI slab 
with (εU , μU , θU ) = (1, 1, 0) (i.e., vacuum) and (εL , μL , θ L) = (5, 1, 0) (i.e., semi-
conductor).

reveal stronger magnetic fields in the upper interface region, the 
Bz nodal plane disappears in the case of antiparallel magnetiza-
tions (see Fig. 7(b) away from x = 0), and the Pearl vortex pattern 
becomes slightly distorted for z > 0 in the case of parallel magne-
tizations (see Fig. 7(e)). In addition, the strength of the magnetic 
field near the U interface increases as compared with Figs. 3 and 5, 
which is a consequence of the larger polarization charge induced 
in the TI-vacuum interface due to their larger dielectric contrast.

4. Concluding remarks

We have introduced a compact implementation of the image 
dyons method which provides the magnetoelectric fields induced 
by a point charge near or inside a quasi-two dimensional slab 
with OI-TI interfaces. The implementation is general enough as to 
account for all possible combinations of (i) the OI-TI planar inter-
faces configuring the slab, (ii) the material parameters, and (iii) 
the orientations of the local magnetizations needed to lift the sur-
face time-reversal symmetry on each interface. The equations can 
be readily implemented in a recurrent calculation routine, like that 
we provide in Ref. [26], which ensures speed, accuracy and a fast 
convergence of the derived electric and magnetic fields. The illus-
trative calculations highlight the rich variety of the magnetoelectric 
response depending on the system configuration, which is certainly 
an incentive to custom-design the resulting magnetic field.
7
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