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Abstract

Most of the literature on spatio-temporal covariance models proposes structures
that are positive in the whole domain. However, problems of physical, biological or
medical nature need covariance models allowing for negative values or oscillations
from positive to negative values. In this paper we propose an easy-to-implement
and interpretable class of models that admits this type of covariances. We show
particular analytical examples that may be of interest in the biometrical context.
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1 Introduction

The modellisation of biological or environmental phenomena which evolve in space and
time has been one of the most important challenges over the last years. As pointed out
by Janauer (2001) in an excellent paper, there is a strong interaction between biology and
hydrology in the establishment, fluctuation and limitation of the aquatic environment in
space and time. For instance, the analysis of the spatio-temporal distribution of flow is
strongly related to the study of current velocities and turbulences. Particularly, some
studies of the spatio-temporal correlation of turbulences have already been done for the
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evaluation of kinematical and dynamical effects (Yakhot, Orszag and She, 1989). In
another notable work in Levinson, Beall, Powers and Bengtson (1984), the problem of
space time statistics of turbulences is faced up. In the merely temporal framework, it
is worth citing Xu, Wu, Huo and Wu (2003) and Xu, Wu and Wu (2003). On the
other hand, in the spatial context, Shkarofsky (1968) emphasised the fact that in the
study of turbulences it is often desirable to have covariance models allowing for negative
values or oscillations from positive to negative values as the Euclidean distance tends to
infinite. Unfortunately, most of previously proposed spatio-temporal covariance models in
literature (see, among many others, Cressie and Huang, 1999; Gneiting, 2002; Christakos,
2000) are positive in the whole domain, so they are not useful for this purpose.

This strong motivation prompted our research. We are looking for space time covari-
ance models satisfying two main features:

1. They may be negative or oscillate between negative and positive values.

2. They would preferable allow for an easy interpretation.

We believe it is reasonable to select a class of models satisfying property 2, and then to
answer, if possible, the natural question: can we obtain negative covariances starting from
a class which is easy-to-implement and interpretable? The answer is yes and a satisfactory
solution can be found through the theoretical results shown in this paper. The advantage
is that, starting from a well-known class of models, one can implement, with a very simple
procedure, covariance functions for space time data which can be negative in some part of
their domain of definition. A direct consequence is that this kind of models can be used
in many problems of physical, biological or environmental nature for which space time
analysis is needed, such as in Pomeroy, Toth, Granger, Hedstrom and Essery (2003).

Summarising, this paper presents theoretical results answering the above mentioned
questions, together with examples of potential interest on biomedical, environmental and
hydrological problems. The plan of the paper is the following: Section 2 is dedicated to
necessary background and notation about space time covariances and variograms. Section
3 is structured into three main parts regarding, respectively, our new proposal, some
remarks on the Generalised Product-Sum model (De Cesare, Myers and Posa, 2000; 2001),
and a new class of variograms for which a linear combination with negative parameters
results in a permissible model. The paper ends with some conclusions and discussion.

2 Theoretical background

For the sake of conciseness, from now on we shall make reference to continuous weakly
stationary Gaussian random fields Z(x, t), x ∈ R

d and t ∈ R. Then, the function
Cs,t(h, u) = cov(Z(xi, ti), Z(xj, tj)) is defined for (h, u) = (xi − xj, ti − tj) ∈ R

d × R

and is called the stationary spatio-temporal covariance function of the process, as it ex-
clusively depends on the spatial and temporal separation vectors, respectively h and u.
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As well known, a real valued function Cs,t defined on the product space R
d × R is the

covariance function associated to a stationary spatio-temporal random field if and only if

n∑

i=1

n∑

j=1

aiaj Cs,t(xi − xj, ti − tj) ≥ 0,

for all finite sets of real coefficients ai and points (xi, ti) ∈ R
d × R, i = 1, . . . , n.

This property is called positive definiteness. With alternative notation, Christakos (2000,
p.63) calls this property permissibility. A classical result in Bochner (1933) sets up the
equivalence between covariance functions and characteristic functions of non-negative fi-
nite measures. Namely, a continuous function Cs,t as defined above is positive definite if
and only if

Cs,t(h, u) =

∫

Rd×R

ei(ω′
h+τu)dF (ω, τ),

with F a non-negative measure on R
d × R.

A stationary covariance function is called isotropic if it is also rotation-invariant, i.e.

Cs,t(h1, u1) = Cs,t(h2, u2) if ‖h1‖ = ‖h2‖ and |u1| = |u2|

where ‖ · ‖ is the usual Euclidean norm on R
d.

A space time covariance function is called separable if we can factor (Mitchell, Genton
and Gumpertz, 2004)

Cs,t(h, u) =
Cs,t(h, 0)Cs,t(0, u)

Cs,t(0, 0)
.

In other words, separability means that the spatio-temporal covariance structure factors
into a purely spatial and a purely temporal component, which allows for computationally
efficient estimation and inference. Consequently, these models have been popular even
in situations in which they may not be physically justifiable. An exhaustive simulation
study of separable and nonseparable covariance models applied to medical problems can
be found in Ibáñez-Gual and Simó (2004).

The variogram of a spatio-temporal intrinsically stationary random field is indicated
with the symbol γs,t and represents one half the variance of the increments of the process.
Namely, we have

γs,t(h, u) =
1

2
Var (Z(x1, t1) − Z(x2, t2)) ,

where (h, u) = (x1−x2, t1−t2) ∈ R
d×R has been previously defined as the spatio-temporal

lag vector.
Recall that for well known results in Schoenberg (1938), variograms are conditionally

negative definite functions, i.e.

n∑

i=1

n∑

j=1

aiajγs,t(xi − xj, ti − tj) ≤ 0,
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for any finite set of constants ai such that
∑n

i=1 ai = 0 and any finite set of points
(xi, ti) ∈ R

d × R, i = 1, 2, . . . , n.
The specialisation to the merely spatial or temporal case is straightforward. For the

sake of clarity, from now on we shall indicate the merely spatial and temporal covariance
and variogram respectively with the condensed notation Cs, γs,Ct, γt.

3 Main results

3.1 The Generalised Sum-of-Products model and its negative
covariances

In this section we propose a tempting candidate class which can be obtained by considering
the following setting: let {Csi : i = 1, 2, . . . , n} and {Cti : i = 1, 2, . . . , n} be, respectively,
valid spatial and temporal stationary continuous and integrable covariance models, n ∈ N.
For k1, . . . , kn ≥ 0 let us define the function

Cs,t(h, u) =
n∑

i=1

kiCsi(h)Cti(u), (h, u) ∈ R
d × R (1)

This model defines a permissible stationary space time covariance in R
d ×R having some

desirable features, as it is positive definite for any positive setting of the parameters, it is
integrable on R

d × R and admits a very easy implementation. Let us call this class with
the acronym GSP, in order to denote Generalised Sum-of-Products. Once noticed that
property 2 presented in the introduction is satisfied for this class, it is now natural to ask:
is it possible to preserve positive definiteness even if some weights are set to be negative?
In other words, we are trying to obtain covariances with negative values using the GSP
model with nonnegative covariances and negative weights. The answer can be found in
the results subsequently shown.

Proposition 1. Let {Csi : i = 1, 2, . . . , n} and {Cti : i = 1, 2, . . . , n} be, respectively, valid
spatial and temporal continuous and integrable covariance models, n ∈ N. For k1, . . . , kn ∈
R, consider the model in equation (1). Let us denote by fsi and fti, respectively and for
i = 1, 2, . . . , n, the Fourier transforms of covariances Csi and Cti. Assume that we have
at least one couple (fsi, fti) of non-vanishing functions, say (fsn, ftn), and write

mti := inf
τ∈R

fti(τ)

ftn(τ)
, Mti := sup

τ∈R

fti(τ)

ftn(τ)
, msi := inf

ω∈Rd

fsi(ω)

fsn(ω)
, Msi := sup

ω∈Rd

fsi(ω)

fsn(ω)
.

Then we can state:

(i) If (1) is a permissible covariance then

kn ≥ −
n−1∑

i=1

ki

[
MsiMti1{ki≥0} +msimti1{ki<0}

]
.
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(ii) If kn ≥ −
∑n−1

i=1 ki

[
msimti1{ki≥0} +MsiMti1{ki<0}

]
then (1) is a permissible covari-

ance.

(iii) For the special case n = 2, (1) is a permissible covariance if and only if

k2 ≥ −k1

[
ms1mt11{k1≥0} +Ms1Mt11{k1<0}

]
. (2)

Proof. The Fourier transform of (1) can be expressed in terms of the respective Fourier
transforms of the covariances

f(ω, τ) =

n∑

i=1

kifsi(ω)fti(τ) = fsn(ω)ftn(τ)

[
n−1∑

i=1

ki
fsi(ω)

fsn(ω)

fti(τ)

ftn(τ)
+ kn

]

In order to prove (i), we have that f(ω, τ) ≥ 0 for all ω and τ . Then we can write

0 ≤ kn +

n−1∑

i=1

ki
fsi(ω)

fsn(ω)

fti(τ)

ftn(τ)
≤ kn +




n−1∑

i=1
ki≥0

kiMsiMti +

n−1∑

i=1
ki<0

kimsimti


 .

For (ii), using the assumption on kn we have

kn +

n−1∑

i=1

ki
fsi(ω)

fsn(ω)

fti(τ)

ftn(τ)
≥

n−1∑

i=1
ki≥0

ki

(
fsi(ω)

fsn(ω)

fti(τ)

ftn(τ)
−msimti

)

+
n−1∑

i=1
ki<0

ki

(
MsiMti −

fsi(ω)

fsn(ω)

fti(τ)

ftn(τ)

)
≥ 0.

Finally, in (iii) when n = 2 we can sharpen the inequality used in (i) getting from

0 ≤ f(ω, τ), that k2 ≥ −k1
fs1(ω)
fs2(ω)

ft1(τ)
ft2(τ)

for all ω and τ , and hence

k2 ≥ −k1

[
ms1mt11{k1≥0} +Ms1Mt11{k1<0}

]
.

The converse is precisely (2).

Remark 1. A particular setting of the GSP class was considered by Ma (2005b), imposing
the spatial covariances to belong to the same parametric family (and respectively for the
temporal ones). Here we are working in a general setting, although obviously restricted to
the feasibility of the computation of all those inf’s and sup’s, as we do not impose that
the componentwise covariances belong to the same parametric family and only impose
continuity and integrability, in order to ensure some stability properties involving the
associated inverse Fourier transforms of the componentwise covariances.
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Remark 2. An interesting model that allows for attaining negative covariances was pro-
posed by Vecchia (1988), under a very different setting than the one proposed in this paper.
The author uses rational spectral densities whose associated covariance function results in
a linear combination of modified Bessel functions of the second kind of order zero, that
may attain negative values.

It should be stressed that his method only works on R
2, whilst the method proposed in

this paper and the one proposed by Ma (2005b) works on any d-dimensional Euclidean
space and for spatial time series, allowing for a wider range of potential applications.
Nevertheless, his approach is very interesting for the implications in estimation through
likelihood methods.

Let us now show the simplest case (n = 2) of our previous result and discuss its
applicability through some examples.

Corollary 1. Let Csi and Cti be valid spatial and temporal continuous and integrable
covariance models, respectively, for i = 1, 2. For θ ∈ R let us define the function

Cs,t(h, u) = θCs1(h)Ct1(u) + (1 − θ)Cs2(h)Ct2(u), (h, u) ∈ R
d × R

Let us denote by fsi and fti, respectively and for i = 1, 2, the Fourier transforms of
covariances Cti and Csi, assume the pair (fs2, ft2) do not vanish, and write

mt := inf
τ∈R

ft1(τ)

ft2(τ)
, Mt := sup

τ∈R

ft1(τ)

ft2(τ)
, ms := inf

ω∈Rd

fs1(ω)

fs2(ω)
, Ms := sup

ω∈Rd

fs1(ω)

fs2(ω)
.

Then, Cs,t is a valid covariance if and only if

[1 − max(1,MsMt)]
−1 ≤ θ ≤ [1 − min(1, msmt)]

−1

(where 0−1 = −∞ and (−∞)−1 = 0 in the left hand side, and 0−1 = +∞ in the right
hand side).

For the proof, write k1 = θ, k2 = 1 − θ and use the description of equation (2).
It is worth mentioning the specialised result for merely spatial covariances as shown

in the following corollary.

Corollary 2. Let Csi be valid spatial continuous and integrable covariance models for
i = 1, 2. For θ ∈ R let us define the function

Cs(h) = θCs1(h) + (1 − θ)Cs2(h), h ∈ R
d.

Let us denote by fsi the Fourier transforms of covariances Cti, assume fs2 does not vanish
and write

m := inf
ω∈Rd

fs1(ω)

fs2(ω)
, M := sup

ω∈Rd

fs1(ω)

fs2(ω)
.
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Then, Cs is a valid spatial covariance if and only if

[1 − max(1,M)]−1 ≤ θ ≤ [1 − min(1, m)]−1

(where 0−1 = −∞ and (−∞)−1 = 0 in the left hand side, and 0−1 = +∞ in the right
hand side).

Example 1. In order to show the potentiality of the above presented results, in partic-
ular of those in Corollaries 1 and 2, we restrict ourselves to the case of Gaussian and
Matérn (Matérn, 1986) families, for which we have analytical expressions for the Fourier
transforms.

We write x ∈ R
k indistinctly for space and time component (i.e., x ≡ h ∈ R

d or
x ≡ u ∈ R). If

CG(x) = CG(x|σG, αG) = σ2
G exp(−αG‖x‖2)

CM(x) = CM(x|σM , ν, αM) = σ2
M(αM‖x‖)νKν(αM‖x‖)

are, respectively, the Gauss and Matérn covariance functions (Kν is the modified Bessel
function of the second kind of order ν), then

fG(ω) = σ2
Gπ

d/2α
−d/2
G exp

(
− 1

4αG

‖ω‖2

)

fM(ω) = σ2
M2ν−1π−d/2Γ

(
ν +

d

2

)
α2ν

M(α2
M + ‖ω‖2)−ν− d

2

for ω ∈ R
k, are their respective Fourier transforms (see, for instance, Yaglom, 1986,

p.363). We show in Table 1 the results of m and M (subscripted in each case with
the initials of the pair of used covariances) for the four possible quotients of Fourier
transforms, setting up the following notation for the cases:

Firstly, let CGi
(x) = CGi

(x|σi, αi) = σ2
i exp(−αi‖x‖2) for i = 1, 2 for the Gauss vs

Gauss case. Secondly, let CG(x) = CG(x|σG, αG) = σ2
G exp(−αG‖x‖2) and CM(x) =

CM(x|σM , ν, αM) = σ2
M (αM‖x‖)νKν(αM‖x‖) for the Gauss vs Matérn case, and thirdly,

let CMi
(x) = CMi

(x|σi, νi, αi) = σ2
i (αi‖x‖)νiKνi

(αi‖x‖) for the Matérn vs Matérn case.
Computations are direct since the quotient of Fourier transforms is a one variable

function depending on a positive real argument z = ‖ω‖2. For instance, for the Matérn
vs Matérn case, the quotient is

(
σ1

σ2

)2

2ν1−ν2
Γ

(
ν1 + d

2

)

Γ
(
ν2 + d

2

) α
2ν
1

α2ν
2

(α2
1 + z)−ν1−

d
2

(α2
2 + z)−ν2−

d
2

Then optimization is easily reached by the evaluation of that quotient at z = 0, z = ∞
and at the critical points found (by solving where the derivative vanishes) in each case.

Finally, observe that mM,G and MM,G (for the Matérn vs Gauss case) can be computed
as mM,G = M−1

G,M and MM,G = m−1
G,M (see Table 1).
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Table 1: Results of inf’s and sup’s needed in Proposition 1 and Corollaries 1 and 2 for
the particular cases of using Gaussian vs. Gaussian, Gaussian vs. Matérn and Matérn
vs. Matérn covariance functions, respectively, in terms of their parameters values. Here
k denotes the temporal or spatial dimension (respectively 1 or d).

Gauss1/Gauss2

Parameters mG1,G2
MG1,G2

0 < α1 < α2 0
(

σ1

σ2

)2 (
α2

α1

)k/2

α1 ≥ α2 > 0
(

σ1

σ2

)2 (
α2

α1

)k/2

+∞
Gauss/Matérn

Parameters mG,M MG,M

α2
M

(ν+ k
2 )
> 4αG 0

(
σG

σM

)2 (
πα2

M

αG

)k/2

2−ν+1

×Γ
(
ν + k

2

)−1

α2
M

(ν+ k
2 )

≤ 4αG 0
(

σG

σM

)2

2k+1πk/2
(

2αG

α2
M

)ν

×(ν+ k
2 )

ν+ k
2

Γ(ν+ k
2 )

× exp
(

α2
M

4αG
− (ν + k

2
)
)

Matérn1/Matérn2

Parameters mM1,M2
MM1,M2

ν1 < ν2

(
σG

σM

)2 Γ(ν1+
k
2 )

Γ(ν2+
k
2 )

2ν1−ν2

(
α2

α1

)k

+∞
α2

2

α2
1

≤ ν2+
k
2

ν1+
k
2

ν1 < ν2

(
σG

σM

)2 Γ(ν1+
k
2 )

Γ(ν2+
k
2 )

(ν1+
k
2 )

ν2+ k
2

(ν2+
k
2 )

ν1+ k
2

+∞

α2
2

α2
1

>
ν2+

k
2

ν1+
k
2

×
(

α2
2
−α2

1

2(ν2−ν1)

)ν2−ν1 α
2ν1
1

α
2ν2
2

ν1 = ν2 and α2 ≥ α1

(
σG

σM

)2 (
α1

α2

)2ν1
(

σG

σM

)2 (
α2

α1

)k

ν1 = ν2 and α2 < α1

(
σG

σM

)2 (
α2

α1

)k (
σG

σM

)2 (
α1

α2

)2ν1

ν1 > ν2 0
(

σG

σM

)2 Γ(ν1+
k
2 )

Γ(ν2+
k
2 )

(ν1+
k
2 )

ν2+k
2

(ν2+
k
2 )

ν1+k
2

α2
2

α2
1

<
ν2+

k
2

ν1+
k
2

×
(

α2
2−α2

1

2(ν2−ν1)

)ν2−ν1 α
2ν1
1

α
2ν2
2

ν1 > ν2 0
(

σG

σM

)2 Γ(ν1+
k
2 )

Γ(ν2+
k
2 )

2ν1−ν2

(
α2

α1

)k

α2
2

α2
1

≥ ν2+
k
2

ν1+
k
2
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Now we are in position to consider linear combinations of marginal covariances within
these families taking the form

Cs,t(h, u) = θCs1(h)Ct1(u) + (1 − θ)Cs2(h)Ct2(u), (h, u) ∈ R
d × R

and characterise the exact interval of θ for which Cs,t is a valid covariance, in terms of the
parameter values of the particular covariances taking part in the expression. For instance,
if we take

Cs1(h) = σ2
s1 exp(−α1‖h‖2) Cs2(h) = σ2

s2 exp(−α2‖h‖)
Ct1(u) = σ2

t1(β1|u|)νKν(β1|u|) Ct2(u) = σ2
t2 exp(−β2|u|)

with space dimension d = 2, α2
2 > 6α1, ν = 1 and β2

1 >
3
2
β2

2 then, we can apply Corollary
1, and the results of Table 1, in order to state that the linear combination previously
written is a valid covariance if and only if

[
1 − max

(
1,

2πσ2
s1σ

2
t1α

2
2β2

σ2
s2σ

2
t2α1β1

)]−1

≤ θ ≤ 1

(resulting in the interval θ ≤ 1 whenever the last maximum equals to 1).
Using these tools, any other combination of covariances can be analysed by the inter-

ested reader. It is worth emphasising that the example applies to the covariances associ-
ated to the Ornstein-Uhlembeck process (i.e. the exponential family) and to the so-called
spherical model, since they are both particular cases of the Matérn family, respectively for
ν = 1/2 and ν = 3/2. Figure 1 illustrates the features of this type of construction in the
one dimensional case.

Remark 3. Theorems 1 and 2 in Ma (2005a) as well as Theorem 3 and Corollary 3.1 in
Ma (2005b), can be obtained by using computation technique in Example 1.

3.2 The Generalised Product-Sum model: a cautionary example

A well-known class of covariance models having a notably easy physical interpretation was
proposed by De Cesare, Myers and Posa (2000), later reconsidered by De Iaco, Myers and
Posa (2001) and called Generalised Product-Sum (GPS) model. The authors showed how
to obtain spatio-temporal covariances through weighted sums and products of marginal
covariance functions, where the weights must be nonnegative in order to preserve the
permissibility of the resulting covariance function. The GPS model has inspired a growing
literature based on what is called mixture-based covariances. Among other authors, it is
worth citing Ma (2002) with mixtures of stationary covariance functions and Porcu, Saura
and Mateu (2005) with the so called Mixed Forms. The GPS class of valid product-sum
covariance models admits, in its general formulation, the following equation

Cs,t(h, u) = k1Cs(h)Ct(u) + k2Cs(h) + k3Ct(u) (3)
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Figure 1: Left: Temporal covariance resulting from the linear combination of two Gaussian
covariances (α1 = 0.5, α2 = 1), with θ = −1 (solid), −0.75 (dashed), −0.5 (dotted). Right:
Temporal covariance resulting from the linear combination of a Gaussian and a Matérn
covariances (αG = 1, ν = 0.5, αM =

√
100), with θ = −0.04.

where Ct and Cs are valid temporal and spatial covariance models, respectively. For
positive definiteness, it is then sufficient that k1 > 0, k2 ≥ 0 and k3 ≥ 0.

As previously said, this model has been appreciated in literature for its flexibility, ease
of construction and physical interpretation. Starting from (3), it is easy to see, using
well-known relationships between the covariance and variogram, that the corresponding
GPS spatio-temporal variogram would take the form

γs,t(h, u) = (k2 + k1Ct(0))γs(h) + (k3 + k1Cs(0))γt(u) − k1γs(h)γt(u), (4)

provided that γs and γt are bounded. The importance of the GPS model is that it opened
a wide literature regarding space time covariances obtained through mixture modelling.
De Iaco, Myers and Posa (2001), with some algebraic manipulation, showed that model
(4) can be rewritten as

γs,t(h, u) = γs,t(h, 0) + γs,t(0, u) − kγs,t(h, 0)γs,t(0, u)

The authors proved that a necessary and sufficient condition for positive definiteness of
this model is that 0 ≤ k ≤ 1/max(sill(γs,t(h, 0)); sill(γs,t(0, u))), where sill(·) stands for
the variance of the random process associated to the marginal variogram in its argument.

Unfortunately, due to its lack of integrability on R
d ×R, this model cannot be treated

in this paper, even if possessing some attractive features. The reasons for which we shall
not make use of this model will be clarified in the sequel. But firstly we aim to remark
that this model is not strictly positive in some pathological situations for which we invite
to caution. For the sake of clarity, we shall make reference to the merely R

2 spatial setting
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and follow the beautiful idea of Myers and Journel (1990). Suppose to have only four
sampling points in a compact domain of R

2, say {(0, 0), (x, 0), (0, y), (x, y))}, with x, y
positive scalars. Suppose we are using a model of the GPS class having equation

γ(x, y) = γ1s(x, 0) + γ2s(0, y) − kγ1s(x, 0)γ2s(0, y)

where sill(γ1s(x, 0)) = sill(γ2s(0, y)) = 1 and γ1s, γ2s not strictly increasing (but permissi-
ble) variograms respectively on x and y (it is not compulsory for the variogram to be an
increasing function of the lag vector as can be seen in Chilès and Delfiner, 1999, Sect. 2.5).
Finally, setting k = 1 and supposing that γ1s(x, 0) = a, γ2s(0, y) = b, with a = b/(b − 1)
and b > 1, it is easy to see that the resulting variogram matrix would take the form




0 a b 0 1
a 0 0 b 1
b 0 0 a 1
0 b a 0 1
1 1 1 1 0



.

Now, it can be seen that the determinant of this matrix is zero, thus the variogram
and covariance matrices are singular, with all the consequences related to the kriging
interpolation procedures which strictly depend on this matrices and on their inverses.

The extension to the spatio-temporal case is straightforward and various counterexam-
ples of this type can be proposed working in a similar setting. Concluding, we recommend
using this model only with parametric variograms which are strictly increasing with re-
spect to the Euclidean spatial and temporal distance.

The GPS model in equation (3) is not integrable in R
d × R. It implies that the tech-

nique of Fourier transform can not be used to find out the complete domain of parameters
(k1, k2, k3) giving valid covariances. However, by means of two auxiliary continuous inte-
grable covariances Cs2,Ct2 we can build the model

C̃s,t(h, u) = k1Cs(h)Ct(u) + k2Cs(h)Ct2(u) + k3Ct(u)Cs2(h), (h, u) ∈ R
d × R

which is integrable, and use the technique of Corollary 1 to show that the domain of valid
parameters is

D = {(κ1, κ2, κ3) : κ2 ≥ 0, κ3 ≥ 0, κ1 ≥ −mtκ2 −msκ3}
∪{(κ1, κ2, κ3) : κ2 ≥ 0, κ3 < 0, κ1 ≥ −mtκ2 −Msκ3}
∪{(κ1, κ2, κ3) : κ2 < 0, κ3 ≥ 0, κ1 ≥ −Mtκ2 −msκ3}
∪{(κ1, κ2, κ3) : κ2 < 0, κ3 < 0, κ1 ≥ −Mtκ2 −Msκ3}

where

mt := inf
τ∈R

ft2(τ)

ft(τ)
, Mt := sup

τ∈R

ft2(τ)

ft(τ)
, ms := inf

ω∈Rd

fs2(ω)

fs(ω)
, Ms := sup

ω∈Rd

fs2(ω)

fs(ω)
.
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If we use sequences C
(n)
s2 ,C

(n)
t2 of covariances converging pointwise to constant one, we

would have a sequence C̃
(n)
st of continuous integrable covariances belonging to the GSP

class and converging pointwise to the generalised product-sum model. For each n we
could compute exactly the domain D(n) of validity of C

(n)
st . But as n→ ∞,

m(n)
s → 0, M (n)

s → ∞, m
(n)
t → 0, M

(n)
t → ∞

and then we see that the domain D(n) tends to be the first octant R
3
+ as n→ ∞.

3.3 Variograms through particular linear combinations of Bern-

stein functions with negative weights

Until now we have been working with the model (1) which is expressed in terms of
covariances. The research for linear combinations with negative weights can also be
addressed to variograms. Before considering this framework, let us give some necessary
background about completely monotone and Bernstein functions. A completely monotone
function ϕ is a positive decreasing function defined on the positive real line satisfying

(−1)nϕ(n)(t) > 0, t > 0

for all positive natural number n. Much more can be said about this class of functions,
but it is beyond the scope of this paper. For a complete review on completely monotone
functions, we refer the reader to the excellent book of Berg and Forst (1975).

Bernstein functions ψ are the integrals or derivatives of completely monotone func-
tions. By well-known results, this class of functions admits the integral representation

ψ(t) =

∫ ∞

0

(
1 − e−tu

)
u−1dF (u), (5)

provided that
∫ 1

0
u−1dF (u) exists and is finite. By Schoenberg’s (1938) Theorem, an

isotropic variogram is permissible in any d-dimensional space R
d if and only if it is of the

form
γs(h) = ψ(‖h‖2).

We are particularly interested in the consideration of the following two classes of zonally
and geometrically anisotropic variograms

γs,t(h, u) =

n∑

i=1

kiψ(αi‖h‖2 + βi|u|2) (6)

and

γs,t(h, u) =
n∑

i=1

kiψ(αi‖h‖ + βi|u|) (7)

12



These classes are particularly important as they join the celebrated geometrical aniso-
tropic approach in Dimitrakopoulos and Luo (1994) with another well-known approach
for zonal anisotropy, the nested model, as in Rohuani and Hall (1989). Starting from
these classes, we show in the next proposition how to obtain valid variograms through
linear combinations that can have negative weights, extending Ma (2005a, Thm. 3) to the
spatio-temporal case.

Proposition 2. Let {αi}n
i=1 and {βi}n

i=1 be two increasing finite sequences of positive
constants and ψ a Bernstein function. For k1, . . . , kn ∈ R, we have that:

1. The model in equation (6) is a permissible intrinsically stationary variogram defined
on R

d × R if

kn ≥ −
n−1∑

i=1

(
αn

αi

)d/2 (
βn

βi

)1/2

1{ki<0} (8)

2. The model in equation (7) is a permissible intrinsically stationary variogram defined
on R

d × R if

kn ≥ −
n−1∑

i=1

αiβi

αnβn
1{ki≥0} +

(
αn

αi

)d (
βn

βi

)
1{ki<0} (9)

Proof. For 1) it is sufficient to show that
∑m

i=1

∑m
j=1 aiajγ(xi−xj, ti−tj) ≤ 0 for arbitrary

families {(xi, ti)}m
i=1 ⊂ R

d × R and {ai}n
i=1 ⊂ R under the restriction

∑m
i=1 ai = 0. Thus

using equation (5) we get

m∑

i=1

m∑

j=1

aiajγ(xi − xj, ti − tj)

=

m∑

i=1

m∑

j=1

aiaj

n∑

l=1

kl

∫ ∞

0

(
1 − exp

(
−αl‖xi − xj‖2v − βl|ti − tj|2v

))
v−1dF (v)

=
n∑

l=1

kl

∫ ∞

0

m∑

i=1

m∑

j=1

aiaj

(
1 − exp

(
−αl‖xi − xj‖2v − βl|ti − tj|2v

))
v−1dF (v)

= −
m∑

i=1

m∑

j=1

aiaj

∫ ∞

0

n∑

l=1

klC
v,l
s,t (xi − xj, ti − tj) v

−1dF (v), (10)

where Cv,l
s,t (h, u) = exp (−αlv‖h‖2) exp (−βlv|u|2) is a covariance function for any positive

v. Thus, it suffices to show for which values of (k1, . . . , kn) the sum
∑n

l=1 klC
v,l
s,t, belonging

to the GSP class, is positive definite. From Proposition 1 and Example 1 it can be easily
verified that, under condition (8),

∑n
l=1 klC

v,l
s,t is positive definite and so is the positive

mixture represented by the integral. Thus the last summand in equation (10) is negative
definite.
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For the part 2), it is sufficient to follow the same steps of equation (10) with var-
iogram (7), and arguments of the previous paragraph with Cv,l

s,t (h, u) = exp (−αlv‖h‖)
exp (−βlv|u|), and taking into account that the exponential covariance is a particular case
of the Matérn family. Thus, the proof is completed.

Example 2. Let us propose as a spatial or temporal variogram a novel structure, which
has never been considered, to our knowledge, in geostatistical literature. Berg and Peder-
sen (2001) showed that the function

f(x) =
log Γ(x + 1)

x log x

is a Bernstein function. This function has attracted the attention of various mathemati-
cians in the past, among them Anderson and Qiu (1997). Using the scale invariance
property with respect to a positive parameter α, it is easy to see that

ψ(‖h‖2) =
log Γ(α‖h‖2 + 1)

α‖h‖2 log (α‖h‖2)

is a valid variogram in any d-dimensional Euclidean space R
d for any positive α. This

variogram has the interesting property that it depends on one parameter only, so that
estimation procedures for the variogram can be easier. Unfortunately, this variogram does
not allow for the control of the level of smoothness of the process. This problem can be
overcome by considering the logarithmically completely monotone function

g(x) =
(Γ(αx+ 1))1/αx

αx

(
1 +

1

αx

)x

Berg (2004) showed that a function g is logarithmically completely monotone if and
only if gδ is a completely monotone function for all positive δ. Thus the function

ϕ(‖h‖2) =
(Γ(α‖h‖2 + 1))

δ/α‖h‖2

(α‖h‖2)δ

(
1 +

1

α‖h‖2

)δ‖h‖2

(11)

is a permissible covariance function for any d-dimensional Euclidean space R
d, having

the desirable property that it allows to control the level of smoothness of the process away
from the origin.

Coming back to variograms, Berg (2004) showed that (11) is a Stieltjes transform,
which is a stronger statement than that of complete monotonicity. This fact can be used
jointly with Berg and Pedersen (2001, Prop. 1.3) by which if ϕ is a Stieltjes transform,
then ψ = 1/ϕ is a Bernstein function. Finally, considering that if ϕ is a Stieltjes trans-
form, then 1/ϕ(1/x) and (1/xϕ(x)) are still Stieltjes transforms, we obtain that various
novel forms of variograms can be proposed. For instance, the function

ψ(‖h‖2) =
(α‖h‖2)

δ

(Γ(α‖h‖2 + 1))δ/α‖h‖2

(
α‖h‖2 + 1

α‖h‖2

)δ‖h‖2

(12)
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is a permissible variogram on any d-dimensional Euclidean space R
d. All the proposed

variogram structures can be used in order to apply Proposition 2. Thus, setting α = 1,
without loss of generality, the following structures

γs,t(h, u) =
n∑

i=1

ki
(αi‖h‖j + βi|u|j)δ

(Γ(αi‖h‖j + βi|u|j + 1)δ/(αi‖h‖j+βi|u|j)

×
(
αi‖h‖j + βi|u|j + 1

αi‖h‖j + βi|u|j
)δ(αi‖h‖j+βi|u|j)

are valid intrinsically stationary spatio-temporal variograms defined on R
d × R under the

prescribed constraints, respectively (8) and (9), for j = 1, 2.

4 Conclusions and discussion

The results presented in this paper can be useful for those disciplines, such as biology,
hydrogeology and engineering, which are interested in the use of negative covariances for
space time data. This research could be readdressed in the future to the solution of other
problems. For instance, we considered as primary necessities the points 1 and 2 presented
in the introduction, but other research aspects could be considered. For instance, a critical
point to be taken into account is the consideration of zonally anisotropic behaviours in
the spatial component of the space time covariance.

Instead of using Bernstein’s formula (5), one can use the Lévy-Khinchine formula for
conditionally positive definite functions (see e.g. Sasvári, 1994) to get linear combinations
of variograms (with possibly negative weights) which are variograms as well. By choosing
special variograms a table like Table 1 could be computed, using similar arguments as in
Proposition 1.
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