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Abstract

An unsupervised classification method for point events occurring on a network of lines is proposed.

The idea relies on the distributional flexibility and practicality of random partition models to discover the

clustering structure featuring observations from a particular phenomenon taking place on a given set

of edges. By incorporating the spatial effect in the random partition distribution, induced by a Dirichlet

process, one is able to control the distance between edges and events, thus leading to an appealing

clustering method. A Gibbs sampler algorithm is proposed and evaluated with a sensitivity analysis. The

proposal is motivated and illustrated by the analysis of crime and violence patterns in Mexico City.

Keywords: Bayesian nonparametrics; Penalty function; Random partition model; Spatial clustering.

1



1 Introduction

Violence and insecurity are major concerns in most Latin American countries. The reasons and causes of

increasing criminality are many, therefore methodologies to study and to diminish the associated incidence

rates are constantly sought. Cities like São Paulo, Managua, San Salvador and Mexico City have suffered a

notorious increase in crime levels, linked both to economic factors and to corruption in the police forces

Pansters & Castillo Berthier (2007). One of the most urgent demands to politicians and the mayor of Mexico

City is to implement better methods for surveillance and crime control. Some first steps to deal with this

necessity is the identification of areas with high crime incidence. Such hot-spots need to be identified and

characterized in order to get better information for security forces, and for managers and designers of social

programs to control and mitigate the causes of the high criminality in those locations.

The point pattern nature of crime occurrences suggests that a sensible approach for the analysis and

modeling of crime data is based on point process theory. However, given that most of the crimes in a city are

georeferenced along streets, the usual point process theory, where the events occur in a Euclidean space, is

not always suitable. This is mainly due to the fact that nearest neighbor distances need to be defined along a

linear network of streets, e.g. through the Manhattan distance.

Point processes in linear networks have been intensively investigated in the last decade. Nowadays,

the wide spread of smartphones has increased the availability of point referenced data, which has caused a

boom of research papers using point pattern data. For example, the 𝐾 -function on a linear network has been

investigated by Okabe & Yamada (2001), Yamada & Thill (2004), Ang et al. (2012), and Baddeley et al. (2017)

among others. Specific modeling features, such as separability, have been investigated for example by Mateu

et al. (2020) and by Gilardi et al. (2021).

A common problem that has received particular attention is how to detect clusters in the network using

event occurrences on it. For instance, if the number of crimes of a particular class increases in some contiguous

streets, it is of interest to tell if there is a cluster in that area. Police forces and other public security entities

may decide to increase patrolling or to implement other measures to decrease the local crime rate.

Most methods for cluster detection in spatial point data are based on comparison of second order

interactions of point processes such as Ripley’s 𝐾 -function or the pair correlation function (Ang et al., 2012)

and score test statistics (Assunção & Maia, 2007), which require knowledge of the density function of the

point process under testing. This is a complicated pace to follow as finding the density function governing the

spatial distribution of the points is far from a simple exercise. For example, McSwiggan et al. (2017) propose a

density estimator based on diffusions.

Bayesian literature dealing with clustering includes mixture models and random partition methodologies,

naturally appearing when a nonparametric approach is undertaking. These have been extended to the spatial

setting by incorporating latent variables in the weight structure of the underlying random probability measure

(Duan et al., 2007). However, as in the aforementioned approaches, the availability of linear network valued

density functions is required to perform clustering.

Here, we present a model that unveils clustering structures on linear networks based on point events.

Our proposal induces a spatially dependent random partition model that captures the inherent clustering

structure. Specifically, the spatial dependence enters through a penalty function in the corresponding

predictive distribution. More importantly, we focus on modeling the occurrence of events on each edge of the

linear network instead of modeling the point process itself. This allows us to cluster the edges, preserving

the spatial location of the events, but casting aside the complex topology imposed by the linear network.

Furthermore, it will be posible to easily estimate the hot-spot locations since they should be related to higher

incidence rates.

We also analyze model performance with simulated data on a street network and present an application

to real crime incidence data in Mexico City. Although crimes can be classified in different types and severity,
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we choose armed robberies in a specific zone of the city, due to their high incidence.

2 Clustering via random partitions

Common clustering methodologies aim at gathering observations 𝑥𝑖, 𝑖 = 1,… , 𝑛, into groups. A clustering 𝜋
can be defined as a partition of the set of observations 𝑥 = {𝑥1,… , 𝑥𝑛} into 𝑘 nonempty and non-overlapping

groups, say 𝜋1,… , 𝜋𝑘 , for some 1 ≤ 𝑘 ≤ 𝑛, so 𝜋 = {𝜋1,… , 𝜋𝑘} where 𝜋𝑗 ⊆ 𝑥 for all 𝑗 . For the sake of simplicity,

partitions will be written as 𝜋1/⋯ /𝜋𝑘 . Observations belonging to the same group are supposed to be more

similar among them than any other in a different group. Mathematically, all possible arrangements for 𝜋 is in

bijection with the combinatorial class of set partitions (Flajolet & Sedgewick, 2009), here denoted by  . Thus,

quantifying the uncertainty inherent to a clustering problem can be done by proposing and studying random
partitions, i.e., -valued random variables, and their distributions.

A particular class of partition distributions available in the literature comprises the so-called exchangeable
partition probability functions (EPPFs). This class appears naturally when studying the clustering of ex-

changeable observations, driven by species sampling processes, and when working with random probability

measures (RPMs), the daily-use tool for most Bayesian nonparametric models; see, for example, Hjort et al.

(2010) for a thorough review. Any almost surely discrete RPM can be written as

�̃�(⋅) =
∞
∑
𝑗=1

𝑤𝑗𝛿𝜉𝑗 (⋅), (1)

where {𝑤𝑗 }𝑗>1 and {𝜉𝑗 }𝑗>1 denote independent random sequences of weights and locations, respectively,

satisfying ∑𝑖≥1 𝑤𝑖 = 1 almost surely (a.s.), and 𝜉𝑖 ∼ 𝜈0 independent and identically distributed [iid], with 𝜈0 a
non-atomic distribution. There are several ways to model the sequence of random weights {𝑤𝑗 }𝑗>1. Perhaps,
one of the more often used is the so-called stick-breaking representation, which defines them as

𝑤𝑗 = 𝑣𝑗 ∏
𝑙<𝑗

(1 − 𝑣𝑙), (2)

for 𝑣1, 𝑣2,… a sequence of (0, 1)-valued random variables. Some distributions or processes related to this

framework are the following: (a) The canonical Dirichlet process with the choice 𝑣𝑗 ∼ Be(1, 𝜃) [iid], for some

𝜃 > 0 (Sethuraman, 1994); (b) the two parameter Dirichlet Process when 𝑣𝑖 ∼ Be(1 − 𝜎, 𝜃 + 𝑖𝜎) independent
[ind], for 𝜎 ∈ [0, 1) with 𝜃 > −𝜎 or 𝜎 < 0 with 𝜃 = 𝑚|𝜎| and 𝑚 ∈ ℕ+ (Perman et al., 1992); (c) the

geometric process with 𝑣𝑖 = 𝜆 and 𝜆 a (0, 1)-valued random variable (Fuentes-García et al., 2010). More

general constructions can be found, for example, in Favaro et al. (2016), Gil Leyva Villa et al. (2020), Gil

Leyva Villa & Mena (2021); on a different direction, for directly defining random weights 𝑤𝑗 , see De Blasi

et al. (2020).

For the particular case of the Dirichlet process, i.e. when weights are size-biased, the induced EPPF takes

the form

Pr(𝜋 = 𝜋1/⋯ /𝜋𝑘) =𝜌0(#𝜋1,⋯ , #𝜋𝑘) =
𝜃𝑘

(𝜃)𝑛↑

𝑘
∏
𝑗=1

Γ(#𝜋𝑗 ), (3)

where (𝑥)𝑛↑ = 𝑥(𝑥 + 1)⋯ (𝑥 + 𝑛 − 1) is known as the Pochhammer symbol or rising factorial (Ewens, 1972;

Antoniak, 1974), and #𝜋𝑗 stands for the size of the 𝑗th group.

With the above framework in mind, we consider the following model for cluster detection. Let 𝑦1,… , 𝑦𝑛
be a dataset to be clustered, and let 𝜋 be a -valued random partition with prior distribution 𝜌0. Our interest
lies in the posterior distribution of 𝜋, that is

𝑝(𝜋 ∣ 𝑦1,… , 𝑦𝑛) ∝ 𝓁(𝑦1,… , 𝑦𝑛 ∣ 𝜋)𝜌0(𝜋). (4)
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Following a model-based approach, the likelihood function 𝓁 is factorized according to the different groups, 𝜋𝑗 ,
of 𝜋 in such a way that observations belonging to one group are modeled by a single probability distribution

𝜅𝑗 . It is common to fix such a distribution and only vary its parameter, so 𝜅𝑗 (⋅) ∶= 𝜅(⋅;𝜙𝑗 ) for some finite

dimensional parameter 𝜙𝑗 . Thus, the likelihood function 𝓁 is obtained after marginalizing kernel parameters

𝜙𝑗 , 𝑗 = 1,… , 𝑘, i.e.

𝓁(𝑦1,… , 𝑦𝑛 ∣ 𝜋) =
𝑛

∏
𝑖=1

∫
Φ
∏
𝑖∈𝜋𝑗

𝜅(𝑦𝑖;𝜙𝑗 )𝜈0(d𝜙𝑗 ),

where Φ represents the support of 𝜙𝑗 . Finally, the clustering model can be written hierarchically as

𝑦𝑖 ∣ 𝜙, 𝜋 ∼ 𝜅(𝜙𝑗 )𝟏(𝑖 ∈ 𝜋𝑗 ) [ind], 𝑖 = 1,… , 𝑛, (5)

𝜙𝑗 ∣ 𝜋 ∼ 𝜈0 [iid], 𝑗 = 1,… , 𝑘,
𝜋 ∼ 𝜌0,

where 𝜈0 is the prior distribution for kernel parameters.

3 Clustering over linear networks

As outlined in the Introduction, we are interested in discovering a clustering structure induced by point

patterns over linear networks. We define a linear network, 𝐿, as a geometric simple graph with a finite set of

edges 𝐸 = {𝑒′1,… , 𝑒′𝑚}, and where their endpoints form the set of vertices of 𝐿. Notice that a linear network is

embedded in some region 𝑈 ⊂ ℝ2
.

Thus, in order to perform clustering over a linear network, we have two sets of measurements: spatial

location variables, say 𝑣𝑖 ∈ 𝐿 for 𝑖 = 1,… , 𝑛, and their respective responses, 𝑥𝑖. These latter could be constant,

e.g. 𝑥𝑖 = 1, meaning that an event occurred at location 𝑣𝑖. Each location variable 𝑣𝑖 influences the clustering,
in the sense that responses close to each other, under some metric, are more likely to be grouped together.

Among the existing literature dealing with spatial clustering, some of them consider location variables

𝑣1,… , 𝑣𝑛 as covariates. For example, MacEachern (1999, 2000) defines the dependent Dirichlet process, where

an RPM �̃�, as in (1), is indexed by some covariate 𝑧, leading to random densities of the form

�̃�𝑧(⋅) =
∞
∑
𝑗=1

𝑤𝑗 ,𝑧𝛿𝜉𝑗 ,𝑧 (⋅).

Usually, random atoms are let fixed across the different values of 𝑧 and only the random weights depend on

the covariates. Several generalizations have been developed from here, see, for example, Jo et al. (2017).

On a different approach, Duan et al. (2007) define generalized spatial Dirichlet process models, where

the base measure 𝜈0 for the atoms of (1) is defined over some stationary Gaussian process and the random

weights are constructed by means of some multivariate stick-breaking procedure which makes use of the

spatial locations. Similarly, Reich & Fuentes (2007) introduce the spatial dependency via a kernel function,

depending on the spatial location variables, weighting the random variables generating the sticks 𝑤𝑗 in (2).

Another way to include these spatial location variables is presented, for example, in Müller et al. (2011) and

Page & Quintana (2016). Their approach is of the type of Model (4) where the prior for the partition is a

product partition model (Hartigan, 1990), and include an extra term 𝑔 for each cohesion, which is a function

of all covariates associated to the same cluster. On a slightly different approach, Blei & Frazier (2011) modify

the predictive distribution for the Dirichlet process, giving spatial dependence to observed clusters, but not

to the new ones.
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The main hindrance of these approaches for our context is the lack of non-trivial probability distributions

over linear networks. Our proposal aims to overcome this difficulty by casting aside the topology induced

by the network as follows. We are given a point pattern process over 𝐿, that is, a set of locations 𝑣𝑗 ∈ 𝐿,
𝑗 = 1,… , 𝑚, indicating the occurrence of some event (e.g. a crime). Let 𝑦𝑖 be the random variable defined as

the number of events occurred on edge 𝑒′𝑖 , i.e.

𝑦𝑖 = #{𝑣𝑗 ∈ 𝑒′𝑖 ∶ 𝑗 = 1,… , 𝑚}.

For our purposes, it is only required to work with the nonzero variables 𝑦𝑖; for simplicity we asume 𝑦𝑖 > 0 for
𝑖 = 1,… , 𝑛 for some 𝑛. Furthermore, we need to define the new spatial location variable for 𝑦𝑖, say 𝑒𝑖; some

options are discussed below. With these new variables 𝑦𝑖 and 𝑒𝑖, our interest is now to cluster the edges 𝐸 of

𝐿 through their corresponding 𝑦𝑖 using 𝑒𝑖 as the spatial location.
Notice that we no longer worry about the complex topology of the linear network, but only on the region

𝑈 it is contained. Moreover, grouping the network’s edges makes sense, since it will allow us to detect the

posible hot-spots.

Under this framework, our proposed model for clustering is the following. The base model is the one

presented in Equation (4), and detailed in (5), but the spatial information will be incorporated in the prior for

the random partition 𝜋, 𝜌0. Given a cluster 𝜋 = 𝜋1/⋯ /𝜋𝑘 , a location variable 𝑢𝑗 , 𝑗 = 1,… , 𝑘, is introduced
and associated to each group 𝜋𝑗 . Thus, counts 𝑦𝑙 , whose associated points 𝑒𝑙 are closer to location 𝑢𝑗 , are more

likely to be put together in the corresponding group 𝜋𝑗 . One way to measure the closeness of a point, 𝑒, and
a location, 𝑢, is through a penalty function, for example

𝑤(𝑒, 𝑢 ∣ 𝜏) = exp{−𝜏(𝑒 − 𝑢)′(𝑒 − 𝑢)}, (6)

for some 𝜏 > 0.
Regarding the definition of the new spatial variable 𝑒𝑖, it seems appropriate it is a function or statistic of all

events recorded along its corresponding edge 𝑒′𝑖 . We have chosen the centroid for the sake of interpretability.

If 𝑣𝑖1 ,… , 𝑣𝑖𝑚 ∈ 𝐿 are such that 𝑣𝑖𝑗 ∈ 𝑒′𝑖 , 𝑗 = 1,… , 𝑚 for some 𝑚, the centroid is defined as

𝑒𝑖 =
1
𝑚

𝑚
∑
𝑗=1

𝑣𝑖𝑗 .

Now it is necessary to incorporate the penalty function 𝑤 in the partition distribution 𝜌0. For this purpose,
we make use of the joint distribution of the membership variables 𝑑 = (𝑑1, 𝑑2,… , 𝑑𝑛). Given a partition

𝜋 = 𝜋1/⋯ /𝜋𝑘 , membership variables 𝑑 are such that 𝑑𝑖 = 𝑗 if and only if 𝑖 ∈ 𝜋𝑗 for some 1 ≤ 𝑗 ≤ 𝑘, and for

𝑖 = 1,… , 𝑛. Fuentes-García et al. (2019), Miller (2019) and Gil Leyva Villa & Mena (2021) provide detailed

discussions regarding the relationship of these two distributions.

Taking the EPPF induced by the Dirichlet process in Equation (3), the predictive distribution for any 𝑑𝑖,
𝑖 = 1,… , 𝑛, is

Pr(𝑑𝑛+1 = 𝛿 ∣ 𝑑1,… , 𝑑𝑛) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝜃
𝑛 + 𝜃

if 𝛿 ∉ {𝑑1,… , 𝑑𝑛},

1
𝑛 + 𝜃

if 𝛿 = 𝑑𝑙 for some 𝑑𝑙 ∈ {𝑑1,… , 𝑑𝑛}.

Therefore, by including the penalty function 𝑤, we obtained the following distribution.

Definition 1 The spatially dependent predictive distribution for the membership variables (𝑑1,… , 𝑑𝑛), obtained
from the EPPF for the Dirichlet process with total mass 𝜃 > 0 and penalty function 𝑤, using Equation (6), is

Pr(𝑑𝑖 = 𝛿 ∣ 𝑑−𝑖, 𝑒, 𝑢, 𝑢∗, 𝜏) ∝

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝜃
𝑛 + 𝜃

𝑤(𝑒𝑖, 𝑢∗ ∣ 𝜏) if 𝛿 ∉ 𝑑−𝑖,

1
𝑛 + 𝜃

𝑤(𝑒𝑖, 𝑢𝑙 ∣ 𝜏) if 𝛿 = 𝑑𝑙 for some 𝑑𝑙 ∈ 𝑑−𝑖,
(7)
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where 𝑑−𝑖 = {𝑑1,… , 𝑑𝑖−1, 𝑑𝑖+1,… , 𝑑𝑛}, for 1 ≤ 𝑖 ≤ 𝑛, 𝑒 = {𝑒1,… , 𝑒𝑛} is the set of spatial variables, 𝑢 is the set of
locations, and 𝑢∗ is a draw from some non-atomic distribution 𝜇0 over 𝑈 .

Hence, our proposed model is obtained by extending Model (5) as follows

𝑦𝑖 ∣ 𝜋, 𝜙, 𝑒, 𝑢 ∼ 𝜅(𝜙𝑗 )𝟏(𝑖 ∈ 𝜋𝑗 ) [ind], 𝑖 = 1,… , 𝑛, (8)

𝜋 ∣ 𝑒, 𝑢 ∼ 𝜌0(𝑒, 𝑢),
𝜙𝑗 ∣ 𝜋 ∼ 𝜈0 [iid], 𝑗 = 1,… , 𝑘,

𝑢𝑗 ∼ 𝜇0 [iid],

where 𝜌0(𝑒, 𝑢) corresponds to the spatial EPPF inherent to Equation (7) in the definition above. The model

𝜅 for the counts 𝑦𝑖 can be any discrete distribution supported over {1, 2,… }, e.g. the Poisson or negative

binomial, and once it is defined, 𝜈0 will be specified.
Among the different discrete kernel functions 𝜅, we choose a shifted Poisson of parameter 𝜆. We say a

random variable 𝑌 follows a shifted Poisson distribution of parameter 𝜆, if

Pr(𝑌 = 𝑦) =
𝜆𝑦−1𝑒−𝜆

(𝑦 − 1)!
, 𝑦 = 1, 2,… ,

for some 𝜆 > 0. By using this kernel function, parameter 𝜆 will contain information regarding the intensity

of the occurrence of the recorded events for each detected group.

Completing the elements of Model (8), we have 𝜙𝑗 ∶= 𝜆𝑗 , and its prior, 𝜈0, follows a gamma distribution

of parameters (𝑎, 𝑏). In addition, 𝜇0 will be the uniform distribution over 𝑈 . Therefore, the likelihood function
takes the form

𝓁(𝑦 ∣ 𝜋, 𝜆, 𝑒, 𝑢) =
𝑛

∏
𝑖=1

𝜆𝑦𝑖−1𝑗 𝑒−𝜆𝑗

(𝑦𝑖 − 1)!
𝟏(𝑖 ∈ 𝜋𝑗 ) =

𝑘
∏
𝑗=1

𝜆
∑𝑖∈𝜋𝑗 𝑦𝑖−𝑛𝑗
𝑗 𝑒−𝑛𝑗𝜆𝑗

∏𝑖∈𝜋𝑗 (𝑦𝑖 − 1)!
,

where 𝑛𝑗 = #𝜋𝑗 is the size of the 𝑗th group. The posterior distribution of interest is the following

𝑝(𝜋, 𝜆, 𝑢 ∣ 𝑦) ∝ 𝓁(𝑦 ∣ 𝜋, 𝜆, 𝑒, 𝑢)𝑝(𝜆 ∣ 𝜋)𝑝(𝜋 ∣ 𝑒, 𝑢)𝑝(𝑢). (9)

Due to the complexity of the posterior in (9), it is necessary to resort to numerical methods, specifically

we make use of a Gibbs sampler to obtain estimates of the model parameters. At each iteration, it is assumed

there are 𝑘 groups, so the full conditional distribution for each kernel parameter 𝜆𝑗 , 𝑗 = 1,… , 𝑘, is

𝑝(𝜆𝑗 ∣ 𝜆−𝑗 , 𝜋, 𝑦) ∝ 𝜆
∑𝑖∈𝜋𝑗 𝑦𝑖−𝑛𝑗+𝑎−1
𝑗 𝑒−(𝑛𝑗+𝑏)𝜆𝑗 ,

which is a gamma distribution of parameters (∑𝑖∈𝜋𝑗 𝑦𝑖−𝑛𝑗+𝑎, 𝑛𝑗+𝑏). The second set of parameters corresponds

to the locations 𝑢𝑗 , 𝑗 = 1,… , 𝑘, for which full conditional distributions take the form

𝑝(𝑢𝑗 ∣ 𝑢−𝑗 , 𝜋, 𝜏, 𝑒, 𝑦) ∝ exp

{

−𝜏𝑛𝑗𝑢′𝑢 + 2𝜏𝑢′
(
∑
𝑖∈𝜋𝑗

𝑒𝑖)

}

𝟏(𝑢𝑗 ∈ 𝑈 ).

Being a bounded distribution, it is straightforward to sample from it.

Sampling for the random partition 𝜋, is done via the membership variables 𝑑𝑖, 𝑖 = 1,… , 𝑛. For the case
there is a new group, 𝛿 ∉ 𝑑−𝑖,

Pr(𝑑𝑖 = 𝛿 ∣ 𝑑−𝑖, 𝑒, 𝜆, 𝜆∗, 𝑢, 𝑢∗, 𝜏, 𝑦) ∝ 𝜃𝑤(𝑒𝑖, 𝑢∗ ∣ 𝜏)𝜅(𝑦𝑖, 𝜆∗),
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with 𝑢∗ and 𝜆∗ drawn from their respective prior distribution, 𝜇0 and 𝜈0. On the other hand, where there is

only a switch from one group to another already existing, 𝛿 = 𝑑𝑙 for some 𝑙,

Pr(𝑑𝑖 = 𝛿 ∣ 𝑑−𝑖, 𝑒, 𝜆, 𝜆∗, 𝑢, 𝑢∗, 𝜏, 𝑦) ∝ 𝑤(𝑒𝑖, 𝑢𝑙 ∣ 𝜏)𝜅(𝑦𝑖, 𝜆𝑙).

The total mass parameter 𝜃 can be included in the sampling process as explained, for example, in Escobar

& West (1995). Finally, for the penalty function 𝑤, parameter 𝜏 can be also included in the Gibbs sampler by

assigning a gamma prior of parameters (𝑐, 𝑑), so its conditional distribution is conjugate and given by

𝑝(𝜏 ∣ 𝜋, 𝑢, 𝑒, 𝑦) ∝ 𝜏𝑐−1 exp

{

−𝜏
(
𝑑 +

𝑛
∑
𝑖=1

𝑒′𝑖 𝑒𝑖 − 2
𝑘
∑
𝑗=1

𝑢′𝑗 ∑
𝑖∈𝜋𝑗

𝑒𝑖 +
𝑘
∑
𝑗=1

𝑛𝑗𝑢′𝑗𝑢𝑗)

}

.

4 Simulation study and sensitivity analysis

Our methodology is tested by using two simulated datasets. We are mainly interested in studying the effect of

model parameters, which are the penalty parameter 𝜏, the kernel parameter 𝜆, and the total mass parameter

𝜃.
The first synthetic dataset consists of a sample of 200 event points over a small linear network (Figure 1).

A sample of size 𝑛 = 14 is obtained after computing the non-zero counts 𝑦𝑖; then, their associated centroids

𝑒𝑖 are computed. The Gibbs sampler detailed in the previous section was run for 7 000 iterations; posterior
estimates were computed using only the last 2 000 of them. A gamma prior of parameters (1.1, 0.1) is set for
parameter 𝜆. The performance of parameters 𝜃 and 𝜏 is studied by assigning them different values. For the

total mass parameter 𝜃, its values are chosen such that the prior expected number of groups is 2, 7 and 13.
Thus, 𝜃 will take the values 0.3669, 4.8986 and 82.1121. On the other hand, penalty parameter 𝜏 was fixed to

10𝑟 , for 𝑟 = 2, 5, 7, 9.
The reported estimated clustering corresponds to the posterior modal partition, denoted by �̃�, a reasonable

choice for discrete-valued point estimates. The results of this first simulation study show that the total mass

parameter, 𝜃, works as already known for Dirichlet process priors, since it mainly influences the posterior

distribution for the number of groups. However, there is not much change in the estimated clustering.

Regarding the penalty parameter 𝜏, it can be seen it is of high influence for preserving spatial clustering

restrictions. When this parameter is small, our method performs like a traditional clustering technique, since

only three groups are detected, corresponding to small, medium and large counts (Figure 2a). On the other

hand, when 𝜏 is large, the posterior modal partition correctly incorporates spatial restrictions (Figure 2d).

Since all the scenarios tested perform similarly when varying 𝜃, we only present the case 𝜃 = 4.8986 in

Figure 2; the supplementary material presents the rest of the cases.

4.1 Kernel parameter 𝜆 as a resolution parameter

We now consider a larger simulated dataset in order to illustrate the role of parameter 𝜆. This second synthetic
dataset was obtained by using a bigger linear network and is formed by 522 simulated event points, having

𝑛 = 206 non-zero counts 𝑦𝑖 (see Figure 3).
Posterior estimates are obtained from the last 5 000 iterations of the Gibbs sampler, after discarding a first

batch of 10 000. For the total mass and penalty parameters, 𝜃 and 𝜏, prior distributions are assigned as follows:
a (1.1, 0.1) gamma distribution for 𝜃, and a (1011, 104) gamma distribution for 𝜏. The prior for the intensity
kernel parameter, 𝜆, is a (1.1, 0.1) gamma distribution. Figure 4 presents the posterior modal partition. It is

worth mentioning that the posterior modal partition has probability 0.002 and contains 58 groups.
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Figure 1: Small simulated dataset. Sampled event points are presented in gray, and the corresponding edge

centroid, 𝑒𝑖, in blue circles. The size of each circle corresponds to its count value 𝑦𝑖.

(a) 𝜏 = 102 (b) 𝜏 = 105

(c) 𝜏 = 107 (d) 𝜏 = 109

Figure 2: Posterior modal partition, �̃�, for the small simulated dataset, where 𝜃 = 4.8986, and 𝜏 varies. Groups
are identified by the color of the centroids; colors across panels are totally unrelated.
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Figure 3: Larger simulated dataset. Sampled event points are presented in gray, and the corresponding edge

centroid, 𝑒𝑖, in blue circles. The size of each circle corresponds to its count value 𝑦𝑖.

Since our main motivation is in identifying hot-spots in a linear network, i.e. set of edges with a particular

intensity of events, we explore how the Poisson kernel parameter 𝜆 can be used to select such relevant

clusters.

Given the posterior modal partition �̃�, for each group �̃�𝑗 , 𝑗 = 1,… , 𝑘, there is a sample, of size 𝑚, of its
corresponding kernel parameter 𝜆𝑗 , namely 𝜆𝑗 ,𝑙 for 𝑙 = 1,… , 𝑚 for each 𝑗 . Based on this, we can compute, for

example, the mean intensity for each cluster, �̄�𝑗 , defined as

�̄�𝑗 ∶=
1
𝑚

𝑚
∑
𝑙=1

𝜆𝑗 ,𝑙 , 𝑗 = 1… 𝑘.

Hence, hot-spots can be identified as those clusters having mean intensity above some positive threshold 𝜆∗,
so the resulting restricted clustering will only contain groups 𝑗 such that �̄�𝑗 ≥ 𝜆∗.

Exploring the posterior distribution for kernel parameters 𝜆𝑗 conditioned on �̃�, Figure 5 presents their
boxplot. There, we can visually compare the differences among the incidence of events for each group in the

modal clustering. Furthermore, Figure 6 displays the selected clusters for a resolution level 𝜆∗ ∈ {1, 2, 4, 6},
with the highest 𝜆∗ corresponding to higher incidence of events. Moreover, it is also possible to compute

the posterior distribution for the number of groups conditioned to this 𝜆∗. At each iteration, there are some

values for the number of groups 𝑘(𝑡) together with their corresponding kernel parameter, 𝜆(𝑡)𝑗 for 𝑗 = 1,… , 𝑘(𝑡).
Then, the posterior distribution for the number of groups, 𝐾𝑛, given only clusters with parameter 𝜆 above 𝜆∗,
is

Pr(𝐾𝑛 = ⋅ ∣ 𝜆∗) ≈
1
𝑇

𝑇
∑
𝑡=1

#{𝜆(𝑡)𝑗 ≥ 𝜆∗ ∶ 𝑗 = 1,… , 𝑘(𝑡)},

with 𝑇 the sample size of the Gibbs sampler. Figure 7 presents the posterior distribution for the above values

of 𝜆∗, together with the unconditioned case.

9



Cluster

   
   
   
   
   
   
   
   
   
   

1
2
3
4
5
6
7
8
9

10

(a)

Cluster

   
   
   
   
   
   
   
   
   
   

11
12
13
14
15
16
17
18
19
20

(b)

Cluster

   
   
   
   
   
   
   
   
   
   

21
22
23
24
25
26
27
28
29
30

(c)

Cluster

   
   
   
   
   
   
   
   
   
   

31
32
33
34
35
36
37
38
39
40

(d)

Cluster

   
   
   
   
   
   
   
   
   
   

41
42
43
44
45
46
47
48
49
50

(e)

Cluster

   
   
   
   
   
   
   
   

51
52
53
54
55
56
57
58

(f)

Figure 4: Posterior modal partition for the second simulated dataset. Since there are 58 groups, resulting
groups were split into the different panels; each one contains ten groups at most. Colors across panels are

completely uncorrelated.
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Figure 5: Boxplots for the kernel parameter 𝜆𝑗 associated to each group given the posterior modal partition.

On the 𝑥 axis, the label for each group is presented according to those of Figure 4.

(a) 𝜆∗ = 1 (b) 𝜆∗ = 2

(c) 𝜆∗ = 4 (d) 𝜆∗ = 6

Figure 6: Restricted clustering, based on the modal partition, where posterior mean intensities, �̄�𝑗 , are above
different values of 𝜆∗: 1, 2, 4 and 6. The size of each circle and its color are as explained in Figures 3 and 4.
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(b) Distributions conditioned to a particular value of 𝜆∗: 1 (red),
2 (green), 4 (magenta), and 6 (blue).

Figure 7: Posterior distributions for the number of groups for the second simulated dataset.

5 Application: incidence of violent crimes in Mexico City

The increasing violence and criminality levels in Mexico have become a public safety problem, not only

because its effects on the social tissue but also because the material and psychological effects it produces on

people (Jiménez Ornelas, 2003). Of particular interest is the incidence of crimes in Mexico City, the capital of

the country. Mexico City is the residence of the federal government, and unlike the rest of the states in the

country, it has only one police force, under the command of the Secretary of Public Security. Like other cities,

Mexico City has areas responding to social factors associated to criminality such as high population density

and lack of education and employment, while other areas are associated to factors promoting opportunity

for crimes. The reduction of crime incidence comes as a combination of social policies and efficient police

actions through intelligence to increase police presence in areas where crime incidence is high. A huge step

towards the systematization of crime reports was taken in 2009, when Mexico City Police began recording

the geographic location of crimes reported to their force. Despite the high crime incidence, the analysis of

crime incidence in Mexico City is difficult. The lack of confidence in the justice system makes that over 80%

of crime occurrences go undenounced. According to the civilian organization México Evalúa, only 6.8% of

crimes are investigated and prosecuted (Piña García & Ramírez-Ramírez, 2019; Mendieta Ramírez, 2019).

Although not all such reports make the way to the justice system and they represent only a small fraction of

actual crime incidence, those reports ending in a prosecution by the legal system provide valuable information

as they represent a thinned version of the spatial point pattern of actual crime incidence (Valenzuela Aguilera,

2020) A quick police response to a rising crime rate in space and time is only possible if clustering of crime

reports is detected promptly. In this section, our clustering method is tested using real data of crime reports.

Data used in this application correspond to cases with an investigation folder, namely those denounced

to the authorities by the victim or their legal representatives between January 1st 2018 and December 31st

2019. The database is of public domain and was obtained from the Fiscalía General de Justicia (Attorney’s

Office) of Mexico City’s website
1
. When a crime occurs, the police goes to the crime site to assist the victim,

and the location is recorded by the GPS system in the police cars or their mobile phones. Thus, all crime

records are georeferenced to a particular location on a street.

The database includes information about time of the crime occurrence, municipality, neighborhood and

1https://datos.cdmx.gob.mx/dataset/carpetas-de-investigacion-fgj-de-la-ciudad-de-mexico
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(a) Big region in Mexico City. (b) Squared region for real dataset.

Figure 8: Region studied in Mexico City. Right panel also contains the distribution of crime events on the

road network categorized by crime type.

other information that is considered useful by the authorities and policymakers. It also records many crime

types, such as rape, murder and 27 different types of robbery. All these types of robbery were merged into a

single crime category for our purposes.

We selected a section in the northwest of Mexico City as highlighted in black color in Figure 8. The chosen

neighborhood contains a mixture of business, industrial as well as wealthy and low income neighborhoods

having high crime occurrence. Figure 8a shows in red color the location of a chosen smaller study area

within Mexico City. The region highlighted in red is zoomed in Figure 8b with the road network along with

locations of individual crime events.

Figure 8b illustrates a total of 2 875 crime incidences distributed as homicide (46), robbery (2 784) and
violence rape (45) in the smaller study area. It clearly depicts an uneven distribution of crime types. For

further analysis we have selected robbery which has the highest occurrence among the three crime categories.

Thus, the rest of the analysis is conducted using 2 784 records of robbery during the entire time period of

2018 and 2019.

Posterior estimates were computed for this dataset using 5 000 iterations after discarding 10 000. Priors
for penalty and total mass parameters, 𝜏 and 𝜃, remain as for the second simulated dataset. Different choices

were tested for the prior for kernel parameter 𝜆, from where we chose a (10, 0.03) gamma. The supplementary

material contains all the explored cases. We further analyzed the impact of the resolution-level parameter 𝜆∗
where 𝜆∗ ∈ {2, 4, 6}; see Figure 9, where the dotted horizontal lines in the boxplots depict the three resolution

levels. Additionally, Figure 10 depicts the locations of robbery clusters on the street network for two resolution

levels 𝜆∗, 4 and 6, which can be understood as the more relevant hot-spots. In the same figure, clusters are

shown along with road segments highlighted in red.

Despite the high crime incidence in the selected subarea of Mexico City, the proposed method is able

to detect the presence of several clusters in the zone. All these clusters take place in areas where a mix of

small stores, offices and metro or train stations are located. Only the cluster at the center of the analyzed

region is located in a poor residential neighborhood. It is not clear if the areas where clusters occur are gang

territories or not, but they are clearly zones where the mix of different economic activities attracts many

potential victims.

Our proposal has the advantage that the dynamics of crime clustering may be detected in a relatively fast

and simple way. Although the convergence speed of the Gibbs sampler depends on the number of edges, if
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Figure 9: Boxplots for the kernel parameter 𝜆𝑗 associated to each group given the posterior modal partition.

On the 𝑥 axis, the label for each group is presented. Horizontal dotted lines correspond to the different values

for 𝜆∗ ∈ {2, 4, 6}.

(a) 𝜆∗ = 4 (b) 𝜆∗ = 6

Figure 10: Road segments along with clusters for the street network; cases 𝜆∗ ∈ {4, 6}.
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super-computing is not available, i.e., one has limited computational power, our method can be implemented

in targeted parts of a city where local authorities need prompt results to trigger police assistance. Another

potential use of this study could be the forecasting of true crime incidence rates. Indeed, as recently reported

in the National Survey of Victimization and Perception of Public Safety 2020, there is a significantly percentage

of crimes not reported. See inegi.org.mx/programas/envipe/2020 for further details.

6 Concluding remarks

We have presented a simple yet effective model for clustering constrained on linear networks based on point

events using random partitions under a nonparametric Bayesian approach. The proposal of removing the

topology induced by the linear network, and modeling the occurrence of events over each edge instead,

greatly simplifies the clustering task. Furthermore, making the random partition distribution spatially

dependent through the penalization function 𝑤 allows us to reveal clusters of high incidence of events. In

our application, those events are armed robberies, of particular interest to citizens and law forces. The

Poisson kernel parameter 𝜆 included in our model controls the resolution of high event incidence, which

in the application at issue, helps to identify street configurations with high crime record. All this said, our

methodology could be used for other applications as described in Chapter 17 of Baddeley et al. (2016).

We believe our proposal adds a valuable tool to the existing clustering techniques over spatial point

patterns. The key fact of the network structure makes this proposal new in this field, and can be considered

an attractive while easy-to-use tool in the analysis of point patterns over linear networks.

Here, we have used the clustering induced by themodified Dirichlet process, however other nonparametric

priors, such as those belonging to the Gibbs-type family, could also be used.
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For the small synthetic dataset, several sampling specifications were run; similarly, for the real data application,

different prior specifications were used. Posterior estimates are presented for all these cases.
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1 Simulated dataset

Figures 1 and 2 display the posterior modal partition for the small dataset, where total mass parameter varies.
Figure 3 presents the posterior distribution for the number of groups.
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(a) 𝜏 = 102 (b) 𝜏 = 105

(c) 𝜏 = 107 (d) 𝜏 = 109

Figure 1: Posterior modal partition for the small simulated dataset, where 𝜃 = 0.3669, and 𝜏 varies. Groups
are identified by the color of the centroids; colors across panels are totally unrelated.
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(a) 𝜏 = 102 (b) 𝜏 = 105

(c) 𝜏 = 107 (d) 𝜏 = 109

Figure 2: Posterior modal partition for the small simulated dataset, where 𝜃 = 82.1121, and 𝜏 varies. Groups
are identified by the color of the centroids; colors across panels are totally unrelated.
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(d) 𝜏 = 109

Figure 3: Posterior distribution for the number of groups for the small simulated dataset and different values
of 𝜃: 0.3669 (red), 4.8986 (green), and 82.1121 (blue).
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Figure 4: Real dataset

Model (𝑎, 𝑏) Model (𝑎, 𝑏)

A (4, 0.1) E (5, 0.05)
B (10, 0.01) F (15, 0.03)
C (10, 0.05) G (15, 0.05)
D (10, 0.10) H (15, 0.10)

Table 1: Hyper-parameters used for the Poisson kernel parameter 𝜆 gamma prior for the real dataset.

2 Real dataset

For the real dataset, different prior distributions were tested for the Poisson kernel parameter 𝜆; Table 1
displays the cases tested. In all of them, the MCMC was run for 10 000 burn-in iterations and a sample of
size 5 000 was taken afterwards. The prior for parameter 𝜏 was fixed as a gamma distribution of parameters
(1011, 104); similarly for the total mass parameter 𝜃, a gamma distribution of parameters (1.1, 0.1) was fixed.
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Figure 5: Boxplot for kernel parameters 𝜆𝑗 associated to each group given the posterior modal partition;
Model A.
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(a) 𝜆∗ = 2 (b) 𝜆∗ = 4

(c) 𝜆∗ = 6

Figure 6: Restricted clustering, based on the modal partition, where posterior mean intensities, �̄�𝑗 , are above
different values of 𝜆∗: 2, 4 and 6; Model A.
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Figure 7: Boxplot for kernel parameters 𝜆𝑗 associated to each group given the posterior modal partition;
Model B.

(a) 𝜆∗ = 2 (b) 𝜆∗ = 4

Figure 8: Restricted clustering, based on the modal partition, where posterior mean intensities, �̄�𝑗 , are above
different values of 𝜆∗: 2, 4 and 6; Model B.
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Figure 9: Boxplot for kernel parameters 𝜆𝑗 associated to each group given the posterior modal partition;
Model C.
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(a) 𝜆∗ = 2 (b) 𝜆∗ = 4

(c) 𝜆∗ = 6

Figure 10: Restricted clustering, based on the modal partition, where posterior mean intensities, �̄�𝑗 , are above
different values of 𝜆∗: 2, 4 and 6; Model C.
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Figure 11: Boxplot for kernel parameters 𝜆𝑗 associated to each group given the posterior modal partition;
Model D.
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(a) 𝜆∗ = 2 (b) 𝜆∗ = 4

(c) 𝜆∗ = 6

Figure 12: Restricted clustering, based on the modal partition, where posterior mean intensities, �̄�𝑗 , are above
different values of 𝜆∗: 2, 4 and 6; Model D.
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Figure 13: Boxplot for kernel parameters 𝜆𝑗 associated to each group given the posterior modal partition;
Model E.
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(a) 𝜆∗ = 2 (b) 𝜆∗ = 4

(c) 𝜆∗ = 6

Figure 14: Restricted clustering, based on the modal partition, where posterior mean intensities, �̄�𝑗 , are above
different values of 𝜆∗: 2, 4 and 6; Model E.
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Figure 15: Boxplot for kernel parameters 𝜆𝑗 associated to each group given the posterior modal partition;
Model F.
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(a) 𝜆∗ = 2 (b) 𝜆∗ = 4

(c) 𝜆∗ = 6

Figure 16: Restricted clustering, based on the modal partition, where posterior mean intensities, �̄�𝑗 , are above
different values of 𝜆∗: 2, 4 and 6; Model F.
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Figure 17: Boxplot for kernel parameters 𝜆𝑗 associated to each group given the posterior modal partition;
Model G.
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(a) 𝜆∗ = 2 (b) 𝜆∗ = 4

(c) 𝜆∗ = 6

Figure 18: Restricted clustering, based on the modal partition, where posterior mean intensities, �̄�𝑗 , are above
different values of 𝜆∗: 2, 4 and 6; Model G.
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Figure 19: Boxplot for kernel parameters 𝜆𝑗 associated to each group given the posterior modal partition;
Model H.
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(a) 𝜆∗ = 2 (b) 𝜆∗ = 4

(c) 𝜆∗ = 6

Figure 20: Restricted clustering, based on the modal partition, where posterior mean intensities, �̄�𝑗 , are above
different values of 𝜆∗: 2, 4 and 6; Model H.
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(a) Model A, 𝜆∗ = 2
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(b) Model A, 𝜆∗ = 4
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(c) Model A, 𝜆∗ = 6
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(d) Model B, 𝜆∗ = 2
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(e) Model B, 𝜆∗ = 4
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(f) Model B, 𝜆∗ = 6
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(g) Model C, 𝜆∗ = 2
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(h) Model C, 𝜆∗ = 4
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(i) Model C, 𝜆∗ = 6
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(j) Model D, 𝜆∗ = 2
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(k) Model D, 𝜆∗ = 4
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(l) Model D, 𝜆∗ = 6

Figure 21: Conditional posterior distribution for the number of groups.
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(m) Model E, 𝜆∗ = 2
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(n) Model E, 𝜆∗ = 4
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(o) Model E, 𝜆∗ = 6
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(p) Model F, 𝜆∗ = 2
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(q) Model F, 𝜆∗ = 4
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(r) Model F, 𝜆∗ = 6
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(s) Model G, 𝜆∗ = 2
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(t) Model G, 𝜆∗ = 4
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(u) Model G, 𝜆∗ = 6
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(v) Model H, 𝜆∗ = 2
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(w) Model H, 𝜆∗ = 4
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(x) Model H, 𝜆∗ = 6

Figure 21: Conditional posterior distribution for the number of groups, continued.
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