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Accuracy of a single position estimate for
kNN-based fingerprinting indoor positioning

applying error propagation theory
Antoni Pérez-Navarro, Raúl Montoliu, Emilio Sansano-Sansano,

Marina Martı́nez-Garcia, Ruben Femenia and Joaquı́n Torres-Sospedra

Abstract— Indoor Positioning Systems usually consider the aver-
age positioning error over a set of evaluation samples, or a quartile
of that value, as the global error. However, they do not provide a met-
ric for the uncertainty for each individual position estimation. In this
paper, we apply the error propagation theory to the kNN algorithm
in Wi-Fi fingerprint-based indoor positioning. Our proposed method
does not only retrieve the position estimate but also describes
how the uncertainties of the RSSI measurements propagate through
the calculations. We have validated our proposed method with two
open-access datasets.

Index Terms— Indoor positioning, Fingerprinting methods, Error
propagation.

I. INTRODUCTION

LOCATION-based systems (LBS) offer endless possibili-
ties including passenger guidance at airports, the orien-

tation of visually impaired people and, even, the support of
event management. While LBS are widely powered by Global
Navigation Satellite Systems (GNSSs) outdoors, there is no
standard for positioning indoors and in GNSS-denied spaces.
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GNSSs are able to provide navigation, positioning and
timing services. In addition, these systems also offer what
is known as Dynamic Accuracy Estimation (DAE), i.e. the
system provides the accuracy of each provided position. This
dynamic accuracy is usually represented as a circle around
the estimated position, which corresponds to what is called
the error bound. This error bound is usually the 68.26th per-
centile confidence level, meaning that there is approximately
a 68.26% chance that the true location of the device is within
the DAE, i.e. inside the circle limits.

The error bound is important because it is a metric that
represents how reliable is the provided position. The smaller
the displayed circle, the more reliable the estimated position is.
This is not only important in navigation applications, but also
in advanced positioning systems based on sensor fusion where
an unreliable position estimation may degrade the final output.
However, what is already implemented in GNSS is lacking
in indoor positioning systems, especially in those based on
signals of opportunity like Wi-Fi fingerprinting.

Generally, the accuracy in indoor positioning systems is
given as the average error over a set of test samples where
their real positions are known. This accuracy is generally used
to generate the same error bound for a group of estimates or,
even, for all of them. This means that the error is calculated
using the ground truth location of the position estimate and
it is not updated anymore, i.e., the displayed circle will
be the same size for all the position estimates. Thus, this
approach is not considering the signal fluctuations over time or
the particularities of the environment and indoor positioning
system in a particular sub-region.
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Although there have been several attempts to obtain differ-
ent error bounds in different points ([1]–[3]), as far as we
know, there is no mechanism to obtain a priori the error
bound of a new position estimate. Knowing the error bound
of a single position estimate is important in order to know
the reliability of the position we are getting, i.e. what is
the potential error for that estimated position. The three-
sigma rule of thumb [4] could also be applied to provide
an uncertainty of each provided position estimate. However,
there are three key differences that prevent us from using
this rule as the main uncertainty source. First, it requires
calculating the standard deviation of the positioning error over
a set of position estimates. This can only be calculated a
posteriori, once we have all the positioning estimations on
the test set, or over an independent validation set. Second, the
same uncertainty, the three-sigma of the positioning errors,
is assumed for any position estimate. In contrast to the
conventional three-sigma rule of thumb, the uncertainty metric
we propose is based on the mean and standard deviation of
the measurements themselves (inputs), not on the positioning
errors (outputs) and, in addition, each operational fingerprint
will have attached its own uncertainty. i.e., the uncertainty will
be somehow correlated with the variability of the RSS values
in a single point. Third, it would give a higher error than the
one calculated with the error propagation theory (EPT), and
the zone could be too large to be useful.

An important factor that can contribute to errors in Wi-Fi
fingerprinting is the fluctuation of the received signal strength
(RSS) [5]. As a result of these fluctuations, there can be
uncertainty in the experimentally measured variables, which
then propagate through the calculations used to determine
the final position. This ultimately leads to inaccuracies in
the final result. The error propagation theory (EPT) [6] takes
into account how these uncertainties propagate through the
calculated magnitudes.

This study employs EPT to account for the influence of ex-
perimental measurement uncertainties on position calculations
in Wi-Fi fingerprinting. This enables us to determine an error
bound for each position estimate. Specifically, we concentrate
on applying EPT to compute the error propagation in Wi-Fi
fingerprinting using the kNN method as a position estimator.

Using EPT has two main advantages. On the one hand, the
error is calculated for every empirical measure, therefore, we
are able to give a specific error bound for every delivered
position estimate. On the other hand, the formulae used in our
study are obtained through analytical means, enabling us to
identify the measures that significantly contribute to errors and
are crucial for improving location accuracy. This mechanism
allows knowing the accuracy of a single point.

The main contributions of this work are summarised as
follows:

• We propose an indoor positioning system that not only
provides the position estimates but also their associated
area of uncertainty;

• We perform an empirical assessment of the proposed
method using two real datasets.

II. RELATED WORK

The calculation of error bound is developed in several ways
in GNSS among which we can find dual-frequency GNSS
equipment and augmentations systems like WAAS or EGNOS.

In the case of indoor systems, it is not possible to use
the same algorithms to calculate the error bound. Therefore,
we need to look for different mechanisms. To this end, it
is important to understand how the process works in our
particular use case, which is based on Wi-Fi fingerprinting
using the kNN algorithm to estimate the positions.

There have been several works that deal with the error in
indoor positioning. The ISO 18305 Standard [7], [8] provides
several performance metrics that bring general accuracy of
the positioning system, including mean positioning error,
variance/covariance of the error, root mean square error and
the 95th percentile of the error. Those metrics are com-
puted over a series of independent evaluation points, bringing
global accuracy. The standard also depicts how to provide
accuracy for a given location, but it requires the receiver
to be stationary to collect several samples and then apply
one of the above-mentioned performance metrics. A popular
alternative is the one used in the Indoor Positioning and Indoor
Navigation (IPIN) competition ([9]–[11]). In that method, the
accuracy corresponds to the third quartile (75th percentile)
of an error metric that combines the horizontal positioning
error and a penalty for wrong floor detection and wrong
building detection. Recent works [12]–[16] do not rely on just
one metric to report the results, providing different metrics
(mean, percentile values, RMSE, among others). The main
metrics in those works are backed many times with the
CDF (Cumulative Distribution Function) plot of the individual
errors. This multiple-metric evaluation is performed not only
to report the positioning error but also to compare the proposed
method to baselines or state-of-the-art methods. These kinds
of measures of the error give a general value of the accuracy
of the system but do not allow to know the accuracy of a
single point. Also, the CDF plot does not relate the individual
errors to locations. While the former metrics are calculated
a posteriori, the error bound that we proposed is calculated
on-line for each position estimate. Anyway, location-based
metrics are relevant only for pure RF-based technologies, as
positioning systems involving inertial measurements may end
up in different metrics depending on the performed trajectory.

Marcus et al. [1] proposed a system to evaluate the accuracy
of a fingerprinting system, SMARTPOS, based on dynamically
setting the number of nearest neighbours in a kNN algorithm.
The authors showed that errors follow a Gaussian distribution,
which drove to four proposals of the error estimation: in the
first one, for k greater than 2, they take the average geographic
distance between the nearest neighbour to the 2nd until the k-
th nearest fingerprint as the error. In the second proposal they
take as the error the maximum geographic distance among any
selected neighbour (i > 1) to the nearest neighbour. The third
option is to estimate the distance between any two fingerprints
in the sequence of selected nearest neighbours to obtain the
error. The last option does not only uses the positions of the k
nearest neighbours but also their corresponding weight (based
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on distance in the RSSI space) and the final position estimate.
The authors used the measures in the signal space to discover
the fingerprints, but they also used their counterparts in the
geographical space to determine the position.

Zou et al. [2] used as the error the maximum distance
between reference points chosen in the kNN algorithm. This
is similar to the second proposal used by Marcus et al. [1].
Marcus et al. and Zou proposals for the measurement of the
accuracy are based on the structure of the fingerprints and,
therefore, do not take into account differences among different
regions in the target zone.

Lemic et al. [3] took into account the heterogeneity of the
environment to calculate the error. They used a regression
model that is trained with the information of the measured er-
ror obtained. i.e., they compare the RSS value at the real point
with the RSS value at the estimated point. For positioning, they
used several algorithms, among which kNN is found to be the
best-performing one. In 2020, they improved the method by
including Artificial Neural Networks [17]. On the one hand,
Lemic et al. proposals were tested in an outdoor scenario but
we consider that the mechanism used can be relevant also to
indoor environments. However, a large amount of data needs
to be collected for using the proposed algorithm, which may be
considered an important drawback. On the other hand, Lemic
et al. proposals, although looking for the anisotropy of the
environment, did not take into account the anisotropy of RSS
measures in time, i.e. the location error is defined and trained
by data built during the offline phase. Nevertheless, in Lemic’s
proposals, the estimated position is included in the process,
although it is only to improve the error location.

Recently, Anagnastopoulos et al. [18] reviewed several
mechanisms to analyze what they call Dynamic Accuracy
Estimation (DAE), which, according to them “expresses the
estimated potential error of the provided location estimate”.
According to that work, DAE is identified by some authors
as “accuracy estimation”, “error estimation” or “confidence”.
As has been said in the introduction, it is usually depicted
as a confidence circle centered in the estimated location on
the map. The radius of the circle is the estimated error, and
we call it error estimation. In that paper, the mechanisms to
evaluate the error are divided into rule-based methods and
data-driven methods. The first group analyzes the quality of
the locations obtained, while the second group uses machine
learning to analyze the quality of the predicted locations. In
that work, a benchmarking framework is included to evaluate
and compare several methods of DAE. It is, in fact, the first
work that establishes the state of the art for DAE.

There have been several proposals to measure DAE. Mogh-
tadaiee et al. [19] show that not always closer points in the
geometric space are closer points in the signal space. Thus,
they propose a calculation of the accuracy estimation based on
the slope of the relation among the distance between points
in the real space and in the signal space. Nikitin et al. [20]
use the Cramer-Rao Lower Bound(CRLB) theory to estimate
the best possible achievable accuracy in a single location in a
magnetic field fingerprint map. Lemic et al.

From the analysed literature, it can be seen that the most
commonly used mechanisms to give the error bound of a

system either correspond to a common aggregated metric
(equally applied to all position estimates) or need a training
process in order to take into account location features, as the
error can be different in different regions of the environment
and in most of the cases error is calculated a posteriori. None
of the proposed mechanisms takes into account the origin
of the lack of accuracy in a single point, nor takes into
account that the error bound is not only location but also
time-dependent. i.e., in the same location, the error bound of
a positioning system fluctuates depending on the dynamics of
the environment.

On the other hand, the very first step of all the previously
given methods is to measure a magnitude, like a distance,
the intensity of a WiFi signal or a position. The obtained
values have an uncertainty that is the common uncertainty of
any measure. When these values are introduced in a formula,
that uncertainty propagates through the calculations [21]. If
the distribution of the measured values is Gaussian, we can
apply error propagation theory (EPT) to take into account
the propagation of the uncertainty. Nevertheless, this theory
has been scarcely applied in indoor positioning systems. One
example of application is in the calibration of an optical indoor
positioning system by Rodriguez-Navarro et al. [22], or to
analyze how it can be applied in WiFi fingerprinting with kNN
[23].

Therefore, it is important to propose a metric that can
give the expected error bound individually for any position
estimate. In this work, we propose a mechanism to provide
the error bound in a position estimate provided by kNN-based
Wi-Fi fingerprinting.

III. MATERIALS AND METHODS

In this section, we introduce the several elements involved
in the proposed mechanism to calculate a position estimate
and its associated error bound. First of all, we will review
the fingerprinting-based method for indoor positioning and the
kNN algorithm. Then we review the error propagation theory
and explain the method proposed to estimate the error bound.

A. Fingerprinting-based indoor positioning
Fingerprinting-based indoor positioning has two phases:

offline and online.
1) Offline (or training) phase: Let’s suppose there are nap

different access points (APs) in the scenario where the indoor
positioning system is going to be deployed. The set of all APs
is Ω =

{
ω1, . . . , ωnap

}
. The training database (or radio map)

Rtr is made up of a set of fingerprint and their positions:

Rtr =
{
F tr,Ltr

}
(1)

where tr indicates training, F tr is the set of fingerprints
obtained and Ltr their positions. The set F tr is made up of
ntr fingerprints, saved as ntr vectors of RSSI measures:

F tr =
{
λtr1 , ..., λ

tr
ntr

}
(2)

and each fingerprint λtri has nap RSSI values:

λtri =
{
ρtri,1, ..., ρ

tr
i,nap

}
, i ∈ [1, ..., ntr] (3)
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The set F tr can be viewed, from the point of view of
machine learning algorithms, as a training database where the
rows are the samples and the columns are the features.

On the other hand, Ltr is made up of ntr positions, stored as
vectors, representing the position associated with each sample:

Ltr =
{
τ tr1 , ..., τ

tr
ntr

}
(4)

where , τ tri is the position of the i−th training reference point.
Each position is often provided with just a pair of coordinates
(often longitude and latitude). In complex large environments,
the position may also include the building, floor, or room
labels. Each τ tri can be expressed as follows:

τ tri =
{
νtri,1, ..., ν

tr
i,nl

}
, i ∈ [1, ..., ntr] (5)

where νtri,p (p ∈ [1, . . . , nl]) is each one of the elements to
determinate the position of the i− th training reference point.

Note that, ρtri,r (r ∈ [1, . . . , nap]) is the RSSI value obtained
for AP ωr at position τ tri , i.e. ρtri,r = RSSI(ωr, τ

tr
i ).

Since the RSSI values received from an AP can vary
greatly even when the device used to capture the data remains
stationary in the same position during the capture process,
multiple measurements can be obtained at each position τ tri
to allow better capture of signal behaviour at this position. In
these cases, the mean µtr

i,r and standard deviation σtr
i,r of all

measurements obtained at τ tri can be calculated as follows:

µtr
i,r =

∑nm

m=1 ρ
tr
i,r(m)

nm
(6)

σtr
i,r =

√∑nm

m=1(ρ
tr
i,r(m)− µtr

i,r)
2

nm − 1
(7)

where nm is the number of measurements obtained at τ tri and
ρtri,r(m) is each one of these measurements.

Therefore, fingerprints λtri can be expressed as follows:

λtri =
{
(µtr

i,1, σ
tr
i,1), ..., (µ

tr
i,nap

, σtr
i,nap

)
}
, i ∈ [1, ..., ntr] (8)

2) Online (operational/test) phase: In this phase, the device
captures a fingerprint λts (in this case ts indicates test) that
will be compared with the radio map Rtr to generate an
estimate of its unknown position τ ts. In order to be able to
compare the test sample λts with the training ones, the order of
the APs in the training and testing fingerprints have to match.
Therefore, λts must be composed of a fingerprint with nap
RSSI values:

λts =
{
ρts1 , ..., ρ

ts
nap

}
, (9)

Similarly, the position vector must have the same dimen-
sions as its training counterparts:

τ ts =
{
νts1 , ..., ν

ts
nl

}
(10)

In this phase, as in the training phase, it is also common
to capture more than one measurement at the position to be
estimated (i.e. at τ ts). Then, the mean µts

r and the standard
deviation σts

r of all measurements obtained at τ ts can be
calculated as follows:

µts
r =

∑nm

m=1 ρ
tr
r (m)

nm
(11)

σts
r =

√∑nm

m=1(ρ
tr
r (m)− µtr

r )2

nm − 1
(12)

where nm is the number of measurements obtained at τ ts and
ρtsr (m) is each one of these measurements.

Therefore, the fingerprints λts can be expressed as follows:

λts =
{
(µts

1 , σ
ts
1 ), ..., (µts

nap
, σts

nap
)
}

(13)

B. The kNN algorithm for indoor positioning

The kNN algorithm is a well-known classifier based on the
concept of distance that compares the current sample with all
the samples in the training set. In the simplest case (k = 1),
the label of the current test sample will be the label of the
closest training sample according to a distance function.

In the case of indoor positioning, the samples are the
fingerprints and the labels are the positions. In the simplest
case (k = 1), the position of the current test fingerprint will
be the position of the closest training fingerprint in the feature
space (i.e. in the fingerprint space). When k > 1, the final
position corresponds to the centroid of the positions associated
with the closest k fingerprints in what we call feature space,
i.e. the vector space corresponding to RSSI values. In this case,
the centroid position of the k nearest neighbours is calculated
as follows:

τ ts =

∑k
h=1 τ

tr
nn(h)

k
(14)

where τ ts is the localisation of the test sample to be estimated
and nn(h) is a function that, given the h−th neighbor, returns
the index of the training sample that corresponds to the h-th
nearest neighbor. Therefore, τ trnn(h) is the position of the h-th
nearest neighbor.

For estimating the distance between the test fingerprint
λts and a training one λtri in the feature space, we can use
several distance functions, among which the most popular is
the Euclidean distance, that can be expressed as follows:

di = d(λts, λtri ) =

√√√√nap∑
r=1

(µts
r − µtr

i,r)
2 (15)

Note that we are assuming that several measurements have
been captured at each point (training and test) and, therefore,
we are using the fingerprints expressed as shown in Equations
8 and 13. Therefore, the mean values µts

r and µtr
i,r are used to

calculate the distances. The standard deviation will be taken
into account in the error calculation.

C. Error propagation

To take into account how uncertainty propagates through
calculations, we use EPT. In this frame, we consider a mag-
nitude z that is given by a function f that depends on ne
independent variables:

z = f(x1, . . . , xe, . . . , xne
) (16)

where f is supposed to have a Gaussian distribution.
The error of the z function will be given by:
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(∆z)2 =

ne∑
e=1

(
∂f

∂xe
∆xe

)2

(17)

where ∆xe is the error obtained when measuring the variable
xe. To estimate this error, it is common to take several
measurements and calculate the standard deviation.

D. Estimating the error in the fingerprint distance
Uncertainty in indoor positioning comes from the fluctua-

tions of measured data. Thus, when taking RSSI data from
APs we take the mean value as representative of the value
of every AP at a single point, but we also keep the standard
deviation (see Equations 8 and 13). The standard deviation
gives information about the stability and fluctuations that the
signal of every single AP has at that single point.

The role played by the function f (see Equation 16)
is played by the distance metric that we use in the kNN
algorithm. In the current case, we use Euclidean distance given
by equation 15. The variables xe in Equation 16 are in our
case the RSSI obtained at each location expressed by their
mean values µts

r and µtr
i,r. Therefore, in our particular case

ne = 2∗nap. Since we are assuming that several measurements
have been captured for each location, the standard deviation
of these measurements σts

r and σtr
i,r are used as the error when

measuring these variables.
Applying equation 17 to the Euclidean distance, we obtain:

(∆di)
2 = (∆d(λts, λtri ))2 =

=

∑nap

r=1(µ
ts
r − µtr

i,r)
2
[
(σts

r )2 + (σts
i,r)

2
]∑nap

r=1(µ
ts
r − µtr

i,r)
2

(18)

Note that the estimation of ∆d(λts, λtri ) is possible since
several measurements have been obtained for each point
(training and test), i.e. when using the definition of fingerprint
as it is shown in Equations 8 and 13.

Our approach in calculating the error when estimating the
distance between two fingerprints (Equation 18) not only
uses the mean but also incorporates the standard deviation
(σts

r ,∀r ∈ [1, . . . , nr]). This method is crucial as it allows
us to estimate an error bound during online testing when the
user seeks to be located. Therefore, the error bound varies
based on the area since RSSI variability can differ across
locations. Low RSSI fluctuations in an area will result in a
low error bound estimate, while high variability will lead to
a larger error bound. Incorporating the standard deviation in
our methodology provides a more comprehensive and accurate
estimation of the error bound, leading to greater reliability and
effectiveness of indoor localization systems.

E. Proposed method to estimate the error bound
Figure 1 shows a scheme of the proposed method to estimate

the error bound for a single test point. Algorithm 1 shows the
same process in algorithmic language.

Figure 1 is divided into three regions: the first region, green,
on the left, corresponds to Euclidean space. There are marked
the training points (squares) and the user/test point (a circle).

Here, each point is characterised by its Cartesian coordinates.
Therefore, in our particular case, nl = 2.

The second region, light orange, in the centre, corresponds
to the feature space. In this region, only RSSI data from
every fingerprint is taken into account. This region is divided
between the upper part and the lower part.

The upper part of this section illustrates the calculation of
the distance metric di in the feature space between the test
sample λts and every training one λtri (Line 2 at Algorithm
1). ∆di is the error measuring the distance di associated and
it is determined using equation 18 (Line 3).

To predict the location of the test sample, we choose the k
nearest neighbours, i.e., the k samples of the training dataset
with the lower distance di to the test sample. In this way, we
obtain the k elements of the training set that we will use to
predict the position (Lines 5 and 6).

To estimate the error bound, as illustrated in the lower part
of this section, we extract ns distance samples among the
candidates inside the interval [di −∆di, di +∆di]. They are
called δ(s)i and can be calculated as follows (Lines 8 to 11):

δ
(s)
i = di +∆di · ψ (19)

where s ∈ [1, . . . , ns] and ψ = U(−1, 1), i.e. ψ gives a number
between −1 and 1 using a uniform distribution. Then, we
choose the k nearest neighbours for each sample (Lines 12
and 13). In doing so, we obtain ns sets of k elements of the
training set that we will use to establish the area of uncertainty
around the estimated position.

The reason for having different candidates for an estimated
position is that we take into account the uncertainty of the
distance calculation. Hence, we hypothesise that the region in
which the candidates lie corresponds to the representation of
such uncertainty in Euclidean space.

Finally, the right-hand side of Figure 1 illustrates the
transition from feature space back to a Cartesian coordinate
system in Euclidean space. We estimate the predicted position
τ ts = C, depicted by a green square, as the centroid of the
k nearest neighbours obtained in the previous step using the
set of distances D (Line 6). Next, we obtain C(1), . . . , C(ns)

position predictions (red circles) from the ns samples obtained
from the set of distances D(1), . . . , D(ns) (Line 13). The next
step is to estimate C(max) as the maximum distance between
the estimated position C and the positions C(s) (Line 15).

When we use the farthest candidate from our estimate as
the error bound (i.e. when ∆τ ts = d(C,C(max))), we assume
that the real position of the user has a high probability of being
inside this circle with centre C and radius the distance between
C and C(max). To have more control over the error bound size,
we can pick a candidate that is closer to our estimate and
within a certain percentage (68.26% or 95.44%, for example).
This gives us a smaller circle with the probability of finding the
real position inside it. This is controlled by the hyperparameter
q.

Therefore, the error boundary of the prediction is deter-
mined as follows (Line 16):

∆τ ts = Q(C,C(1), . . . , C(ns), q) (20)
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Fig. 1. A scheme of the proposed method to estimate the error bound.

where Q is a function that estimates the distances between C
and each C(s), and after sorting the resulting distance vector,
gets the value at the quantile expressed by hyperparameter q.
Note that Q(C,C(1), . . . , C(ns), q = 100) gets the distance
between C and C(max).

Using the distance between C and C(max) maximizes the
probability of the actual position of the user being inside the
circle. As said in Section I, DAE usually provides a 68th

percentile confidence level. The hyperparameter q has been
introduced to better simulate what DAE does.

IV. EXPERIMENTS AND RESULTS

In this section we present the experiments and results that
were conducted to evaluate the proposed algorithm. We start
by describing the data we used for the experiments.

A. Data

The data used in this work consist of a series of databases
that reflect the signal strength of the several Wi-Fi signals
detected in a set of points located in indoor spaces. In
particular, we used MAN1 [24], [25], and UJILIB [26], [27].

MAN1 Wi-Fi dataset has 14300 training samples obtained
at ntr = 130 different reference points (i.e. at each reference
point nm = 110 measurements have been obtained), 460 test
samples obtained at 46 different points (i.e. at each test point
there are nm = 10 measurements), and nr = 28 APs.

The UJILIB is composed of a series of small datasets
that were obtained by measuring the RSSI data at different

moments in time. The RSSI data were collected at the same
locations for both training and testing purposes. The capturing
process took 25 months. In the first month, fifteen small
datasets were captured. Then, a new small dataset was captured
each month. In this paper, the first fifteen small datasets,
covering the first month, have been used. We have merged all
the samples into a unique dataset. Since data were captured on
two different floors, we have divided the resulting dataset into
two different ones, each one for each floor. They will be called
UJILIBM01F3 and UJILIBM01F5 in the rest of the article.

The datasets MAN1, UJILIBM01F3 and UJILIBM01F5 in-
clude fingerprints (RSSI data) for training and testing purposes
which are labelled with their current locations. Locations are
represented as 2D positions (x,y) in a local coordinate system
expressed in meters that depends on the dataset, i.e. the origin
of coordinates is different for MAN1 and UJILIB as datasets
were collected in Germany and Spain respectively.

Figure 2 shows the localisation of the training (squares) and
test points (circles) for both datasets. MAN1 dataset covers
a wider space (2100m2 aprox.) than UJILIBM01F* ones
(208m2 aprox.).

B. Experimental set-up
For each dataset and for each test point, ∆τ ts has been

estimated using different q values. In particular we have used
q ∈ [68.26%, 95.44%, 99.73%, 100%]. We have selected these
values since, in EPT, given a magnitude z, it is expected
that the 68.26% of the real values lies into the error bound
determined by a circle with ∆z as radius, the 95.44% for
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Algorithm 1 Proposed algorithm to estimate the error bound
for a single test point.
Require: λts: Fingerprint of the test point.
Require: Rtr: Radio map composed of ntr training points

with fingerprints λtri and positions τ tri , (i ∈ [1, . . . , ntr]).
Require: ns: Number of samples to be performed.
Require: k: Number of neighbours in kNN algorithm.
Require: q: Quantile to be used for estimating the error

bound.
Ensure: : τ ts: Estimated position of the test point.
Ensure: : ∆τ ts: Error bound estimation.

1: for i← 1 to ntr do
2: di ← d(λts, λtri ) (Eq. 15)
3: ∆di ←

√
∆d(λts, λtri ) (Eq. 18)

4: end for
5: D ← [d1, . . . , dntr ]
6: C ← centroid(argmin

k
(D))

7: for s← 1 to ns do
8: for i← 1 to ntr do
9: ψ ← U(−1, 1)

10: δ
(s)
i ← di +∆di · ψ

11: end for
12: D(s) ← [δ

(s)
1 , . . . , δ

(s)
ntr ]

13: C(s) ← centroid(argmin
k

(D(s)))

14: end for
15: C(max) ← maxs=1,...,ns

d(C,C(s))
16: ∆τ ts ← Q(C,C(1), . . . , C(ns), q)

Fig. 2. Training (squares) and testing (circles) reference points used
in MAN1 dataset (left), UJILIBM01F3 (top, right) and UJIBINM01F5
(bottom, right).

2 ∗∆z , and 99.73% for 3 ∗∆z . In the case of using q = 100,
it is expected all the real values lie inside the defined error
bound.

The number of sampled distances has been empirically set
to ns = 1000. This number must be a compromise between
obtaining always the same C(max) value (it needs a big enough
number of iterations due to the use of random sampling) and
the processing time.

In the kNN algorithm, the number of neighbours has been
empirically set to k = 3. Experiments, not presented in this
paper, using other k values have been performed concluding
that the k value does not change significantly the results
obtained.

In the datasets that we used for our experiments, there are

some cases where no data has been received from a specific
AP. In these cases, the dataset uses a 100 value to indicate
the missing data. We decided to replace these values with the
minimum value in each dataset minus one.

C. Results

Figure 3 shows some examples of the error bounds obtained
for several test points of both datasets. The empty circles
correspond to the true locations of the test points and the
green squares are the localisation estimated for each case (i.e.
τ ts). The dotted green and orange circles are the error bound
estimated when using q = 68.26% and q = 95.44% quantiles,
respectively. Figure 4 shows that different points have different
error bounds. The size of the error bound is related to the
uncertainty of the RSSI signal both from the training data
and from the test data point, as discussed in Section III. In
the cases when the uncertainty of the RSSI signal (in training
and/or in the test data) is significant, for instance in estimated
location at approximate coordinates [−20,−10] in MAN1
dataset, our proposed method obtains a bigger error bound
(i.e a bigger circle) indicating that the uncertainly about the
position estimated is greater. In the opposite case, for instance,
in the estimated location at approximate coordinates[−12, 5]
the uncertainty of the RSSI signal is lower. Then, our proposed
method is able to obtain a lower error-bound estimate. This
means that the proposed method is able to consider both
the environment when we make the radio map and how the
environment changes affect accuracy later on.

In Figure 4, we compare the estimated error bounds for
the three datasets and four quantiles. The test points inside
the error bound estimated (blue points) are the ones whose
real positions fall inside the error bound considering a given
quantile q. The red ones represent the opposite case, i.e. the
scenario in which the real positions fall outside the bound error
calculated considering q. Figure 4 shows how the proposed
method has a performance as expected in a DAE system. On
the one hand, when increasing q the probability of the real
position being inside the circle is very high, but the prize to be
paid is having a very high circle. This can not be appropriate
for some real applications. On the other hand, by reducing q,
a smaller circle can be obtained but the probability of the real
position being inside the circle is also reduced. The correct
value of the q parameter depends on the particular application
where the indoor localisation system will be deployed.

Table I shows the number and percentage of test points
where the real position is inside (or outside) the error bound
estimated for the experiment shown in Figure 4. Note that
the percentages shown in the table are approximately in
accordance with the chosen quantile, but there are some
discrepancies. This may be due to the not exactly Gaussian
behaviour of the RSSI signal. The signal strength can vary
significantly over time and space due to environmental factors
such as changes in temperature, humidity, and interference
from other wireless devices. These non-stationary effects can
cause the RSSI distribution to deviate from a Gaussian dis-
tribution. Moreover, in some cases, the signal strength can
become saturated due to a very strong signal or overloading
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Fig. 3. Some examples of the error bound obtained for several testing points in the three datasets.

Fig. 4. Blue points are test points where the real localisation is inside the error bound given different values of the percentile. The orange ones are
the ones outside. The top row is for MAN1 dataset, the middle one is for UJILIBM01F3 and the bottom one is for UJILIBM01F5 dataset.
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TABLE I
NUMBER AND PERCENTAGE OF TEST POINTS WHERE THE REAL

POSITION IS INSIDE (OR OUTSIDE) THE ERROR BOUND ESTIMATED.

Dataset q In Out Percentage

MAN1a 68.26% 27 19 58.70%
MAN1a 95.44% 42 4 91.30%
MAN1a 99.73% 46 0 100.00%
MAN1a 100% 46 0 100.00%
UJIBIBM01F3a 68.26% 20 26 43.48%
UJIBIBM01F3a 95.44% 39 7 84.78%
UJIBIBM01F3a 99.73% 43 3 93.48%
UJIBIBM01F3a 100% 45 1 97.83%
UJIBIBM01F5a 68.26% 19 27 41.30%
UJIBIBM01F5a 95.44% 30 16 65.22%
UJIBIBM01F5a 99.73% 40 6 86.96%
UJIBIBM01F5a 100% 43 3 93.48%

of the receiver. This can cause the RSSI distribution to become
skewed or truncated.

Overall, the proposed method performs as expected by
accounting for the variability of the signal and its effects on
the final prediction using the EPT.

V. CONCLUSIONS

In this paper, we propose an indoor positioning system
that gives an estimated position with its corresponding error
bound. The error bound is calculated for every single estimated
position. Thus, it takes into account variability in space but
also changes in time, since every new estimation of a position
calculates a new error bound.

We take into account changes in environment, time and
space, because the error bound is calculated every time in the
online phase with the measured data at that point. Therefore,
the error bound will change if an AP has changed or we use a
different smartphone or in any other case. These variations
of the environment can modify the distances of the kNN
algorithm or the standard deviations of the new measures of
the signal, and those changes can give a different result.

The positioning method proposed is based on Wi-Fi finger-
printing with the kNN algorithm. The error bound is obtained
by applying error propagation theory in the feature space
when the Euclidean distance among signals is calculated. That
gives an interval of distances among every two fingerprints.
Thus, the nearest neighbours can be different when different
points of the interval are considered. Therefore, we consider
several possible nearest neighbours, and every one of these
possibilities gives a candidate to be the estimated position. The
radius of the error bound is given by the quantile of candidates
considered, ordered by their distance to the predicted position.

Future work should focus on studying the impact of input
data distribution on obtained results. The EPT assumes that the
source data follows a Gaussian distribution, which may not be
applicable to RSSI signals in general. Therefore, it may be
worthwhile to explore techniques to transform the RSSI input
into a Gaussian distribution prior to calculating the error bound
and to evaluate the impact of such techniques on the results.
In addition, it can also be of interest to study how to adapt
the shape of the bound error to the environment, exploring
non-symmetric ways of characterizing the error bound, such

as ellipses, that reflect both the uncertainties and the spatial
distribution of the training set.

APPENDIX I
NOMENCLATURE

Symbols meaning Number of :
• nap: Number of access points in the scenario. It is also

the dimension of the fingerprint vectors.
• ntr: Number of training reference points included in the

Radio map.
• nl: Number of dimensions of each position vector.
• ns: Number of samples performed.
• ne: Number of variables of the f function.
• nm: Number of measurements obtained at each position.
• k: Number of neighbors in the kNN algorithm.
Symbols for sets or vectors:
• Ω: The set for including all access points.
• Rtr: Radio map containing all training reference points.
• F tr: Set with the fingerprints of the training reference

points.
• Ltr: Set with the position vectors of the training reference

points.
• λtri : Fingerprint of the i− th training reference point.
• λts: User (or test) fingerprint.
• τ tri : Position of the i− th training reference point.
• τ ts: User (or test) position to be estimated.
• D: Set of all distances between the user fingerprint and

each one into the Radio map.
• D(s): s−th set of all sampled distances between the user

fingerprint and each one into the Radio map.
Symbols for iterators:
• i: iterator across training samples, i ∈ [1, . . . , ntr].
• r: iterator across access points, r ∈ [1, . . . , nap].
• p: iterator across the position vector, p ∈ [1, . . . , nl].
• (s): iterator across distances sampled, s ∈ [1, . . . , ns].
• h: iterator across neighbors, h ∈ [1, . . . , k].
• e: iterator across variables in f function.
• m: iterator across measurements, m ∈ [1, . . . , nm].
Symbols related to distances:
• di: distance between the user fingerprint and the i − th

training one.
• ∆di: Error obtained when calculating di.
• δ

(s)
i : s−th sampled distance between the user fingerprint

and the i− th training one.
Symbols related to centroids:
• C: Centroid calculated using the k nearest distances

between the user fingerprint and the training ones.
• C(s): Centroid calculated using the k nearest s − th

sampled distances between the user fingerprint and the
training ones.

Other symbols:
• ρtri,r: RSSI value of the i − th training reference point

related to r − th access point.
• ρtsr : RSSI value of the user (or test) point related to r−th

access point
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• µtr
i,r: Mean value of all RSSI values obtained at the i−th

training reference point related to r − th access point.
• σtr

i,r: Standard deviation of all RSSI values obtained at
the i− th training reference point related to r− th access
point.

• µts
r : Mean value of all RSSI values obtained at the user

point related to r − th access point.
• σts

r : Standard deviation of all RSSI values obtained at the
user point related to r − th access point.

• νtri,p: p− th element of the position vector of the i− th
training reference point.

• νtsp : p − th element of the position vector of the user
point.

• ωr: r − th access point, ωr ∈ Ω.
• C(max): Maximum distance between the estimated cen-

troid C and the ones C(s) obtained using the sampled
distances.

• q: Quantile value for obtaining the final error bound.
• ψ: Random uniform variable between [−1, 1]
• ∆τ ts: Desired error bound of the user position.
• f : A generic function.
• z: A generic magnitude.
• Q: A function for ordering a set of distances and getting

the one located at a particular quantile.
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