
Computer Physics Communications 282 (2023) 108511
Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

QOptCraft: A Python package for the design and study of linear

optical quantum systems ✩,✩✩

Daniel Gómez Aguado a, Vicent Gimeno b, Julio José Moyano-Fernández b, Juan
Carlos Garcia-Escartin c,∗
a Universidad de Valladolid, Valladolid, Spain
b Universitat Jaume I, Campus de Riu Sec, Departament de Matemàtiques & Institut Universitari de Matemàtiques i Aplicacions de Castelló–IMAC, 12071,
Castellón de la Plana, Spain
c Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática, ETSI de Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes,
Paseo Belén 15, 47011 Valladolid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 August 2021
Received in revised form 28 July 2022
Accepted 22 August 2022
Available online 29 August 2022

Dataset link: https://
github .tel .uva .es /juagar /qoptcraft

Keywords:
Linear interferometers
Quantum optics
Quantum experiment design
Quantum information

The manipulation of the quantum states of light in linear optical systems has multiple applications in
quantum optics and quantum computation. The package QOptCraft gives a collection of methods to
solve some of the most usual problems when designing quantum experiments with linear interferometers.
The methods include functions that compute the quantum evolution matrix for n photons from the
classical description of the system and inverse methods that, for any desired quantum evolution, will
either give the complete description of the experimental system that realizes that unitary evolution or,
when this is impossible, the complete description of the linear system which approximates the desired
unitary with a locally minimal error. The functions in the package include implementations of different
known decompositions that translate the classical scattering matrix of a linear system into a list of
beam splitters and phase shifters and methods to compute the effective Hamiltonian that describes the
quantum evolution of states with n photons. The package is completed with routines for useful tasks like
generating random linear optical systems, computing matrix logarithms, and quantum state entanglement
measurement via metrics such as the Schmidt rank. The routines are chosen to avoid usual numerical
problems when dealing with the unitary matrices that appear in the description of linear systems.

Program summary
Program Title: QOptCraft
CPC Library link to program files: https://doi .org /10 .17632 /r24hszggf4 .1
Developer’s repository link: https://github .tel .uva .es /juagar /qoptcraft
Licensing provisions: Apache-2.0
Programming language: Python 3 v3.9.5:0a7dcbd, May 3 2021 17:27:52
Supplementary material:: User’s manual at https://github .tel .uva .es /juagar /qoptcraft /-/blob /main /QOptCraft
_V1.1 _user _guide .pdf
Nature of problem: The evolution of the quantum states of light in linear optical devices can be computed
from the scattering matrix of the system using a few alternative points of view. Apart from being able
to compute the evolution through a known optical system, it is interesting to consider the less studied
inverse problem of design: finding the optical system which gives or approximates a desired evolution.
Linear optical systems are limited and can only provide a small subset of all the physically possible
quantum transformations on multiple photons. Choosing the best approximation for the evolutions that
cannot be achieved with linear optics is not trivial.
This software deals with the analysis of the quantum evolution of multiple photons in linear optical
devices and the design of optical setups that achieve or approximate a desired quantum evolution.
Solution method: We have automated multiple computation processes regarding quantum experiments
via linear optic devices. The methods rely on the properties of the groups and algebras that describe the
problem of light evolution in linear system.

✩ The review of this paper was arranged by Prof. N.S. Scott.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect .com /
science /journal /00104655).

* Corresponding author.
E-mail addresses: gomezaguado99@gmail.com (D.G. Aguado), gimenov@uji.es (V. Gimeno), moyano@uji.es (J.J. Moyano-Fernández), juagar@tel.uva.es (J.C. Garcia-Escartin).
https://doi.org/10.1016/j.cpc.2022.108511
0010-4655/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.cpc.2022.108511
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2022.108511&domain=pdf
https://github.tel.uva.es/juagar/qoptcraft
https://github.tel.uva.es/juagar/qoptcraft
https://doi.org/10.17632/r24hszggf4.1
https://github.tel.uva.es/juagar/qoptcraft
https://github.tel.uva.es/juagar/qoptcraft/-/blob/main/QOptCraft_V1.1_user_guide.pdf
https://github.tel.uva.es/juagar/qoptcraft/-/blob/main/QOptCraft_V1.1_user_guide.pdf
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:gomezaguado99@gmail.com
mailto:gimenov@uji.es
mailto:moyano@uji.es
mailto:juagar@tel.uva.es
https://doi.org/10.1016/j.cpc.2022.108511
http://creativecommons.org/licenses/by-nc-nd/4.0/

D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al. Computer Physics Communications 282 (2023) 108511
The library QOptCraft for Python 3 includes known numerical methods for decomposing an optical
system into beam splitters and phase shifters and methods to give the quantum evolution of system
classically described by a scattering matrix using either the Heisenberg picture evolution of the states, a
description based on the permanents of certain matrices or the evolution from the effective Hamiltonian
of the system. It also provides methods for the design of achievable evolutions, using the adjoint
representation, and for approximating quantum evolutions outside the reach of linear optics with an
iterative method using Toponogov’s comparison theorem from differential geometry. The package is
completed with useful functions that deal with systems including losses and gain, described with
quasiunitary matrices, the generation of random matrices and stable implementations of the matrix
logarithm.
Additional comments including restrictions and unusual features: The package is designed to work with
intermediate scale optical systems. Due to the combinatorial growth in the state space with the
number of photons and modes involved, there is an upper limit on the efficiency of any classical
calculation. QOptCraft serves as a design tool to explore the building blocks of photonic quantum
computers, optical systems that generate useful quantum states of light for their use in metrology or
other applications or the design of quantum optics experiments to probe the foundations of quantum
mechanics.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction: linear optical quantum systems

The evolution of the quantum states of light inside linear optical systems shows a rich structure and has applications ranging from
fundamental quantum optics experiments to the preparation of advanced quantum states for quantum information processing.

The package QOptCraft offers different functions that help to automate the design process for quantum optical experiments. The
object under study are linear optical multiports, or linear interferometers. We consider linear interferometers acting on m separate modes
and their action on n input photons.

The main purpose of the package is exploring which evolutions can be realized with linear optics and which cannot and giving a
physical implementation for those evolutions which are possible. The code is written in Python due to its simplicity, its compatibility with
multiple platforms and the existence of many scientific libraries which can be combined with our package. The package offers a library of
functions which can be used as a starting point for independent code development as closed, black-box functions for the users that just
need to know the experimental setup for their desired evolution.

While the code is fully functional and some tweaks for efficiency have been applied, it is not optimized for computational speed. The
combinatorial growth in the state space in the problem makes any implementation in systems with more than a few tens of photons
and modes impractical for any computer. The package has been created for exploring medium-scale optical experiments which can be
performed before noise or other imperfections become too problematic. The possible applications include the design of optical systems
for the generation of entangled states of light, the prediction of the behaviour of medium-sized linear interferometers or to build simple
gates for specific quantum information protocols.

This paper serves as a guide to the package and the theoretical foundations on which it was built. It is intended to be a brief tour on
the mathematical and physical results that are needed to describe linear interferometers with quantum inputs. The detailed user guide
with a functional description of the software is given with the package [1].

The paper starts with a brief description of different existing software and computer design methodologies for quantum linear optical
systems and a comparison to our approach (Section 2). The theory behind the calculations in the package is introduced with a review of
the matrices that describe linear optical systems (Section 3) and an explanation of all the relevant algebraic objects that appear in the
study (Section 4). Section 5 gives a tour on the different methods offered in the package. Section 6 gives complete design examples using
the package. The paper ends with a summary (Section 7).

2. Comparison to similar existing libraries and other computer-assisted design methods for quantum linear optics

There are many complementary ways of studying the behaviour of the quantum states of light. In QOptCraft, the point of view is
centered on the unitary evolution matrices that describe the evolution of photon number states with a constant number of photons and
modes.

For certain tasks, our functions sometimes overlap with existing software packages and, in many cases, provide an alternative way
of looking at things. In this Section, we discuss the most relevant software packages and computer design methods for quantum optical
evolutions.

QuTiP is a Python framework for the simulation of open quantum systems [2,3], including quantum optical processes. In particular, it
offers tools to simulate the evolution for Hamiltonians involving light-matter interaction. It includes examples that describe simple linear
optical systems, but the focus of the framework tends to be on time-dependent evolution and the coupling with matter.

Xanadu’s Pennylane has two wrappers that deal with linear optics. Strawberry fields [4] gives a collection of functions that
permit to work with linear optical circuits, similar to the usual quantum circuit model of quantum computing.

The whole collection has Continuous Variables, CV, quantum computing [5–7] in mind and, as such, focus mostly on Gaussian oper-
ations, homodyne measurement and coherent and squeezed states. There is also a wrapper, the Walrus [8], devoted to the study of
Gaussian boson sampling [9–11]. This library can be combined with machine learning to design different quantum evolutions [12,13].

This is more similar to our approach of treating linear optical systems as blocks with time independent calculations. However
QOptCraft works with finite state spaces generated from a discrete constant number of modes and photons instead of the continu-
2

http://creativecommons.org/licenses/by-nc-nd/4.0/

D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al. Computer Physics Communications 282 (2023) 108511
ous variable approach of Strawberry fields with coherent and squeezed states. These states live in an infinite-dimensional space
and are described either by operators or truncated state spaces.

In addition to the simulation of known optical systems, there are multiple computer-assisted methods to search for optical setups
that produce certain transformations. In the last few years there has been an explosion in the use of machine learning to understand
and design physical systems. Some of the possible applications are exploring the foundations of quantum mechanics and the design of
nanophotonic structures (see [14] and [15], respectively, for the corresponding surveys). We will give a brief description of the results
which are closer to our software. The interested reader can find a complete review of the use of computers to find new quantum optical
experiments in [16].

In most of the cases, the purpose of computer-assisted methods is to produce certain resource states, such as highly entangled photon
states. The usual approach is starting with simple, easy to generate states and, then, the computer tries different optical systems with
elements that are optimized so that the output state is close to some desired state or has a good value for a particular objective function.

The AdaQuantum software [17] builds on the work of Knott [18] and searches for specific output quantum states exploring the config-
uration space of the optical systems either with genetic algorithms alone [19] or combined with neural networks [20]. These methods are
focused on Gaussian states.

The functions in QOptCraft work with photon number states. This is closer to the work found in the papers from Krenn’s group,
which expand the original proposal of the MELVIN algorithm in [21] to look for new experiments [22,16] with discrete photon states. The
MELVIN algorithm searches random linear optical transformations produced from simple elements and performs advanced numerical op-
timization to tune the devices in order to obtain output states with high scores in an objective function, like, for instance, a measurement
of entanglement. This algorithm and has led to multiple successful experiments [23–25]. Interestingly, a second algorithm, THESEUS, can
be used to gain insight into new methods. The representation of the problem is designed for easy human interpretation and it aids to
the conceptual understanding of the results [26,27]. The outputs from this algorithm have been later refined by humans to provide new
conceptual frameworks [28,29]. Both MELVIN and THESEUS algorithms are available online [30,31]. These two algorithms take advantage
of topological search, but there are also different refinements and proposals to combine multiple machine learning strategies. These in-
clude the use of neural networks [32] and reinforced learning [33], which also gives good results in the automated design of quantum
communication protocols [34].

Compared to those approaches, our software does not use advanced machine learning techniques. We provide routines that can give
exact numerical solutions and try to provide building blocks that can be later combined with these methods.

In that respect, the routines in QOptCraft focus on unitary matrices and analytic methods and they are more similar to the results
from Gubarev and coworkers [35], where they search for heralded entangled states starting from random unitary transformations and a
numerical optimization phase which is then refined analytically. Similarly, computers can be used to optimize the design of more general
non-linear optical transformations which include losses, like in the quantum cloning experiments of [36]. Apart from those points of view,
a polynomial description of the optical system also allows a different analytical design method using a Gröbner basis technique [37].

In most of this previous work, the methods have a desired target state and the state evolution is computed, like in QOptCraft, from
the description of the classical elements. We use a slightly different, but equivalent, approach centered on the evolution unitary matrices
and their corresponding Hamiltonians. Apart from that, QOptCraft also offers the ability to solve inverse problems directly from a full
description of the desired evolution (Section 5.3).

For compatibility with other quantum optics design software, QOptCraft includes a series of functions that deal with states (Sec-
tion 5.5.5). An example of their use for entangled state generation, which complements previous automated design methods, is given in
Section 6.3.

3. The scattering matrix S and the unitary evolution U

A linear interferometer acts on m modes, or ports. The modes can be any collection of orthogonal states of a single photon. For
simplicity we usually think of spatial modes: photons going through separate paths, but the results can be extended to modes representing
orthogonal polarizations, different frequencies, separated time bins or photons with different values of orbital angular momentum.

Classically, for amplitudes ai in the ith mode, the corresponding output mode amplitude bi can be deduced from the scattering matrix
S of the system computing �b = S�a [38]. The scattering matrix acting on the input amplitudes as

S�a =

⎛
⎜⎜⎜⎝

S11 S12 . . . S1m

S21 S22 . . . S2m
...

...
. . .

...

Sm1 Sm2 . . . Smm

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a1
a2
...

am

⎞
⎟⎟⎟⎠ (1)

is unitary, which guarantees the conservation of energy in a passive linear network. The matrix description can be translated directly to
the quantum evolution of a single photon where the field amplitudes are replaced by probability amplitudes and the matrix unitaricity
guarantees that the probability of finding each state in the output superposition sums to 1 for unit vectors in the input, where the
probabilities also sum to 1.

These unitary scattering matrices give the complete description of linear optical systems which preserve the number of photons. Losses
and amplification can also be included using quasiunitary matrices [39] (Section 5.5.1).

The quantum evolution for n photons is described by a unitary evolution matrix U acting on all the possible photon states of n
photons distributed into m modes. The resulting Hilbert space Hm,n has a dimension M = dimC Hm,n = (m+n−1

n

)
which corresponds to

counting all the possible ways to place n “balls” (photons) into m “boxes” (modes) (the multiset coefficient of n and m [40]).
We use a photon number notation. The state of the system is written as |ψ〉 = |n1n2 . . .nm〉, where ni is the number of photons found

in the ith mode and
∑m

i=1 ni = n.
In the QOptCraft package, we define a basis as an ordered collection of basis states in this format, which can be thought of as

column vectors filled with zeroes and with a single 1 in the position corresponding to the index of the state.
3

D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al. Computer Physics Communications 282 (2023) 108511
For instance, for n = 3 photons in m = 2 modes, a basis would be {|30〉 , |21〉 , |12〉 , |03〉} and we can make the correspondence:

|30〉 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ , |21〉 =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ , |12〉 =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ , |03〉 =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ . (2)

For that order, there is a unique U giving the evolution of a linear interferometer with a scattering matrix S (for which column i gives
the action on the ith input mode).

The functions in QOptCraft return the ordered list with the basis states so that all the objects are compatible.
Both S and U are unitary matrices and belong to the corresponding unitary groups: S ∈ U (m), the group of unitary m × m matrices,

and U ∈ U (M), the group of unitary M × M matrices. Two matrices, U1, U2, which are equal up to a global phase, so that U1 = ei�U2, are
equivalent from a physical point of view. There is no measurement that can tell them apart.

Notice that all the methods in the package could have been implemented for the corresponding matrices with determinant 1 in the
special unitary groups SU (m) and SU (M). However, for simplicity and to keep the same framework as previous results, we have preferred
to work with matrices from the unitary group instead of the special unitary group.

4. Structure of the problems: relation between the objects in a commutative diagram

The functions in QOptCraft allow the user to navigate through the commutative diagram in Fig. 1 which relates various matrices
which appear when working with linear interferometers which preserve the photon number. The map ϕm,M is a differentiable group
homomorphism [9] and it induces an algebra homomorphism, dϕm,M . In addition, ϕm,M relates the unitary groups U (m) and U (M)

containing the scattering matrix S and the n-photon evolution operator U and dϕm,M relates the algebras u(m) and u(M) whose elements
correspond to antihermitian matrices iH S and iHU which give an equivalent description of the evolution through exponentiation of the
Hamiltonians H S and HU (S = eiH S and U = eiHU) [41,42].

Fig. 1. Commutative diagram describing the relationships between the different objects that define the evolution in linear optical systems.

5. Package overview

We will use the commutative diagram of Fig. 1 as a map to show how the different functions in the package work. Each family of func-
tions is explained in terms of the theoretical results on which they are based. Many of the functions are implemented from independent
methods for computing the same result, which can be used to check for consistency and to search for the most computationally efficient
alternative for different input sizes.

5.1. The photonic homomorphism

The first function StoU returns the quantum unitary evolution U for n photons under the action of a linear interferometer specified
by the user. The inputs are the number of photons, the scattering matrix of the system S and an ordered basis of the state space so that
the matrix U is univocally determined.

The evolution is determined by the homomorphism ϕm,M from the unitary group U (m) to U (M), in the upper part of the commutative
diagram of Fig. 2 and it is computed with two different methods in the software.

Fig. 2. Evolution from S (scattering matrix) to U (quantum evolution) with the photonic homomorphism ϕm,M (in red). (For interpretation of the colours in the figure(s), the
reader is referred to the web version of this article.)

5.1.1. Evolution from the Heisenberg picture
The matrix U can be computed from the evolution of the creation operators that define all the possible input quantum states in the

Hm,n Hilbert space. For an n-photon input state, with â†
k being the creation operation for mode k [43],

|n1n2 . . .nm〉 =
m∏ (

â†nk
k√
nk!

)
|00 . . . 0〉 . (3)
k=1

4

D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al. Computer Physics Communications 282 (2023) 108511
An analysis in the Heisenberg picture [44–46] shows the quantum evolution can be expressed as:

U |n1n2 . . .nm〉 =
m∏

k=1

1√
nk!

⎛
⎝ m∑

j=1

S jkâ†
j

⎞
⎠

nk

|00 . . . 0〉 . (4)

This method can be chosen in the function StoU with an optional argument.

5.1.2. Computation using permanents
There is also an alternative description related to the permanent of a matrix [45]. The permanent is a matrix function similar to the

determinant which is computed without any position dependent sign correction. For an n × n matrix A, it can be defined as

Per A =
∑
σn

n∏
i=1

Ai,σ (i) (5)

for column indices in all the permutations σ in the symmetric group Sn .
The step from S to U depends on the number of photons. If we take the basis composed of the number states of Eq. (3), the

element of U that describes the transition from |�in〉 = |n1〉1 |n2〉2 . . . |nm〉m to |�out〉 = ∣∣n′
1

〉
1

∣∣n′
2

〉
2 . . .

∣∣n′
m

〉
m can be determined from 〈

n′
1

∣∣
1

〈
n′

2

∣∣
2 . . .

〈
n′

m

∣∣
m U |n1〉1 |n2〉2 . . . |nm〉m , which has a value

Per(S in,out)√
n′

1! · n′
2! · · ·n′

m! · n1! · n2! · · ·nm!
. (6)

In Eq. (6), Per(S in,out) is the permanent of a matrix S in,out with elements Si, j from S such that each row index i appears exactly n′
i times

and each column index j is repeated exactly n j times [45,9].
This method can be chosen in the function StoU in two different implementations. The first (for the argument method = 1) computes

the permanents with a direct implementation and the second (for the argument method = 2) computes the permanent using Ryser’s
method [47], which tends to be faster for large state spaces in our experiments.

The direct implementation generates all the possible permutations of n positions from Python’s itertools.
In Ryser’s algorithm the permanent is computed as a sum of products [48]. For an n × n matrix A, we use the formula

Per A = (−1)n
∑

X⊆{1,2,...,n}
(−1)|X |R(X) (7)

where X is any non-empty subset of the set of numbers from 1 to n; the formula sums the products

R(X) =
n∏

i=1

∑
j∈X

Ai, j (8)

that multiply the sums of the column elements given by the indices in X for each row. The signs avoid counting the same product twice.

5.1.3. Efficiency
None of the methods we have explained to compute ϕm,M(S) is efficient. In fact, computing the permanent is known to be a PSPACE

problem [49] and this, combined with other results, shows there is no known efficient classical method to compute the evolution in a gen-
eral linear optical interferometer in the boson sampling problem [9]. Any classical method will face this complexity barrier. Nevertheless,
the direct computation method in the package can be useful in the simulation of intermediate scale linear optical systems.

5.2. Evolution of the effective Hamiltonian. The differential of the photonic homomorphism

The matrix HU gives the effective Hamiltonian corresponding to the evolution U through the exponential map with U = eiHU [41].
The explicit Hermitian matrix can be deduced from the effective Hamiltonian H S of the linear multiport acting on one photon [42]. If we
number the basis states, with |q〉 = |n1n2 . . .nm〉 and |p〉 = ∣∣n′

1n′
2 . . .n′

m

〉
, the elements of iHU are

〈p| iHU |q〉 = 〈p|
m∑

l=1

m∑
j=1

iH S jl â
†
jâl |q〉 . (9)

The evolution corresponds to single photon processes from the weighted sum

iHUpq =
m∑

l=1

m∑
j=1

i
√

(n j + 1)nl H S jl 〈p|n1n2 . . .n j + 1 . . .nl − 1 . . .nm〉. (10)

The function iHStoiHU returns the Hermitian matrix HU corresponding to any given H S when the system is acting on n photons. It
is computed from the differential of the photonic homomorphism, dϕm,M (Fig. 3).
5

D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al. Computer Physics Communications 282 (2023) 108511
Fig. 3. Evolution from H S (the single photon Hamiltonian) to HU (the n-photon Hamiltonian) with the differential of the photonic homomorphism dϕm,M (in red).

5.3. Inverse problems. Design of linear interferometers.

In many cases we know the target evolution U we would like to obtain and we need to find out the experimental setup that produces
that evolution.

In general, linear optics offers only a limited range of all the possible evolutions in the Hilbert space Hm,n for n photons. For more
than one photon or one port, it is clear that the degrees of freedom in the scattering matrix which gives the experimental implementation
are less than the required degrees of freedom to produce any U ∈ U (M) [50–52].

The image imϕ of ϕm,M is a subgroup of U (M) and, as the number of photons grows, the evolutions U which can be actually realized
with linear optics become a smaller set of all the possible unitary evolutions.

The package contains two different methods for design, depending on whether the desired evolution is possible or must be approxi-
mated

The function SfromU serves as an initial check. When given a target evolution U for n photons in m modes, it answers whether there
exists a valid linear evolution or not. If it is possible, the function returns the matrix S which provides the desired evolution.

The inverse homomorphism ϕ−1
m,M in Fig. 4 is computed with the help of the adjoint representation of U using the projections over the

basis of the u(m) and u(M) algebras [53].

Fig. 4. The scattering matrix S can be recovered from the unitary evolution of the n photons, U , with the inverse of the photonic homomorphism ϕ−1
m,M (in red).

Internally, it generates a basis for the image algebra giving the effective Hamiltonian HU ∈ u(M) which corresponds to the evolution
through the differential dϕm,M (iHStoiHU) of the canonical basis of u(m).

The adjoint representation gives a way to compute the HU corresponding to U . While the matrix exponential gives an efficient way
to go from H S to S or from HU to U , matrix logarithms are not trivial for this application (see Section 5.5.2). In particular, we need to
restrict to logarithms in the image subalgebra of u(m), which is smaller than u(M).

The basis of the image algebra allows us to write the inverse problem of going from U to S as a linear system of equations. If the
system is incompatible, we declare U impossible to produce with linear optics alone. Otherwise, solving the system gives an S such that
U = ϕ(S).

When the system has no solution and U cannot be exactly implemented with linear optics, there is a second function, Toponogov,
which finds the scattering matrix S providing a quantum evolution Ũ = ϕ(S) that approximates U .

The approximation is designed to minimize
∥∥∥U − Ũ

∥∥∥ for the Frobenius norm of the difference between the desired evolution U and

the evolution Ũ what we can provide with linear optics. The function Toponogov works by an iterative procedure based on Toponogov’s
comparison theorem [54] using an initial guess matrix U0 inside the image of ϕm,M . The results are locally optimal insofar the method
finds the matrix Ũ which can be implemented which is closest to U in the local neighbourhood of U0. This method can help to refine a
random search. At the bare minimum it will return the original random guess, usually with an improved approximation after just a few
steps.

The initial guesses are generated by the function RandU which produces a random matrix in the image group, Ur ∈ imϕ (see Sec-
tion 5.5.3). The function first generates a random unitary Sr chosen uniformly at random from U (m) and, then, it computes the evolution
for n photons with StoU to produce Ur = ϕ(Sr).

With different random initial guesses, we can explore the solution landscape and avoid staying trapped in a single local minimum.

5.4. Experimental realizations of linear interferometers

The scattering matrix S gives a complete description of a linear interferometer and can be computed for any experimental setup by
taking the product of the scattering matrices of the corresponding elements.

There are two basic optical elements: beam splitters and phase shifters. Beam splitters acting on two modes have a scattering matrix

S B S =
(

cosω sinω
sinω − cosω

)
. (11)

Phase shifters introduce a relative phase � in one mode with respect to the rest and have a scattering matrix

S P S =
(

1 0
0 ei�

)
(12)
6

D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al. Computer Physics Communications 282 (2023) 108511
for two modes. For larger systems with m modes, the resulting scattering matrix is an m × m identity matrix where the elements of S B S

or S P S replace the elements in the rows and columns with indices (k, k), (k, l), (l, k) and (l, l) when acting on the modes with index k and
l.

Any sequence of L elements, with S1 the first element at the input and SL the last one, is described by the product matrix S =
SL SL−1 · · · S1.

There are a few known constructive methods which, given any valid unitary S , produce a list of the beam splitters and phase shifters
required to give that S [55–57].

The package includes the function Selements which, for any input unitary matrix S , returns the list of the required elements for
experimental implementation. The user can choose from the decompositions of Clements, Humphreys, Metcalf, Kolthammer and Walsmley
[56] (default) or the Reck, Zeilinger, Bernstein and Bertani [55] method.

The output of the function Selements can be used as a list of the elements needed to obtain the scattering matrix S in an optical
table or to choose the parameters of programmable integrated photonic chips [58]. Combined with the design methods in Section 5.3, it
gives a complete design path from the desired unitary to an experimental realization.

5.5. Other methods

The package is completed with some useful intermediate functions and partial generalizations that help to perform numerical experi-
ments for research.

5.5.1. Lossy linear interferometers and squeezing
The decompositions described in Section 5.4 are given for ideal, lossless multiports. The description of linear optical systems in terms

of a scattering matrix can be generalized to introduce losses and squeezing if we replace unitary matrices by what can be described as
quasiunitary matrices S , such that

SG S† = G (13)

where G is a diagonal block matrix with elements I and −I for I the m × m identity matrix in a system with m modes.
In this framework, we need to work both with creation and destruction operations and the size of S doubles [41]. Now

S�a =
(

A B
B∗ A∗

)(�̂a
�̂a†

)
, (14)

where �̂a and �̂a† are vectors with the annihilation and creation operators for each mode and the matrix blocks at the bottom are the
(untransposed) complex conjugates of the first row blocks. For the passive networks discussed in the rest of the paper B = 0.

The package includes the function QuasiU giving a decomposition of any quasiunitary matrix in terms of simple optical blocks, which
now include amplification and losses. The function follows the decomposition of Tischler, Rockstuhl and Słowik [39].

This method uses a different underlying description of the optical system and it works independently from the other functions. The
rest of the fuctions involving matrix operations included in the package assume the inputs are unitary matrices. Thus, the only scenario
these quasiunitary samples would be compatible with them would be for B = 0, where there is no need for two A, A∗ blocks due to no
crossing between loss and gain. If B = 0, we can simply use A as the unitary input to any other method in the package.

5.5.2. Matrix logarithms
One particular difficulty when going from the unitary groups to the their corresponding unitary algebras is choosing the right branch

of the matrix logarithm.
While the exponential map is injective and there is only one unitary evolution corresponding to each effective Hamiltonian, the

logarithm is a multivalued function and there exist many possible Hamiltonians for the same evolution.
The package works with the principal branch of the logarithm, log U = iK , of a unitary matrix U ∈ U (m), defined as

K † = K , exp(iK) = U , with the eigenvalues of K in (−π,π]. (15)

There are two slightly different definitions for the principal matrix logarithm. We choose this definition with a closed interval on one
side instead of the definition with a valid interval (−π, π) for the eigenvalues so that there is always a principal matrix logarithm,
even for matrices with real negative eigenvalues (−1). Under our definition, the matrix logarithm loses some properties, like infinite
differentiability, but they are not needed in any calculation involving linear interferometers. Covering all the possible input matrices
is more important for consistency and the −1 eigenvalue appears in many interesting evolutions, like the Quantum Fourier Transform
(described in Section 5.5.4).

There are efficient and stable numerical methods that can compute the principal logarithm of a unitary matrix. The function Matlog
uses different iterative algorithms from Loring’s paper [59] under the user’s choice.

There is one final warning. One might be tempted to use the matrix logarithm of a matrix U to compute HU and then use the basis of
the image algebra, available with the function AlgBasis, to find a suitable implementation. Unfortunately, the principal logarithm is not
guaranteed to lie inside the unitary image algebra, which is a subalgebra of u(M). The correct method is given in the function SfromU,
which solves the problem by taking an indirect route in the adjoint representation.

The package can be used to perform numerical experiments that show the branch of the logarithm inside the image algebra is not
predictable in a straightforward manner.
7

D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al. Computer Physics Communications 282 (2023) 108511
5.5.3. Random unitaries
Generating unitaries uniformly at random in U (m) and in imϕ ⊂ U (M) can be interesting in numerical experiments where we want

to sample random interferometers and when testing new functions. It is also a fundamental element in the approximation method in the
function Toponogov described in Section 5.3.

The function RandU generates a unitary matrix chosen uniformly with respect to the Haar measure. The random unitary is generated
from a random complex matrix with elements with normal random real and imaginary parts which is transformed by a QR decomposition
and then normalized [60,61].

The function RandImU generates a random unitary U ∈ imϕ ⊂ U (M) with a random m × m matrix S R generated with RandU, which
is then taken into U (M) using StoU. The results is a random matrix in the image.

RandU is valuable for testing. For instance, we have used it to sample randomly from U (M) and then check the approximations
produced by Toponogov.

5.5.4. Quantum Fourier transform matrices
The package includes the function QFTto generate a Quantum Fourier Transform of any chosen size. This matrix has many interesting

properties and is at the heart of many successful quantum algorithms, like Shor’s algorithm for integer factorization [62].
An N × N QFT matrix has elements

Q F Tx,y = 1√
N

ei 2πxy
N (16)

for x, y = 0, . . . , N − 1 in row x + 1 and column y + 1.
The QFT unitary is simply a normalized Discrete Fourier Transform matrix, which is an entangling operation and has multiply degen-

erate eigenvalues (which can only take the values 1, −1, i, −i) [63,64]. These properties make it a good “hard case” that can serve as
benchmark for our numerical methods. Additionally, it is the scattering matrix describing symmetric optical networks [65,66].

5.5.5. State routines and entanglement evaluation
In many applications, individual quantum states are more important than the whole evolution matrix. QOptCraft also includes some

functions that make working with states easier.
The function leading_terms counts the most relevant elements of a superposition and state_leading_fidelity returns a

clean state taking only the terms of the superposition that contribute up to a certain fidelity F , i.e. the truncated state
∣∣∣ψ̃〉

is close to

the original one |ψ〉 so that |
〈
ψ |ψ̃

〉
|2 > F . The function state_leading_terms returns an approximation that rounds to zero the

probability amplitude of the terms of the superposition that have a probability of being measured below a given threshold.
The vector representation in the whole state space can be a bit cumbersome. state_in_basis takes a natural description of a state

given as a list of the terms of the superposition and their complex weights and returns a complex array in the corresponding basis in the
format QOptCraft uses internally.

Finally, in some occasions we need to evaluate whether a state presents entanglement or not. There is no single entanglement measure
which captures the whole phenomenon and quantifies it in a clear cut way [67], but they are a useful guide. We will use as an orientation
the Schmidt rank, which assigns a figure to the entanglement in bipartite systems [68].

The function schmidt_rank_vector evaluates the entanglement between different subsystems of the global state. It returns a
vector where each element is the Schmidt rank for the bipartite system composed of the corresponding subsystem and the rest of the
state. The user can introduce different groupings of the modes to define each subsystem. Internally, it is computed by taking the state
space to a larger dimension where all the modes can carry up to n photons.

A detailed example of its use for entanglement evaluation can be found in Section 6.3.

5.5.6. Applications to quantum information
Apart from experiments in quantum optics, we might be interested in using a linear interferometer as the physical implementation for

a target unitary quantum gate Ut which performs a useful operation in quantum information processing. This can be part of a quantum
algorithm or a transformation in a quantum communication protocol.

However, in linear interferometers, certain questions like swapping between two states |n1 . . .nm〉 and
∣∣n′

1 . . .n′
m

〉
are not possible in all

the cases. For instance, no linear operation can take |20〉 into |11〉 deterministically.1

For that reason, if Ut is a logical quantum operation, the mapping between the physical and the logical states is not trivial. The function
SfromU includes a parameter perm, enabling (for perm = T rue) its application for all available ordering of the basis states in Hm,n , to
make sure a logical operator is not possible or give the scattering matrix which allows its experimental realization.

6. Usage examples

6.1. Computing the unitary evolution U from the scattering matrix S. Comparison of the methods

In most applications we will need to compute the evolution for a known linear optical system. QOptCraft offers four alternative
methods to compute U = ϕ(S) which can be specified when calling StoU. Two of them are based on the state transformations given
from the description of the evolution of the operators in the Heisenberg picture shown in Equation (4), method=0, or the description

1 Using Equation (4) we can see U |20〉 = 1√
2
(S2

11â†2
1 + 2S11 S21â†

1â†
2 + S2

21â†2
2) |00〉. The output state can only be |11〉 for a linear interferometer where both S11 S21 = 1√

2
and S11 = S21 = 0 are simultaneously true, which is impossible.
8

D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al. Computer Physics Communications 282 (2023) 108511
Table 1
Logarithm of the normalized execution times (arbitrary units) for the four computation methods and different sizes M of the relevant Hilbert space.

m 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
n 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5
M 3 4 5 6 6 10 15 21 10 20 35 56 15 35 70 126
Heisenberg (0) 0.00 1.89 3.54 3.80 2.84 4.85 5.44 6.54 4.11 5.44 7.29 9.31 5.03 6.73 9.22 11.75
Permanent (1) 0.31 1.81 3.57 4.50 3.58 2.47 3.92 5.98 3.51 3.84 5.59 7.91 3.10 4.98 7.00 9.55
Ryser (2) 0.34 2.23 3.75 3.03 3.85 2.92 4.22 5.52 3.85 4.29 5.91 7.47 3.41 5.43 7.30 9.10
Hamiltonian (3) 1.49 2.78 2.74 2.82 3.89 4.51 5.19 5.67 5.18 6.10 7.38 8.65 5.90 7.88 9.82 11.52

Fig. 5. Execution time comparison for Ryser’s algorithm (solid line) and the Hamiltonian methods (dotted line) with an increasing number of photons (x axis). The times
are shown in arbitrary units, normalized to the maximum time and presented in logarithmic scale. The line with the point markers represents the time for Ryser’s method
divided by the number of columns M of the matrix U and gives an approximation to the time needed to compute the evolution of a single state.

in terms of permanents [45] computed either from the direct definition of the permanent, method=1 or with an implementation using
Ryser’s algorithm [47,48], method=2.

Internally, these methods build the unitary matrix U column by column by computing how each input state in the state basis evolves
in a linear system with the given scattering matrix S .

For individual state evolution, the functions evolution, evolution_2 and evolution_2_ryser can be called on individual
states of the basis to recover the corresponding output state without computing the full matrix using methods 0, 1 and 2, respectively.

The fourth method to compute U = ϕ(S), method=3, is indirect. First we take the matrix logarithm of S and evolve this Hamiltonian
for input states with n photons following Equation (9). Then, U is computed from the matrix exponential of this Hamiltonian HU .

The function QOCTest runs tests to compare the efficiency of these methods under different circumstances and can take the output
to an Excel table. Table 1 compares the time it takes the four different methods to compute U = ϕ(S) for a scattering matrix S chosen
uniformly at random using RandU. QOCTest can also compare the times starting from S matrices that are the m × m QFT (a symmetric
multiport) with similar results.

The results in the Table are presented in arbitrary time units scaled by the minimum computation time and shown in logarithmic
scale for a better comparison. These tests were performed on an AMD Phenom II X6 1055T Processor with 6 cores of 2.8 GHz where the
execution is confined to a single core.

By default, QOptCraft uses the permanent method with Ryser’s algorithm. However, it is interesting to note that, for a fixed number
of modes, we have observed the Hamiltonian method tends to give a better performance as the number of photons grow.

Fig. 5 shows the results of three experiments where, for a random scattering matrix Sr chosen uniformly at random from the Haar
measure, we computed U = ϕ(Sr) using Ryser’s algorithm and the Hamiltonian method. The experiments were performed in a single 2.8
GHz core for m = 2, m = 3 and m = 4 and a growing number of photons n (up to the point where the execution times were reasonable).
The results are presented in logarithmic scale and the time units are normalized by the maximum execution time. All the times are
computed from the average of 5 executions for the same matrix.

We have added for comparison a line with the time for Ryser’s method divided by the dimension M of the state space. This approxi-
mates the time to compute a single column of the matrix and gives an idea of the work involved in computing the evolution of a single
state as opposed to computing the full matrix. For those tasks, it might be better to use one of the state by state methods instead of
9

D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al. Computer Physics Communications 282 (2023) 108511
computing the whole matrix U , but, at least in our examples, there is a threshold at which it is more efficient just to compute the whole
matrix U from its Hamiltonian.

Notice that, in this work, there has been no explicit optimization to reduce the running time apart from basic tweaks. It would
interesting to see in a future work whether the matrix exponential can be sped up taking advantage that HU is a sparse matrix and how
the Hamiltonian method compares to optimized versions of Ryser’s algorithm.

6.2. The Quantum Fourier Transform evolution

As an example on the package, we show the design of a Quantum Fourier Transform evolution for a system with 3 ports and 2 photons
(n = 2 , m = 3). The state space has a size M = (n+m−1

n

) = (4
2

) = 6.
In our design example, we first generate the target 6 × 6 unitary matrix

Ut = 1√
6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1

1 ei 2π
6 ei 2π2

6 ei 2π3
6 ei 2π4

6 ei 2π5
6

1 ei 2π2
6 ei 2π4

6 ei 2π6
6 ei 2π8

6 ei 2π10
6

1 ei 2π3
6 ei 2π6

6 ei 2π9
6 ei 2π12

6 ei 2π15
6

1 ei 2π4
6 ei 2π8

6 ei 2π12
6 ei 2π16

6 ei 2π20
6

1 ei 2π5
6 ei 2π10

6 ei 2π15
6 ei 2π20

6 ei 2π25
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

The function QFTgenerates the matrix in the output file QFT_matrix_6.txt.

Our first step is to find whether the matrix in Eq. (17) can be obtained exactly with linear optics or not, for which we use the function
SfromU.

One of the possible input parameters is an ordered basis for the Hilbert space with n = 2 photons in m = 3 modes. In this case, we
have left it empty and SfromU generates the default basis, which, in this case, is {|200〉 , |110〉 , |101〉 , |020〉 , |011〉 , |002〉}. We have

|200〉 =

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠ , |110〉 =

⎛
⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠ , |101〉 =

⎛
⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎠ , |020〉 =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎠ , |011〉 =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎠ , |002〉 =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎠ . (18)

The code is incapable of finding a valid S which produces the quantum evolution U of the QFT matrix of Eq. (17). This was bound to
be expected, since linear optics elements can only produce a limited amount of evolutions U ∈ U (M).

If we want to continue, we need to turn to the iterative algorithm in Toponogov (for m = 3 modes, n = 2 photons and the matrix file
with the 6 × 6 QFT).

After 20 attempts, we found 9 different U i
t approximations, with some approximations appearing more than once. Each approximation

has a different distance to the original Ut in (17). We use as a distance the Frobenius norm of Ut − U i
t defined by our matrix inner product

metric. Toponogov produces a general output file listing all the found evolution matrices and their distance to the target evolution, as
well as files with each individual matrix.
10

D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al. Computer Physics Communications 282 (2023) 108511
In our randomized trial, we choose the third one U 3
t , with a minimal distance d(U 3

t , Ut) = 2.29449, and elements:

U 3
t =

⎛
⎜⎜⎜⎜⎜⎝

0.01i −0.08 − 0.05i −0.03 − 0.05i 0.71 − 0.11i 0.62 + 0.11i 0.24 + 0.14i
0.03 − 0.02i −0.07 + 0.26i −0.16 + 0.19i 0.12 + 0.61i 0.06 − 0.37i 0.27 − 0.51i
0.09 + 0.05i −0.77 + 0.18i −0.46 − 0.04i 0.14 − 0.09i −0.20 + 0.10i −0.26 + 0.02i

−0.10 − 0.09i −0.26 − 0.07i 0.33 + 0.23i −0.26 + 0.06i 0.56 + 0.07i −0.54 − 0.27i
0.10 − 0.47i −0.12 − 0.41i −0.05 + 0.59i 0.06 + 0.08i −0.10 − 0.27i 0.03 + 0.38i
0.82 − 0.26i −0.14 + 0.11i 0.41 − 0.21i 0.01 − 0.02i −0.05 + 0.05i 0.10 − 0.07i

⎞
⎟⎟⎟⎟⎟⎠ . (19)

We are guaranteed to find a suitable St matrix which produces the approximate QFT matrix in Eq. (19) for the evolution of 2 photons
in 3 modes and the basis in Eq. (18). Using Selements, we can decompose St into different linear optic devices.

SfromU takes the file with the best approximation to the QFT and generates a file with the scattering matrix St which gives the
desired approximated evolution. The output is then used as the input of Selements to obtain a list of the basic optical devices needed
to build St experimentally.

The resulting St is:

St =
⎛
⎝ 0.07679 −0.61787 + 0.57579i −0.48484 + 0.21387i

−0.11099 − 0.34803i −0.36813 − 0.36367i 0.32869 + 0.70053i
0.63057 − 0.68047i −0.05348 + 0.12676i 0.19068 − 0.28992i

⎞
⎠ . (20)

By default, Selements gives a list of phase shifters in a diagonal matrix D and a list of Tmn matrices, following the decomposition in
[56] so that:

St = (
T even

12

)−1(
T even

23

)−1
DT odd

12 . (21)

After running Selements, we obtain the matrices:

D =
⎛
⎝0.7024 + 0.7118i 0.0000 0.0000

0.0000 −0.3887 + 0.9214i 0.0000
0.0000 0.0000 0.5495 − 0.8355i

⎞
⎠ , (22)

T odd
12 (θ = 1.7180, φ = 0.3481) =

⎛
⎝−0.1379 − 0.0500i −0.9892 0.0000

0.9298 + 0.3374i −0.1467 0.0000
0.0000 0.0000 1.0000

⎞
⎠ , (23)

T even
12 (θ = −2.5368, φ = −1.5941) =

⎛
⎝0.0192 + 0.8249i 0.5650 0.0000

0.0131 + 0.5649i −0.8251 0.0000
0.0000 0.0000 1.0000

⎞
⎠ , (24)

T even
23 (θ = 1.2164, φ = 1.0205) =

⎛
⎝1.0000 0.0000 0.0000

0.0000 0.1815 + 0.2958i −0.9379
0.0000 0.4905 + 0.7994i 0.3470

⎞
⎠ . (25)

The output is given in the format Tk,l for a generalized beam splitter acting on modes k and l. The resulting optical element is defined by
two angles φ and θ . φ gives the phase shift in a phase shifter at the input k and θ gives the splitting ratio of a general beam splitter so
that

Tk,l(θ,φ) =
(

eiφ cos θ − sin θ

eiφ sin θ cos θ

)
. (26)

D is achieved with m phase shifters.
Each Tk,l evolution can be achieved with a phase shifter with a φ phase shift followed by a beam splitter with a splitting angle θ . The

inverse operations (Tk,l)
−1 can be achieved with a beam splitter with a splitting angle −θ followed by a phase shifter with a −φ shift.

This completes the whole path from the target evolution in Eq. (17) to the experimental setup which best approximates that evolution
for two input photons in the ordered basis of Eq. (18). Fig. 6 shows the final optical setup corresponding to the results in the output of
Selements.

Alternatively, the same evolution can be achieved replacing the unbalanced beam splitter by two balanced, 50 : 50, beam splitters with
a phase shift 2θ in the middle and the phase shifters in D can be avoided if the output is measured immediately after the device with
some transformations on the Tk,l matrices [56].
11

D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al. Computer Physics Communications 282 (2023) 108511
Fig. 6. Optical system giving the optimal approximation to a 6 ×6 QFT for 2 photons using unbalanced optical couplers (or beam splitters) and phase shifters (phase indicated
inside the box).

6.3. Generation of entangled states

6.3.1. Quantifying entanglement
Highly entangled states are a basic resource in multiple quantum optics experiments and quantum information procotols. For instance,

the Bell state

|00〉 + |11〉√
2

, (27)

which can be generated with nonlinear crystals, is usually employed as an input to linear optical systems to provide additional capacities
to the system.

Generating these entangled resource states can be complex and there exist different proposals to create a variety of these states as
efficiently as possible [21,35]. One of the applications of QOptCraft is producing and evaluating optical transformations which produce
highly entangled photon states from easy to produce inputs.

The function schmidt_rank_vector returns an orientiative score on how entangled the different subsystems in a state are. A value
of 1 means the subsystems are separable. While, as a rule, higher numbers in all the positions mean a higher available entanglement, the
Schmidt rank vector must be used with care.

We can check some basic examples. For instance, in our mode notation, a Bell state with polarization correlation for photons in a
horizontal |H〉 or vertical |V 〉 polarization state can be represented as

|0101〉 + |1010〉√
2

(28)

with |H H〉 ≡ |0101〉 and |V V 〉 ≡ |1010〉.

The resulting vector [2,2] suggests it is an entangled state for the two subsystems with two modes each.
The Schmidt rank vector is useful to detect entanglement, but should be used with care. For instance, the state

√
1 − ε |0101〉 +√

ε |1010〉 for ε � 1 is basically a separable state |0101〉. However, the code

returns the same result as the proper Bell state. The state handling functions can help to clean up the input states. For a threshold fidelity
of 0.99, the code
12

D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al. Computer Physics Communications 282 (2023) 108511
returns [1, 1] showing the input was, in essence, a separable state.
Finally, we can use schmidt_rank_vector to study higher order entanglement. We can see an application to photons carrying

Orbital Angular Momentum, OAM, with the state |ψ422〉 that was found using automated search in [21]. We have a state

|ψ422〉 = 1

2
(|000〉 + |101〉 + |210〉 + |311〉) (29)

where each ket represents the state of a single photon and the numbers give the mode, which corresponds to the OAM value the photon
has. The first photon can carry OAM values from 0 to 3 and last two photons can only be in states with OAM 0 or 1. In the mode notation
of QOptCraft, the state becomes

|ψ422〉 = 1

2
(|0001〉 |01〉 |01〉 + |0010〉 |01〉 |10〉 + |0100〉 |10〉 |01〉 + |1000〉 |10〉 |10〉) (30)

where the first four modes give the possible state of the first photon, the following two modes the state of the second photon and the
last two modes the state of the third photon.

If we generate this state in the corresponding basis and check the Schmidt rank for the subsystems of each photon with the rest with
the commands

we obtain, as expected, the [4, 2, 2] vector.

6.3.2. Creation of advanced entangled states
In practice, we would like to be able to generate highly entangled states from inputs that can be efficiently generated in the lab. This

usually means finding an optical system which can take a simple separable input with a single photon in a few selected modes and
produce a useful entangled state which can be used in other protocols.

The output states should be easy to recognize and have a simple description.
A random S matrix with a separable input produces output states that are highly entangled. We can check this is the case using

The output subsystems are highly entangled and, in a typical run of this code, we obtain a Schmidt rank vector [5, 5, 5, 5, 5]. This is
similar to what happens in the random evolutions used in boson sampling [9] and part of the reason why classical simulations struggle
to simulate the output distribution.

However, the resulting states are a superposition of basically all the possible states in the basis (all the ways to put the n photons in
the m modes). From the 70 states in the basis of the chosen example, depending on the concrete random matrix, there are around 40
13

D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al. Computer Physics Communications 282 (2023) 108511
terms which cumulatively have a probability of 0.9 of appearing in a measurement and usually more than 50 states are needed to explain
the measurements in 99% of the cases. This kind of output superposition is not very practical for further use.

In our automated search for entanglement generating linear optical systems we would like to produce more compact output states.
We give an example based on the heuristic that transformations producing cyclic rotations of the basis states are usually a prelude for
entanglement generation [21].

Instead of searching for perfect cyclic rotations in a subset of all the possible inputs, we suppose that an approximation to a perfect
rotation of all the basis states using Toponogov will produce an output which is, at the same time, compact and entangled. This has
usually been the case in our experiments.

Notably, when approximating simple entangling unitary evolutions, we have found that, for simple inputs, the best approximation
produces states with a small number of relevant terms, but the second best approximation or approximations with a larger matrix
distance tend to take the input into a superposition of a larger number of states.

The presented example produces an state with two photons in three modes

|M〉 = |011〉 + |101〉 + |110〉√
3

(31)

in a superposition where the empty mode is distributed in all the three possible positions. We have chosen the name M state because the
expression reminds of an inverted version of the W states for three systems in a uniform superposition of only one system being excited.

The chosen configuration puts n = 4 photons into m = 5 modes. First, we approximate a rotation matrix in the 70 × 70 Hilbert space
of the photons. Experimentally, we usually prefer states with a single photon in each mode, which are easier to produce and measure
without photon number resolving detectors. We put those states close in the generated basis so that the rotation matrix we approximate
would ideally move from one to another, at least for the first ones.

In order to make the search efficient in time, we have reduced the convergence criterion of the approximation to 10−3. We tried 10
different initial random matrices, which took around 1.5 hours of computation in a 2.8 GHz core. We then took the best approximation,
with a trace distance of 9.80 to the original matrix, and checked the output for the five possible input states where no mode holds more
than one photon. We show the output for the most compact result.

For an input |1,1,1,1,0〉, the output |ψout〉 can be approximated by the state

|ψM〉 = α1 |11011〉 + α2 |11101〉 + α3 |11110〉 , (32)

with α1 = −0.11335 + 0.11385i, α2 = 0.35403 − 0.52643i and α3 = 0.61096 − 0.43433i and | 〈ψM |ψout〉 |2 > 0.99.
The first two modes always carry a photon. They can be used as ancillary modes and measure them as a check and then work with

the remaining three modes. We call the resulting state a partial M state.
The output is a partial version with a somewhat large imbalance between terms, which appear with a probability |α1|2 = 0.0258,

|α2|2 = 0.4025 and |α3|2 = 0.5619. If we introduce two attenuators, one in the first mode (with a total transmission T1 = 0.046) and one
in the second mode (with a total transmission T2 = 0.716), we obtain a balanced M state with a 3.28% probability. This state can be used
in experiments with postselection where we know that, if two photons are measured, we had the M state at the beginning. The relative
phases between the terms, if needed, can be corrected by choosing the correct combination of phase shifters for each of the three modes.

The unbalanced M state in Equation (32) can be created in a setup with 10 beamsplitters and 15 phase shifters. The values of the
required elements can be found using the functions SfromU and Selements. The elements for the matrix we have found are included
with the code in the Examples folder.
14

D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al. Computer Physics Communications 282 (2023) 108511
6.4. Decomposition of quasiunitary scattering matrices

Since systems with loss are of great interest for further experiments of quantum computing with linear optics devices, we show two
simple examples of the function QuasiU. They give the classical description of linear systems which can include losses and amplification.

The first one is the lossy beam splitter given by the T transformation:

T = 1

2

(
1 −1

−1 1

)
, (33)

which has already been analyzed in [39].
The only command required is

QuasiU gives a lot of information about the experimental implementation of the transformation in Eq. (33). The algorithm decomposes
any arbitrary complex matrix M by using the Schur decomposition: generally, M = U DW , with U and W being unitary and D a diagonal
matrix.

Combining the latter result with the linear optic devices decomposition for unitary matrices such as U and W (see the use of Sele-
ments in the previous example), QuasiU returns the decomposition of T , which turns out to be a product of

U = U D · U T1,2 (θ = 0.785, φ = 0.000) =
(−1.000 0.000

0.000 1.000

)(
0.707 −0.707
0.707 0.707

)
, (34)

D =
(

1.000 0.000
0.000 0.000

)
and (35)

W = W D · W T1,2 (θ = 0.785, φ = 0.000) =
(−1.000 0.000

0.000 1.000

)(
0.707 −0.707
0.707 0.707

)
. (36)

Since D contains a value d22 = 0 < 1, there is loss in the second port. In order to give a complete description, we need a third ancilla
mode (and the three matrices U , D , W are padded with one extra dimension as a result).

This results in a straightforward quasiunitary system with loss in one mode via a virtual beam splitter incorporating the ancilla mode.
The resulting scattering matrix for T is:

S =

⎛
⎜⎜⎜⎜⎜⎝

0.500 −0.500 0.707 0.000 0.000 0.000
−0.500 0.500 0.707 0.000 0.000 0.000
−0.707 −0.707 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.500 −0.500 0.707
0.000 0.000 0.000 −0.500 0.500 0.707
0.000 0.000 0.000 −0.707 −0.707 0.000

⎞
⎟⎟⎟⎟⎟⎠ . (37)

This reconstructed matrix is stored in an output file when running QuasiU .
Non-diagonal matrix blocks are zero, which means no cross-interaction between the modes in each block, which are unitary. For such

cases where there is no squeezing, the user can take out the first diagonal block and go back to a unitary representation of the device
where we have needed to add ancillary modes to represent losses. The resulting scattering matrix is

S =
⎛
⎝ 0.500 −0.500 0.707

−0.500 0.500 0.707
−0.707 −0.707 0.000

⎞
⎠ . (38)

As (38) is unitary, it is compatible with the other functions of QOptCraft and we can also compute its quantum evolution with StoU
or find different experimental realizations of that lossy beam splitter with Selements.

In the second example we show the general method for arbitrary input complex matrices M . We can create new complex matrices
either from the already known function QuasiU or the generator RandM.

In this example, we use the random matrices produced by RandM.

RandM generates a random N1 × N2 complex matrix with elements drawn from a normal distribution in their real and imaginary parts.
For our experiment, we picked a non-square 2x3 random complex matrix
15

D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al. Computer Physics Communications 282 (2023) 108511
M =
(

0.77 − 0.04i −0.07 − 0.57i 0.21 − 0.71i
0.53 − 0.34i 1.08 + 0.16i −0.24 − 0.05i

)
. (39)

The next command will be QuasiU ’s execution:

Looking at the output file of QuasiU with the decomposition, we see that, this time, the three matrices U , D , W given by the Schur
decomposition of (39) will be dimensionally different. All of them need to be expanded to quadratic N x N matrices, with N being the
highest of both N1, N2 (in this case, N = 3).

A quick gaze to the diagonal matrix D allows us to detect gain on the first and second ports.

U = U D · U T1,2 (θ = 0.93, φ = 0.00)

=
⎛
⎝−1.00 0.00 0.00

0.00 −0.79 − 0.62i 0.00
0.00 0.00 1.00

⎞
⎠

⎛
⎝0.60 −0.80 0.00

0.80 0.60 0.00
0.00 0.00 1.00

⎞
⎠ , (40)

D =
⎛
⎝1.37 0 0

0 1.12 0
0 0 1

⎞
⎠ and (41)

W =
(

W T even
1,2

(θ = 2.76, φ = 0.58)
)−1 ·

(
W T even

2,3
(θ = 2.41, φ = 1.07)

)−1

· W D · W T odd
1,2

(θ = 1.99, φ = 6.03)

=
⎛
⎝−0.78 − 0.51i −0.37 0.00

0.31 + 0.20i −0.93 0.00
0.00 0.00 1.00

⎞
⎠

−1⎛
⎝1.00 0.00 0.00

0.00 −0.35 − 0.65i −0.67
0.00 0.32 + 0.59i −0.74

⎞
⎠

−1

⎛
⎝−0.99 + 0.14i 0.00 0.00

0.00 −0.14 + 0.99i 0.00
0.00 0.00 −1.00 + 0.07i

⎞
⎠

⎛
⎝−0.40 + 0.10i −0.91 0.00

0.88 − 0.23i −0.41 0.00
0.00 0.00 1.00

⎞
⎠ . (42)

Gain devices, like parametric amplifiers, imply cross-interactions which prevent a unitary description. The quantum mechanical de-
scription of the oscillating EM field now requires explicit mention to both the creation and annihilation operators in the corresponding
modes. These systems are called active, whereas loss-only cases akin to the previous example are known as passive.

Active systems do present no-null non-diagonal blocks in the scattering representation S of M as a consequence of cross-interaction.
QuasiU reconstructs a valid quasiunitary matrix in an output file.

For our example, the file returns a scattering matrix S which can be expressed in terms of two blocks A and B . The complete
description of the active linear system is given by a 10-dimensional quasiunitary matrix.

S =
(

A B∗
B A∗

)
, (43)

A =

⎛
⎜⎜⎜⎝

0.77 − 0.04i −0.07 − 0.57i 0.21 − 0.71i 0.00 0.00
0.53 − 0.34i 1.08 + 0.16i −0.24 − 0.05i 0.00 0.00

−0.07 − 0.61i −0.04 + 0.27i 0.74 − 0.05i 0.00 0.00
0.00 0.00 0.00 1.37 0.00
0.00 0.00 0.00 0.00 1.12

⎞
⎟⎟⎟⎠ ,

B =

⎛
⎜⎜⎜⎝

0.00 0.00 0.00 −0.56 0.40
0.00 0.00 0.00 −0.60 + 0.47i −0.23 + 0.18i
0.00 0.00 0.00 0.00 0.00

−0.43 + 0.34i −0.50 + 0.53i 0.03 + 0.23i 0.00 0.00
0.22 + 0.15i −0.28 − 0.06i 0.13 − 0.28i 0.00 0.00

⎞
⎟⎟⎟⎠ .

7. Summary

We have presented the main functions and the theory behind the Python package QOptCraft for the automated design and analysis
of quantum linear optical systems. This paper serves as a complement to the guide included with the software [1], where the reader can
find the complete description of the function parameters as well as additional use examples. Here, we have explained the relationship
between the different procedures and have related all the concepts to the groups and algebras that appear in the description of linear
optical systems in a quantum setting.

The package can be used as a black box for experiment design or as a basic library to build more complex programs dealing with
optical interferometers.
16

D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al. Computer Physics Communications 282 (2023) 108511
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The code is available at https://github .tel .uva .es /juagar /qoptcraft.

Acknowledgements

The authors thank Alejandro Escorihuela Tomás for serving as a beta tester of the package. D. Gómez Aguado has been supported
by the Spanish Government (Ministerio de Educación y Formación Profesional, Beca de Colaboración en Departamentos Universitarios).
V. Gimeno has been partially supported by the Research Program of the Universitat Jaume I–Project UJI-B2018-35, as well as by the
Spanish Government and FEDER grants PID2020-115930GA-I00 (MICINN) and MTM2017-84851-C2-2 (MINECO). J.J. Moyano-Fernández
was partially supported by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”, grants PGC2018-096446-B-C22 and
RED2018-102583-T, as well as by Universitat Jaume I, grant UJI-B2021-02. J.C. Garcia-Escartin has been funded by the Spanish Government
and FEDER grant PID2020-119418GB-I00 (MICINN) and Junta de Castilla y León (project VA296P18).

References

[1] D. Gómez Aguado, J. Garcia-Escartin, QOptCraft: user guide, https://github .tel .uva .es /juagar /qoptcraft /-/blob /main /QOptCraft _user _guide .pdf, 2021.
[2] J. Johansson, P. Nation, F. Nori, Comput. Phys. Commun. 183 (8) (2012) 1760–1772.
[3] J. Johansson, P. Nation, F. Nori, Comput. Phys. Commun. 184 (4) (2013) 1234–1240.
[4] N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, C. Weedbrook, Quantum 3 (2019) 129.
[5] S.L. Braunstein, P. van Loock, Rev. Mod. Phys. 77 (2005) 513–577.
[6] C. Weedbrook, S. Pirandola, R. García-Patrón, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Rev. Mod. Phys. 84 (2012) 621–669.
[7] O. Pfister, J. Phys., B At. Mol. Opt. Phys. 53 (1) (2019) 012001.
[8] B. Gupt, J. Izaac, N. Quesada, J. Open Sour. Softw. 4 (44) (2019) 1705.
[9] S. Aaronson, A. Arkhipov, Theory Comput. 9 (4) (2013) 143–252.

[10] A.P. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph, J.L. O’Brien, T.C. Ralph, Phys. Rev. Lett. 113 (2014) 100502.
[11] C.S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn, I. Jex, Phys. Rev. Lett. 119 (2017) 170501.
[12] J.M. Arrazola, T.R. Bromley, J. Izaac, C.R. Myers, K. Brádler, N. Killoran, Quantum Sci. Technol. 4 (2) (2019) 024004.
[13] K.K. Sabapathy, H. Qi, J. Izaac, C. Weedbrook, Phys. Rev. A 100 (2019) 012326.
[14] K. Bharti, T. Haug, V. Vedral, L.-C. Kwek, AVS Quantum Sci. 2 (3) (2020) 034101.
[15] S. Molesky, Z. Lin, A.Y. Piggott, W. Jin, J. Vucković, A.W. Rodriguez, Nat. Photonics 12 (11) (2018) 659–670.
[16] M. Krenn, M. Erhard, A. Zeilinger, Nat. Rev. Phys. 2 (11) (2020) 649–661.
[17] P. Knott, R. Nichols, L. Mineh, J. Rubio, L. O’Driscoll, J. Matthews, AdaQuantum – code repository, https://github .com /paulk444 /AdaQuantum, 2018.
[18] P. Knott, New J. Phys. 18 (7) (2016) 073033.
[19] R. Nichols, L. Mineh, J. Rubio, J.C.F. Matthews, P.A. Knott, Quantum Sci. Technol. 4 (4) (2019) 045012.
[20] L. O’Driscoll, R. Nichols, P.A. Knott, Quantum Mach. Intell. 1 (1) (2019) 5–15.
[21] M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, A. Zeilinger, Phys. Rev. Lett. 116 (2016) 090405.
[22] X. Gu, L. Chen, A. Zeilinger, M. Krenn, Phys. Rev. A 99 (2019) 032338.
[23] F. Schlederer, M. Krenn, R. Fickler, M. Malik, A. Zeilinger, New J. Phys. 18 (4) (2016) 043019.
[24] A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, A. Zeilinger, Phys. Rev. Lett. 119 (2017) 180510.
[25] M. Erhard, M. Malik, M. Krenn, A. Zeilinger, Nat. Photonics 12 (12) (2018) 759–764.
[26] X. Gao, M. Erhard, A. Zeilinger, M. Krenn, Phys. Rev. Lett. 125 (2020) 050501.
[27] M. Krenn, J.S. Kottmann, N. Tischler, A. Aspuru-Guzik, Phys. Rev. X 11 (2021) 031044.
[28] M. Krenn, A. Hochrainer, M. Lahiri, A. Zeilinger, Phys. Rev. Lett. 118 (2017) 080401.
[29] X. Gao, M. Krenn, J. Kysela, A. Zeilinger, Phys. Rev. A 99 (2019) 023825.
[30] X. Gu, Melvin python, https://github .com /XuemeiGu /MelvinPython/, 2019.
[31] M. Krenn, J.S. Kottmann, N. Tischler, A. Aspuru-Guzik, Theseus code, https://github .com /aspuru -guzik-group /Theseus, 2018.
[32] T. Adler, M. Erhard, M. Krenn, J. Brandstetter, J. Kofler, S. Hochreiter, Photonics 8 (12) (2021).
[33] A.A. Melnikov, H.P. Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, H.J. Briegel, Proc. Natl. Acad. Sci. 115 (6) (2018) 1221–1226.
[34] J. Wallnöfer, A.A. Melnikov, W. Dür, H.J. Briegel, PRX Quantum 1 (2020) 010301.
[35] F.V. Gubarev, I.V. Dyakonov, M.Y. Saygin, G.I. Struchalin, S.S. Straupe, S.P. Kulik, Phys. Rev. A 102 (2020) 012604.
[36] X. Zhan, K. Wang, L. Xiao, Z. Bian, Y. Zhang, B.C. Sanders, C. Zhang, P. Xue, Phys. Rev. A 101 (2020) 010302.
[37] N.M. VanMeter, P. Lougovski, D.B. Uskov, K. Kieling, J. Eisert, J.P. Dowling, Phys. Rev. A 76 (2007) 063808.
[38] D. Pozar, Microwave Engineering, 4th edition, Wiley, 2004.
[39] N. Tischler, C. Rockstuhl, K. Słowik, Phys. Rev. X 8 (2018) 021017.
[40] E.R. Scheinerman, Mathematics: A Discrete Introduction, Brooks/Cole Publishing Co., USA, 2000.
[41] U. Leonhardt, A. Neumaier, J. Opt. B, Quantum Semiclass. Opt. 6 (1) (2004) L1.
[42] J.C. Garcia-Escartin, V. Gimeno, J.J. Moyano-Fernández, Opt. Commun. 430 (2019) 434–439.
[43] R. Loudon, The Quantum Theory of Light, 3rd edition, Oxford University Press, Great Clarendon Street, Oxford, UK, 2000.
[44] E.R. Caianiello, Il Nuovo Cimento (1943-1954) 10 (12) (1953) 1634–1652.
[45] S. Scheel, Permanents in linear optical networks, arXiv:quant -ph /0406127, 2004.
[46] J. Skaar, J.C. García Escartín, H. Landro, Am. J. Phys. 72 (11) (2004) 1385–1391.
[47] H.J. Ryser, Combinatorial Mathematics, Carus Mathematical Monographs, vol. 14, Mathematical Association of America, 1963.
[48] H. Minc, Permanents, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 1984.
[49] L. Valiant, Theor. Comput. Sci. 8 (2) (1979) 189–201.
[50] N.J. Cerf, C. Adami, P.G. Kwiat, Phys. Rev. A 57 (3) (1998) 1477.
[51] S.D. Bartlett, B.C. Sanders, Phys. Rev. A 65 (2002) 042304.
[52] J.J. Moyano-Fernández, J.C. Garcia-Escartin, Opt. Commun. 382 (2017) 237–240.
[53] J.C. Garcia-Escartin, V. Gimeno, J.J. Moyano-Fernández, Phys. Rev. A 100 (2019) 022301.
[54] J.C. Garcia-Escartin, V. Gimeno, J.J. Moyano-Fernández, Quantum Inf. Process. 20 (2021) 314.
[55] M. Reck, A. Zeilinger, H.J. Bernstein, P. Bertani, Phys. Rev. Lett. 73 (1) (1994) 58.
17

https://github.tel.uva.es/juagar/qoptcraft
https://github.tel.uva.es/juagar/qoptcraft/-/blob/main/QOptCraft_user_guide.pdf
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibCB7F57E526642237784F26C400EC342Cs1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib01D8CEEB2F55604C3DFF81D315FBC8C9s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibB0A9A75AA56D5B865D02FBDE376A30F0s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibFBE92EA44E06C8868DFC87DEBECADC5Bs1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib381DA81D2B70881620491E8143FA0971s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib1988A397B698AE98F3739B79CF06B20Es1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibC8E435A4AAF5E33A299191B9BB6C1EDCs1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib11D25EDBBFEE24F46B0BE8E3F60D6AC9s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib710A102BEE977D0E22D4480213688B87s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib0CB1CEDB755A939F9AE1F21A098C516Ds1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib82732A8D0DEE7F756E501C3A1166AFAAs1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib1D529E09C638B0D8E36C905836D54DC3s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib80004A2B908377B2120FAB91035D2C22s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibC261682098531F547CFC96E5DAE55B46s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibAD7CCCA6CB406A66A0E0293D026198ADs1
https://github.com/paulk444/AdaQuantum
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib4A759FCD02DCA8A3536DBBD533A2416Es1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibDF6D2E0CF55DAC90D72A2A0F9BE7985Es1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibF70F323934F58C58BF3CF24C379882D5s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibD19F72DA66948C62989B92CA9AEEEF9As1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibC4A429D2F65DA0B62441FEE60F54D1DDs1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib87F2F1C0C8A715F4D631F8048B70B470s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib8D708332EBA7A2352E8FC30668C3829As1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib99318277A69604F97F3630CF2EFAD218s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibB77DAC3F872EFB2DA89D0D3F5EBA9076s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib0157CE8C27558F722318094EC4CE0B03s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibBCF2AE25AE539437216F7C14D410D78Es1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib8D784DFA2FC8777B68A861838D4C8AA7s1
https://github.com/XuemeiGu/MelvinPython/
https://github.com/aspuru-guzik-group/Theseus
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib965BAE13DC5B00CCF680E684AB7B0776s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib00C5891120C89EB262598F263462A1A9s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib5B1609E580F153B3F1C18849C40D43F6s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibB754D9BAD322671C31B1395D85054640s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib6E32E926D4C95FD2745ACCC1010AE05Fs1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibF5294158391F26BE3CD229C1858F28E1s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib7F906636B4954933CA80E7C0C7A4CFC6s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib568FB1FA871D210F66CCDB425D37C799s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibE72043C4FC51DD78152315CF6817A25Es1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibA736348EC7A213B1204E5D1BD812173Bs1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib11086D9FEFF56CD7C85111C1E697C408s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibCD4001BEB9D23275FD201C289809425Cs1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibB31D64E52E76E0E0AA0B982D5EB808B2s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibD4507CA59AB39B75641E43C376F7CBABs1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib9C4A59DA3C009D4FAA0E70874731D648s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib33BB30C47B45BB24EDA7A89D798B9D0Fs1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibFC871EBDDA9DE3739B4F979D449B888Ds1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib1BC19F86F6262B47EBBD435CE7755EB3s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib29B6681CBAD09808CB2365EFC72CD929s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib79C0B0596F24FEC1ED8A847315E81EBBs1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib5AD0EC00186BB5A0F7E81786F2FD7157s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib2F914E82EB53977C7B93BFE16ED00CD0s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib74FEA8197AB5FB7618488EC433F22FA8s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibACA4F8575CCF501433E11D872B8D5714s1

D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al. Computer Physics Communications 282 (2023) 108511
[56] W.R. Clements, P.C. Humphreys, B.J. Metcalf, W.S. Kolthammer, I.A. Walmsley, Optica 3 (12) (2016) 1460–1465.
[57] H. de Guise, O. Di Matteo, L.L. Sánchez-Soto, Phys. Rev. A 97 (2018) 022328.
[58] J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N.J. Russell, J.W. Silverstone, P.J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G.D. Marshall, M.G. Thompson, J.C.F.

Matthews, T. Hashimoto, J.L. O’Brien, A. Laing, Science 349 (6249) (2015) 711–716.
[59] T.A. Loring, Numer. Linear Algebra Appl. 21 (6) (2014) 744–760.
[60] F. Mezzadri, Not. Am. Math. Soc. 54 (5) (2007) 592–604.
[61] G. Tóth, Comput. Phys. Commun. 179 (6) (2008) 430–437.
[62] P. Shor, SIAM J. Comput. 26 (5) (1997) 1484.
[63] B. Dickinson, K. Steiglitz, IEEE Trans. Acoust. Speech Signal Process. 30 (1) (1982) 25–31.
[64] C. Candan, IEEE Signal Process. Mag. 28 (2) (2011) 105–108.
[65] P. Törmä, S. Stenholm, I. Jex, Phys. Rev. A 52 (1995) 4853–4860.
[66] S. Zhang, C. Lei, A. Vourdas, J.A. Dunningham, J. Phys., B At. Mol. Opt. Phys. 39 (7) (2006) 1625–1637.
[67] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81 (2009) 865–942.
[68] M. Huber, M. Perarnau-Llobet, J.I. de Vicente, Phys. Rev. A 88 (2013) 042328.
18

http://refhub.elsevier.com/S0010-4655(22)00230-2/bib2D6EB586B06F9C434B07AD4731D87A0Ds1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib1023537DFE169182B632456BE5268F54s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibF8825EB9EB2BC5E2D357CF398C39ACA1s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibF8825EB9EB2BC5E2D357CF398C39ACA1s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib096D93D6540D5EEAF99760D90D922AECs1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib8E4805106E1E643EEB162673343A4771s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib13A759F2AC3C333DA6A41DFA6ACA69B4s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibD1974FAE370CAA5BF17A91F242553581s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibB62883791C7D69E6620191320BB7FD68s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib4318D9A2994190DF096BCE2F539A6E34s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibF1B3E4029D80B99B191F9A044B5E0DA1s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib6502CEAD2242703155581F39BBA0DD14s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bib220AA77CC550FE4D3BE1E27FB31D78D7s1
http://refhub.elsevier.com/S0010-4655(22)00230-2/bibEFC38F3D72F4C582426E9AB548843702s1

	QOptCraft: A Python package for the design and study of linear optical quantum systems
	1 Introduction: linear optical quantum systems
	2 Comparison to similar existing libraries and other computer-assisted design methods for quantum linear optics
	3 The scattering matrix S and the unitary evolution U
	4 Structure of the problems: relation between the objects in a commutative diagram
	5 Package overview
	5.1 The photonic homomorphism
	5.1.1 Evolution from the Heisenberg picture
	5.1.2 Computation using permanents
	5.1.3 Efficiency

	5.2 Evolution of the effective Hamiltonian. The differential of the photonic homomorphism
	5.3 Inverse problems. Design of linear interferometers.
	5.4 Experimental realizations of linear interferometers
	5.5 Other methods
	5.5.1 Lossy linear interferometers and squeezing
	5.5.2 Matrix logarithms
	5.5.3 Random unitaries
	5.5.4 Quantum Fourier transform matrices
	5.5.5 State routines and entanglement evaluation
	5.5.6 Applications to quantum information

	6 Usage examples
	6.1 Computing the unitary evolution U from the scattering matrix S. Comparison of the methods
	6.2 The Quantum Fourier Transform evolution
	6.3 Generation of entangled states
	6.3.1 Quantifying entanglement
	6.3.2 Creation of advanced entangled states

	6.4 Decomposition of quasiunitary scattering matrices

	7 Summary
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

