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Abstract: Flavour and nutritional quality are important goals for tomato breeders. This study aimed
to shed light upon transgressive behaviors for fruit metabolic content. We studied the metabolic
contents of 44 volatile organic compounds (VOCs), 18 polyphenolics, together with transcriptome
profiles in a factorial design comprising six parental lines and their 14 F1 hybrids (HF1) among which
were five pairs of reciprocal HF1. After cluster analyses of the metabolome dataset and co-expression
network construction of the transcriptome dataset, we characterized the mode of inheritance of each
component. Both overall and per-cross mode of inheritance analyses revealed as many additive and
non-additive modes of inheritance with few reciprocal effects. Up to 66% of metabolites displayed
transgressions in a HF1 relative to parental values. Analysis of the modes of inheritance of metabolites
revealed that: (i) transgressions were mostly of a single type whichever the cross and poorly correlated
to the genetic distance between parental lines; (ii) modes of inheritance were scarcely consistent
between the 14 crosses but metabolites belonging to the same cluster displayed similar modes of
inheritance for a given cross. Integrating metabolome, transcriptome and modes of inheritance
analyses suggested a few candidate genes that may drive important changes in fruit VOC contents.

Keywords: tomato; breeding; flavour; volatiles; mode of inheritance; gene expression

1. Introduction

The cultivated tomato (Solanum lycopersicum L.) is both a model organism to study
the physiological and genetic control of fleshy fruit development and composition [1]
and the most produced and consumed vegetable worldwide. More than 186 million tons
were produced in 2020 [2], with about 75% for the fresh market [3]. The cultivated tomato
encompasses both cherry type tomato (S. lycopersicum var. cerasiforme, ‘SLC’) and big-fruited
tomato (S. lycopersicum L., ‘SL’). The goals of breeding programs have evolved starting from
the 1950s [4]. Increasing interest towards the genetic control of flavour followed consumer
first complaints about tomato loss of flavour in the 90’s [5,6]. Concomitantly, the hybrid
state has been increasingly exploited in commercialized tomato varieties. This preference is
supported by heterosis, also called hybrid vigor, where hybrids show superior agronomical
performances compared to both inbred parental lines. In tomato, breeders mostly exploit
the hybrid state to combine resistance genes and to prevent the use of their parental lines by
competitors. Heterosis is not exploited knowingly for traits other than production stability
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such as fruit size or shape homogeneity [7], as heterosis remains limited for yield. In 2018,
about 89% of tomato varieties were commercialized as F1 hybrids (‘HF1’) in Europe [8].
Tomato organoleptic quality is the sum of fruit physical (aspect and texture) and chemical
properties. The metabolite content of tomato fruit contributes to both nutritional value and
flavour [9]. While nutritional quality is straightforward to assess with the quantification of
vitamins and phytonutrients (phenolic compounds and carotenoids), flavour is much more
complex. It relies on the integrated perception of (i) taste, mostly driven by sugars (glucose
and fructose) and organic acids (malate and citrate) and (ii) aroma, with no less than
400 volatile organic compounds (‘VOCs’) identified thus far in tomato [10]. The number of
VOCs supposed to contribute to overall flavour has been cut down to approximately 30 [11].
Most of the VOCs with active aroma in tomato fruits can be classified into distinct groups
depending on the compounds they derive from, namely: (i) fatty acid or lipid derived
(L-der); (ii) branched chain amino acids (BCAA-der) closely linked to (iii) sulfur containing
compounds (S-der); (iv) apocarotenoids (C-der), a small group of irregular terpenoids
derived from carotenoids, sharing part of their precursors with (v) terpenoids (T-der) that
comprise both mono- and sesquiterpenes; (vi) benzenoids (B-der) and (vii) phenylalanine
derivatives (Phe-der), both deriving from the phenylalanine amino acid precursor but
broken down into two distinct metabolic pathways by specialized enzymes [12]. Phenolic
compounds, otherwise called polyphenols or non-volatile phenylpropanoids, mostly derive
from the shikimate pathway as do B-der and Phe-der VOCs. Increasing reports attribute
their antioxidant properties to the prevention of cardiovascular and chronicle diseases in
human [13,14].

The genetic architecture of fruit flavour and nutritional quality has been thoroughly
studied in homozygous plant material such as Introgression Lines (‘ILs’) and Recombinant
Inbred Lines (‘RILs’) derived from biparental populations, or Genome Wide Association
Study (‘GWAS’) panels covering the genetic diversity of a species. Hundreds of QTLs [15–20]
and association signals [11,21–25] have been suggested to control flavour and nutritional
quality-related traits. However, while most tomato varieties are commercialized as HF1,
the impact of the heterozygous state on flavour-related traits has long been overlooked. [25]
performed the first GWAS on a testcross panel to identify associations specific to HF1,
or shared between HF1 and line panels for flavour-related traits. The authors suggested
seven chromosome regions with clusters of associations simultaneously involved in several
key VOCs for tomato aroma, where improvement for flavour-related traits may be more
efficient than QTLs only identified in line panels.

Besides the genetic architecture of such traits, knowing the inheritance of metabolic
content is highly informative for breeders who seek to improve flavour and nutritional
quality in their hybrids and who may exploit QTLs with heterotic effect for these traits.
Likewise, phenotypic differences may arise between reciprocal hybrids given the parental
line chosen as the female/male parent. In tomato, heterosis for metabolite content has
mostly been investigated for primary metabolites such as amino acids, sugars and organic
acids [26–29]. An important additive pattern has been reported for these traits, although
several traits exhibited over-dominant or over-recessive patterns. Among the 26 metabolites
studied in [28], the authors reported that for a given metabolite, the mode of inheritance
changed between crosses and was also variable for the same cross-metabolite but at different
fruit development stages. Negative heterosis has, however, been consistently reported
for amino acids in maize [30,31], in addition to a consistent positive heterosis pattern for
sugars and lipids [31]. More recently, [29] studied a tomato full diallel mating design
gathering five parental lines and their 20 hybrids along with reciprocal hybrids evaluated
on 12 agronomic traits and 28 metabolites (sugars, organic acids and amino acids). They
reported that most metabolites showed positive heterosis in the F1 hybrids, with up to
50% of mean increased content in the hybrids. On the other hand, agronomic traits were
more subjected to additivity. Moreover, the authors reported reciprocal effects for 46%
of the metabolites they assessed, amino acids being over-represented among metabolites
displaying significant difference between reciprocal hybrids. As the mode of inheritance
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of secondary metabolite content hasn’t been investigated in tomato so far, insight from
other species highlights the possibility to exploit heterosis for such traits as well, as shown
for capsaicin in Capsicum anuum [32], or 34 secondary metabolites assessed in a full diallel
mating design gathering seven A. thaliana parental lines [33]. The authors reported a
more pronounced non-additive mode of inheritance for secondary compared to primary
metabolites [33]. On the other hand, a predominant additive mode of inheritance has been
reported for gene expression and protein accumulation in maize [30]. Studies on heterosis
and cross direction effects on metabolite content demonstrate the utmost importance of
considering the right combination and cross direction of parental lines to observe hybrids
transgressing parental values for traits of interest. Yet, the mode of inheritance of VOCs
and phenolics has been overlooked so far.

To take full advantage of the hybrid state for flavour and nutritional quality, the
present study aims at providing knowledge concerning: (i) the mode of inheritance of
tomato metabolite content; (ii) the mode of inheritance of genes underlying metabolite
content; (iii) the possible impact of the cross direction on metabolite content. To reach this
aim, we studied the modes of inheritance of metabolome and transcriptome profiles in
fruit produced following a factorial design comprising six parental lines and their 14 HF1
obtained from four intra- and ten interspecific crosses. We produced five pairs of reciprocal
HF1 to investigate the impact of the genetic cross direction on VOC and phenolic content.
We integrated metabolome and transcriptome datasets through a correlation network
analysis to further characterize the mode of inheritance of differentially expressed genes
correlated to key VOCs and phenolic compounds.

2. Results
2.1. Trait Variation, Correlations and Heritabilities

We assessed fruit weight, SSC and the abundancy of 44 VOCs, 18 polyphenols, two
amino acids and two alkaloids in six lines (two wild ancestor Solanum pimpinellifolium –‘SP’
lines, three SLC and one SL), their four intraspecific HF1 (two SP × SP, two SLC × SLC)
and ten interspecific HF1 (2 SP × SLC, 4 SP × SL, 4 SLC × SL) (Figure 1). The full names
and abbreviations of the traits and secondary metabolites we assessed are presented in
Table S1. Table S1 also indicates which traits and metabolites impact tomato aroma based
on the literature. Eight out of the 68 traits studied showed no significant genotype effect
in the analyses of variance (Table S1). These eight traits also had the lowest broad-sense
heritability values and showed short range of variation between the 14 crosses (Table S1).
For the other traits, heritability values ranged from 0.24 for the carotenoid-derived NERAL
to 0.99 for the alkaloid LYPR, and 50 traits had heritability values higher than 0.4. The
cluster analysis on secondary metabolites and SSC of these 20 genotypes was consistent
with [25,34] studies.
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Figure 1. The six parental lines and 14 F1 hybrids (HF1) studied in the factorial design. Names
are abbreviated to indicate the species the parental lines belong to. HF1 are named after the
“female” × “male” they originate from. ‘*’ indicates that the HF1 was also studied in [25]. Pairs
of reciprocal HF1 are represented in the same color. ‘SP’: S. lycopersicum pimpinellifolium; ‘SLC’: S.
lycopersicum var. cerasiforme; ‘SL’: S. lycopersicum var. lycopersicum.
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To investigate the link between secondary metabolites, SSC and fruit weight, we
calculated correlation coefficients between each pair of traits as illustrated in Figure S1. We
displayed the content of each metabolite (clustered beforehand) in each accession and for
their three replicates (Figure S2) and further validated the cluster analysis (Figure S3). Fruit
weight was positively correlated with phenylalanine, benzenoid and terpenoid-derived
volatiles and showed significant negative correlations with compounds from all other
metabolic pathways (Figure S1). We studied three major classes of secondary metabolites
derived from the aromatic amino acid phenylalanine (PHE), namely polyphenolics, ben-
zenoid VOCs and phenylalanine-derived VOCs. These three classes showed contrasted
correlations between one another. Phenylalanine-derived VOCs associated with consumer
liking had varying correlations with the three classes of polyphenolics studied here and
described in [14]. They clustered together with phenylpropanoids such as TRICAFQ and
CRYPTOCH (Figure S3) and correlation analysis showed significant positive correlation
with these compounds (Figure S1). On the contrary, we found negative correlations be-
tween phenylalanine-derived VOCs and flavones such as NARINCH and flavonols such as
KAEMGR and RUTIN. On the other hand, we found no significant correlations between
benzenoid VOCs negatively correlated to consumer liking and phenylalanine-derived
VOCs, but strong negative correlations between benzenoid VOCs and one of their direct
precursor CAF and flavonols. As for the group of polyphenolics, we identified two main
clusters gathering on the one hand phenylpropanoids, and on the other hand flavones and
flavonols (Figure S3). Phenylpropanoids (resp. flavones and flavonols) exhibited positive
correlations between one another, but no significant correlation to flavones and flavonols
(resp. phenylpropanoids) (Figure S1).

As for carotenoid-derived VOCs positively associated with consumer liking, we iden-
tified distinct clusters. The cyclic apocarotenoids BCYCL and BIONO clustered together
in the cluster analysis (Figure S3) with strong positive correlation (0.82). Linear apoc-
arotenoids 6MHON, GRACE NERAL and GERIAL clustered together in a second cluster
(positive correlations ranging from 0.74 to 0.93), shared with long-chained fatty acid derived
VOCs. BDAM was isolated from the other two apocarotenoid clusters but showed positive
correlations, although weaker, with linear apocarotenoids such as GRACE and 6MHON
(from 0.32 to 0.59).

We identified two major clusters of fatty-acid-derived VOCs that matched those previ-
ously described [25,34]: in the first cluster the C5 PENAL and C7 to C10 lipid-derived VOCs,
while in the second the four C6 lipid-derived volatiles associated with ‘green’/‘grassy’
aroma in addition with 2EFUR, and further though still in the same cluster two C5 and two
C7 fatty acid derived VOCs (Figure S3).

2.2. Modes of Inheritance of Secondary Metabolites and Differences between Reciprocal Hybrids

We analysed the mode of inheritance of secondary metabolites in light of the cluster
they belonged to. The mode of inheritance of VOCs, polyphenolics, SSC and fruit weight
was assessed within crosses with significant differences for these traits. In 56% of the cases
(crosses and traits), no significant differences could be found within crosses. Additivity (‘A’)
was detected in 19% of the cases, then recessiveness (‘R’) and over-recessiveness (‘OR’) (10%
and 8%, respectively) and finally over-dominance (‘OD’) and dominance (‘D’) patterns in
5% and 2% cases, respectively.

We observed transgressions beyond and below parental values for 47 traits relevant to
breeding among which SSC, 23 VOCs impacting tomato overall aroma, and polyphenols
with antioxidant properties. Except for the terpene-derived LIN and the polyphenol
35DICAFQ that we found both OD and OR among the 14 crosses, transgressions were
always of a single type among the 14 crosses for the 47 traits.

Crosses involving SP1 and a parent from a different species displayed the highest
number of significant differences across traits (Figure 2a). When the mode of inheritance
could be assessed, SP1 crosses were mostly found OR or R. Consequently, they were the
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crosses with the highest number of these patterns. Moreover, we often identified consistency
in the mode of inheritance of a given trait between crosses sharing the SP1 parent.
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Figure 2. Overall modes of inheritance per cross for: (a) 66 metabolites, SSC and weight and
(b) 12,896 differentially expressed genes (DEGs). The height and color of the barplot indicate the
number of traits or DEGs with a specific mode of inheritance. Modes of inheritance are classified
as over-recessive (‘OR’), recessive (‘R’), additive (‘A’), dominant (‘D’) or over-dominant (‘OD’) in a
given cross. Traits or DEGs that show no significant difference (‘ns’) between at least two individuals
of the cross (the two parental lines and HF1) are filled in grey.

Only few traits exhibited consistency of their mode of inheritance across the 14 crosses.
Fruit weight was additive for 11 out of 14 crosses, while crosses between SP1 and SP2 led
to over-dominance. Phenylalanine-derived PHENE was additive for eight out of 11 crosses
displaying significant differences, and the polyphenolic RUTIN5O was found additive
in the 11 crosses showing a significant genotype effect for the trait. Crosses involving
SLC2 and SL (SL being the only big-fruited accession) were those with the highest content
in benzenoid and terpenoid-derived volatiles. Looking at the inheritance of benzenoid
VOCs, we found mostly OR to R patterns, with SL highest content in these VOCs always
overridden by the other parent value in the resulting HF1. The benzenoids SALI, GUAIA,
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MESA and EUGEN were mainly found OR to R whichever the cross. Terpenoid-derived
VOCs were OR in every cross that involved SP1 and additive in the other crosses. In
addition, SSC was D to OD when we crossed SL with an SLC.

Apart from the benzenoid and terpenoid-derived VOCs, no clear pattern could be
identified at the metabolic pathway scale. However, when we analysed groups of volatiles
in light of the clustering analysis (Figure S3), specific modes of inheritance appeared
explicitly: first, traits that belong to the same cluster have consistent modes of inheritance
for a given cross; second, except for reciprocal hybrids and crosses involving the SP1 parent,
we hardly identified consistent modes of inheritance from one cross to another, except for
reciprocal crosses.

We split the large family of fatty acid volatiles into two distinct clusters that displayed
distinct modes of inheritance. On the one hand the cluster consisting mostly of C6 lipid-
derived VOCs showed mainly OR to R patterns for SP crosses and no differences for other
crosses. On the other hand, long chain lipid-derived VOCs had OD patterns in crosses
that involved one or two SLC. As in cluster analysis, we found three distinct groups of
carotenoid derived VOCs with specific inheritance patterns: BDAM mode of inheritance
closely matched that of SSC with D to OD patterns in crosses involving parental lines from
different species. When we assessed significant differences, BCYCL and BIONO showed
consistent additivity patterns for a given cross and the remaining linear apocarotenoids
were also mostly additive.

We compared trait values between each of the five pairs of reciprocal HF1. We found
significant differences between reciprocal hybrids for seven metabolites, among which
two VOCs correlated to consumer liking (MESA and BDAM) and three polyphenolics
(NEOCHL, DIFER and 34DICAFQ). Only MESA mode of inheritance changed from “OR”
to “A” between reciprocal crosses with a lower content in MESA when SLC2 was used as a
female rather than a male parent in SLC2 × SL crosses. Otherwise, modes of inheritance
were consistent despite significant differences between reciprocal HF1 values. Although
both crosses gathering SL and SLC2 resulted in OD mode of inheritance for the carotenoid-
derived BDAM positively correlated to consumer liking, we found higher content of the
VOC when SL was used as the female parent. Both polyphenolics NEOCHL and 34DICAFQ
showed higher content when we used SP1 as the female parent in SP1 × SL crosses. The
polyphenolic DIFER displayed higher content in the HF1 with SLC2 as the female parent in
SLC2 × SL crosses.

2.3. Differential Gene Expression between Parental Genotypes and HF1 and Inheritance Patterns of
Gene Expression

To identify genes whose expression is impacted by a genotype effect, we first filtered
genes with low expression between the parental lines and 14 HF1. The quality control
filters kept 13,127 genes. The first two components of the PCA performed on this subset
accounted for 37% of the total variation of these genes (Figure S4). The genotype factor
appeared central to this variation, while no pattern of replicate effect appeared in the
PCA. We then performed a differentially expressed genes (‘DEG’) analysis on the subset of
13,127 genes and worked on all possible comparisons between the 20 genotypes studied
in the factorial design. As a result, 12,896 genes were differentially expressed (‘DE’) in at
least one comparison. Thus, more than 95% of all the genes mapped were DE in at least
one condition. The remaining 231 genes not DE showed no significant enrichment in gene
ontology (‘GO’) terms.

We first looked at the number of DEGs found between the parental lines of each cross
and compared that number to the genetic similarity calculated between parental lines based
on 7442 Illumina SNP markers. While we expected the most genetically distant parental
lines to display the highest number of DEGs, we found three pairs of parental lines that did
not verify that hypothesis (Figure S5). Although SL and SP2 were the most distant parental
(Figure 2b) lines in the factorial design (42% marker similarity), they came third in number
of DEGs. Moreover, contrary to assumptions based on the domestication history of tomato,
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we found that SLC1 and SLC3 were more genetically distant than the wild tomato relative
SP1 and the big-fruited SL. SLC3 and SLC1 were also the two parental lines with the highest
number of DEGs -6966 DEGs-. On the other hand, we found the lowest number of DEGs
between SP1 and SP2 -374 DEGs-, although they shared only 64% of marker similarity. We
observed that the more DEGs we found between parental lines, the higher the number
of metabolites with significant genotype effect within the trio of parental lines and HF1
suggesting that these DEGs drive the trait variation within the trio.

We assessed the mode of inheritance of the 12,896 DEGs. The frequency of each
pattern was close to what we found for metabolic traits. First came no significant expres-
sion difference within crosses (‘ns’, 61%). We then found additivity in 20% of the cases,
over-dominance and over-recessiveness both in 6% of the cases and finally recessiveness
and dominance in 4% and 3% of the cases, respectively. Comparing Figure 2a,b, we ob-
served roughly similar frequencies of modes of inheritance between transcriptome and
metabolome for a given cross. Again, the cross between SP2 and SP1 and its reciprocal
cross showed the lowest number of significant differences in gene expression among the
12,896 DEGs. When found significantly different, these DEGs were mostly over-dominant
or over-recessive while in the other crosses, additivity was the main pattern (Figure 2b) as
was also seen for the metabolome dataset (Figure 2a).

We found differences in gene expression between three out of the five pairs of recip-
rocal HF1, with eight to 15 DEGs found between reciprocal HF1 (Table S2). Among the
30 unique gene IDs, three DEGs (Solyc02g069110- ‘Cathepsin B-like cysteine proteinase’;
Solyc02g071810 – ‘Protein kinase domain’; Solyc03g097700 – ‘O-methyltransferase’) were
commonly found in the contrasts [SL × SP2-SP2 × SL] and [SP1 × SP2-SP2 × SP1] and one
DEG (Solyc03g116930 – ‘Phospholipase-like protein’) was shared between the contrasts
[SL × SP2-SP2 × SL] and [SL × SP1-SP1 × SL].

2.4. Integrating Metabolome and Transcriptome to Identify the Genes Underlying Key Metabolites
Synthesis in Each Metabolic Pathway

To gain insights into the genes related to the synthesis of the metabolites, we con-
structed gene co-expression modules using the matrix of 12,896 DEGs with WGCNA. We
identified 12 co-expression modules, with 39 (green module) to 686 (turquoise module)
genes comprised within each module (Figure 3a). We then assessed the correlations between
each trait and each module eigengene (first principal component of a given module). Only
significant correlations are displayed in Figure 3a. The correlation patterns followed the
metabolite clusters highlighted in Figure S3. Correlations ranged from −0.83 (P_RUTIN5O
- red module) to 0.94 (P_PANTO – salmon module). Metabolites belonging to the same
clusters displayed similar correlations to each module. Likewise, we found back the antag-
onisms highlighted in Figure S1 between metabolites. For instance, we reported negative
correlations between benzenoid VOCs and the two classes of polyphenolics flavones and
flavonols. We found these same antagonisms with the transcriptome dataset with opposite
correlations to the same modules between flavones (NARIN7OG) and flavonols (KAEMGR
- KAEM3RUT) on the one hand, and benzenoid VOCs (EUGEN – GUAIA – MESA – SALI)
on the other hand.

To verify whether modules showed significant enrichment in the different pathways
we studied, we computed GO term enrichments. We found eight co-expression mod-
ules with significant enrichment in GO terms (Table S3). Among them, the blue module
(n = 482 genes) was enriched in several GO terms related to glycosyl transferase activities
(p-value = 3.20 × 10−7 for the most significant) which play key roles in the synthesis of ben-
zenoid VOCs. The module showed the highest positive correlations with benzenoid VOCs
MESA, GUAIA EUGEN and SALI (from 0.42 to 0.66). The turquoise module (n = 686 genes)
was enriched in GO terms related to cellular components, namely ‘photosystem’ and ‘pho-
tosystem I’ (p-value = 4.2 × 10−12 and 4.7 × 10−8, respectively), ‘photosynthetic membrane’
(4.2 × 10−12), the most significant being ‘thylakoid’ (p-value = 2.9 × 10−13). The turquoise
module showed positive correlations with linear apocarotenoids such as 6MHON, GRACE
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or NERAL (0.67, 0.65 and 0.47, respectively). Synthesis of these VOC precursors, among
which lycopene, takes place in the chloroplast and further enzymatic activity depends on
light and photosystems [35]. This co-expression module also exhibited strong positive
correlations with flavones (NARIN7OG, 0.68) and flavonols (KAEM3RUT, 0.69).
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Figure 3. Integration of metabolome and transcriptome datasets by co-expression network analysis.
(a) correlations between co-expression-modules and metabolites with the cloned (italic) and candidate
genes found in co-expression modules significantly enriched in biological function linked to the
synthesis of the metabolites correlated to the module. The number of differentially expressed genes
(DEGs) within each module is indicated in the squares representing modules. Only significant
correlations values are indicated. Positive correlations are indicated in red while negative correlations
are indicated in blue; (b) focus on the mode of inheritance of the four benzenoid-derived VOCs
(‘MESA’: methyl salicylate; ‘SALI’: salicylaldehyde; ‘GUAIA’: guaiacol; ‘EUGEN’: eugenol) in light of
the mode of inheritance of the candidate gene Solyc08g006330 (coding for a glycosyltransferase). We
circled in red the mode of inheritance of three crosses based on consistency between the gene and
VOC modes of inheritance. Modes of inheritance are classified as over-recessive (‘OR’), recessive
(‘R’), additive (‘A’), dominant (‘D’) or over-dominant (‘OD’) in a given cross. Traits or DEGs that
show no significant difference (‘ns’) between at least two individuals of the cross (the two parental
lines and F1 hybrids) are filled in grey.

As part of the integration analysis, correlations were computed between the genes
within each module and the different metabolites. We present in Table S4 the metabolite-
gene significant correlations when the biological function of the gene has previously been
proposed to play a role in the metabolite synthesis. In the turquoise module, we found
the two carotenoid cleavage dioxygenase cloned genes CCD1A and CCD1B correlated
with GRACE and 6MHON (correlation = 0.62 and 0.74, respectively) and 6MHON (0.56),
respectively. For phenolic compounds, we found the cloned gene 4CL, which is annotated
as a ‘4-coumarate:CoA ligase’. This gene catalyses the last step of the overall phenyl-
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propanoid pathway before the pathway is ramified into flavones or non-volatile phenyl-
propanoids [36]. We found strong positive correlations between the gene expression and
seven phenolic compounds (up to 0.9 for CHLOROG, p-value = 5.1 × 10−23). Within this
module, we also identified Solyc01g102950 annotated as a ‘Lycopene beta/epsilon cyclase
protein’ and not yet cloned as a QTL, with a correlation of 0.58 (p-value = 1.01 × 10−6)
with 6MHON. In the blue co-expression module, we identified three glycosyltransferase
genes (Solyc08g006330, Solyc10g079950 and Solyc11g013490) whose expressions were cor-
related to the contents of four benzenoid VOCs (MESA, GUAIA, EUGEN and SALI) for
Solyc08g006330 and Solyc10g079950, while Solyc11g013490 expression was correlated to
three benzenoid VOCs (EUGEN, GUAIA and MESA). We found a negative correlation
between Solyc08g006330 expression and the four benzenoid VOCs (down to −0.66 for SALI,
p-value = 7.03 × 10−9), while the two other genes displayed positive correlations for the
VOCs they were correlated to (up to 0.68 for Solyc08g006330-SALI, p-value = 7.03 × 10−9).
When we looked at the mode of inheritance of the four benzenoid VOCs in light of the mode
of inheritance of Solyc08g006330, we identified consistency (with opposite effect): MESA
exhibited over-recessiveness in three crosses where Solyc08g006330 was over-dominant
(Figure 3b). Figure 4 displays linear regressions of the four benzenoid VOCs according to
Solyc08g006330 expression. The highest the gene expression, the lowest the correspond-
ing metabolite content with coefficients of determination ranging from 0.58 (GUAIA) to
0.83 (EUGEN).
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3. Discussion

Despite the considerable knowledge accumulated over the last 20 years about the
genetic architecture of VOCs and phenolics, breeders still need insight into the improvement
they can expect in HF1 varieties given the right parental combinations for these traits. To
date, most of the efforts towards the characterization of the impact of heterosis and cross
direction have been directed on yield-related traits [37,38] and quality traits [26–28,39]
in tomato. The most exhaustive study addressing the evolution of metabolite content in
HF1 compared to parental lines has been carried out on 28 primary metabolites among
which amino acids, organic acids and sugars [29]. Studying a factorial design comprising
intra, inter and reciprocal crosses, we characterized the modes of inheritance of VOCs
and phenolics compounds and identified candidate genes through integrated analysis
of transcriptome and metabolome datasets. We thus focused the discussion on several
candidate genes and their modes of inheritance. We also investigated maternal effects for
both metabolites and gene expression.

3.1. The Factorial Design as a Prime Plant Material to Study Variation in Metabolites and
Gene Expression

Our experimental design comprised six parental lines and 14 HF1 assessed over
three biological replicates. We found significant genotype effect (p-value < 0.05) for 28
out of 33 VOCs impacting tomato aroma (Table S1) and for all phenolic compounds. We
also assessed high heritabilities when considering the three biological replicates with 17
out of 18 phenolics exhibiting h2 > 0.4 and 20/33 VOCs with h2 > 0.4. These results are
consistent with those reported in [25]. From the metabolic diversity observed within the
trial, we found back metabolic pathways previously identified and support still pending
biological hypotheses as to the origin of several VOCs impacting tomato aroma such as the
carotenoid-derived BDAM or lipid-derived 2EFUR [34].

For the carotenoid-derived VOCs, we found similar results as in [25] where three
distinct clusters appeared for carotenoid-derived VOCs. BDAM, though suggested to
derive from β-carotene [18], didn’t correlate with BCYCL and BIONO in the factorial design.
These two compounds clustered together in Figure S3 and derive from β-carotene [40].
BDAM was isolated from the other two apocarotenoid clusters but showed positive, though
weak, correlations with linear apocarotenoids such as GRACE and 6MHON. This supports
the hypothesis in [34] that BDAM precursor is not β-carotene and that its synthesis depends
on a different mechanism than that described for linear apocarotenoids, as reviewed in [41].
The lipid-derived 2EFUR on the other hand belonged to a cluster gathering C5 and C6
lipid-derived VOCs, as previously found [25,34]. It has been suggested [34] that Z3HEX
may be the precursor of 2EFUR, as the metabolic pathway leading to this VOC hasn’t
been elucidated yet. Considering the wide diversity of phenylalanine derived compounds
that we quantified within this trial, we observed clusters of compounds whose metabolic
pathways are now well known [14,42]. We here provide insight into the correlations at stake
between the different classes of phenylalanine-derived metabolites. Both phenylalanine
and benzenoid VOCs exhibited negative correlations with flavonols such as KAEMGR
and RUTIN, but phenylalanine-derived VOCs were positively correlated to non-volatile
phenylpropanoids (up to 0.52 between CRYPTOCH and PHENE, p-value = 1.85 × 10−5).
These correlation patterns are consistent with the two clusters of phenolics identified with
on the one hand, non-volatile phenylpropanoids and on the other hand, flavones and
flavonols (Figure S3).

To bridge the gap between metabolite content and gene expression, we carried out
RNA-sequencing followed with DEG analysis. From the 13,127 genes that passed the quality
control filters, more than 98% showed significant differential expression between at least
two individuals, the genotype factor being central to the expression variations observed
(Figure S4). We computed a co-expression network analysis between the 12,896 DEGs
and identified 12 different co-expression modules. Two modules exhibited significant
enrichment in biological functions associated with key VOCs and phenolics (Table S3). We
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computed correlations between gene expression and metabolite content and suggested
candidates when their biological function has previously been proposed to play a role in the
metabolite synthesis. Apart from the cloned genes CCD1A, CCD1B and 4CL that participate
to the synthesis of carotenoid-derived VOCs and phenolics, respectively, we also identified
candidates already suggested by [27]. Among the 91 candidate genes correlated to at least
one metabolite, nine were also reported by these authors following GWAS analyses of
line and test cross panels. Moreover, three of them presented a significant cis-regulation
pattern according to an ‘expression GWAS’ performed by [23]. Integrating multi-omics
datasets aims at combining evidence pointing in the same direction to better pinpoint causal
genes. In that respect, we suggest Solyc08g006330 annotated as a ‘UDP-xylose phenolic
glycosyltransferase’ as a candidate gene related to benzenoid VOCs: (i) This gene belongs
to the blue module significantly associated with ‘glycosyltransferase’ terms; (ii) we found
significant negative correlations with the four benzenoid VOCs (GUAIA, MESA, SALI
and EUGEN) whose synthesis depends on glycosyltransferase genes; (iii) this gene was
comprised within the Quantitative Genomic Regions defined by [43] for phenylalanine and
benzenoid VOCs and [25] reported significant association of the gene with BENZA, another
benzenoid VOC; (iv) a significant cis-regulation pattern was reported by [23]. Based on the
negative correlations we reported, further work will be necessary to investigate the possible
conjugation mechanism of benzenoid VOCs underlined by this gene as conjugation of such
compounds prevent their release upon ripening [44].

3.2. Relevance of Metabolite Clusters to Get Better Insight into Their Modes of Inheritance

When considering the whole metabolome dataset for all crosses, additivity was the
major mode of inheritance for metabolite content (19%) once we accounted for not sig-
nificant differences (56%) within crosses. However, the frequency of non-additive modes
of inheritance exceeds that of additive patterns. Predominant non-additive modes of in-
heritance for metabolite content have previously been reported in tomato [26,27,29] or
A. thaliana [33] for instance. In the trial, 47 metabolites (69%) with significant effect on
aroma or impacting nutritional quality exhibited transgressions, being either over-recessive
or over-dominant in the HF1 compared to parental line values. Over-dominance and
over-recessiveness accounted to 15% of the modes of inheritance assessed in the factorial
design. Moreover, when transgressions were observed for a metabolite, 96% were of a
single type for the metabolites here discussed: for a given metabolite, transgressions were
either over-recessive or over-dominant whatever the cross. We hardly found consistency in
the mode of inheritance of a trait across the 14 crosses. Benzenoid SALI, GUAIA, MESA
and EUGEN were mainly found over-recessive or recessive whatever the cross. Fruit
weight was additive in 11 crosses, which is consistent with previous findings reporting no
heterosis for fruit weight in tomato [28,37]. However, we found that both crosses involving
the two SP accessions led to over-dominance. The phenylalanine-derived PHENE and
flavonol RUTIN5O were mostly found additive. Except for these traits, no consistent
pattern appeared among the crosses. We thus looked at the mode of inheritance in light
of the species involved in the 14 crosses. We found that terpenoid-derived VOCs were
over-recessive in every cross that involved SP1 and additive in the other crosses. SSC
was dominant to over-dominant when we crossed SL with an SLC. Finally, we looked at
modes of inheritance based on the metabolic clusters highlighted in Figures S2 and S3.
Strongly correlated volatiles or phenolics exhibited similar modes of inheritance for a given
cross. Rather than whole pathways, considering the inner branching of metabolic pathways
with the example of lipid-derived VOCs or compounds derived from phenylalanine helps
drawing hypotheses as to the mode of inheritance of metabolites. As such, it would be
possible to reduce the number of metabolites quantified to focus on increasing the number
of crosses evaluated to identify potential transgressions of interest. Except for amino acids,
few studies have reported heredity pattern trends for classes of compounds. In maize,
negative heterosis has been reported for most amino acid contents [30,31], which is consis-
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tent with our analysis of the two amino acids phenylalanine and tryptophane found both
recessive and over-recessive.

We assessed the mode of inheritance of the 12,896 DEGs identified within the facto-
rial design. The overall frequencies of the modes of inheritance were close between the
metabolome and DEG datasets. Gene expression was mostly additive (20%) as reported in
maize [30], while other modes of inheritance accounted to 19%. Moreover, the frequencies
of the modes of inheritance between metabolome and DEGs were close for a given cross.
Furthermore, the more DEGs were found between parental lines, the higher the number
of metabolites exhibiting a significant difference at the cross level. As we assumed that
some DEGs drive the metabolome variations, we investigated the mode of inheritance of
candidate genes in light of the mode of inheritance of the metabolite they were correlated to.
If a strong correlation is found between gene expression and metabolite content, breeders
might perform quantitative PCR over the gene of interest or, if a polymorphism is identified
nearby, follow the marker through MAS schemes. We suggested Solyc08g006330 for its
potential role in preventing benzenoid VOC accumulation. When looking at its mode of
inheritance, we found that crosses in which the gene expression was over-dominant were
those where the mode of inheritance of MESA and SALI were over-recessive (Figure 3b).
Moreover, we found that all four benzenoid VOCs showed decreasing content according to
increasing expression of the gene (Figure 4) which further points to the key role this gene
may play in the subsequent synthesis of benzenoid VOCs.

3.3. Consequences and Application for Breeding F1 Tomato Varieties with Improved Flavour and
Nutritional Quality

Knowledge about non-additive modes of inheritance for metabolic content is of the
utmost importance to breeders: as the agronomic value of a variety will always rank first
among breeding program priorities, getting insight into the possible improvement for
flavour and nutritional quality will save time and expenses.

Although several crops such as rice exhibit strong correlation between heterosis
occurrence and genetic distance between parental lines [45,46], we report poor correlation
between them within the factorial design, as did [29] with the full diallel design they
studied for 28 metabolite contents, or [47]. Indeed, the highest number of transgressions
we observed for metabolite content (being over-recessive or over-dominant) was reported
for the cross SLC3 × SP1 (12%) gathering parental lines with 41% marker difference while
we found 7% of transgressions within the SL × SP2 cross gathering the most dissimilar
parental lines (58% dissimilarity). Likewise, SLC3 × SP1 exhibited the highest number
of transgressions for DEG expression in the HF1 (19%). Moreover, the number of DEGs
between parental lines was poorly correlated to their genetic distance. Therefore, we do
not expect more heterosis for metabolite content when crossing genetically distant parental
lines. However, we report several consistent patterns for transgressions in the factorial
design: first, among the 47 metabolites participating in tomato flavour or nutritional quality
and exhibiting transgression in HF1, 45 showed either over-dominance or over-recessive
patterns among the 14 crosses; second, the four benzenoid VOCs negatively correlated to
consumer liking were found over-recessive or recessive in more than 85% of the cases when
significant differences were found. Otherwise, we found additivity. This implies that the
big-fruited parental line SL highest content in these compounds was mostly overridden
by the small-fruited parental lines with lower content of benzenoid VOCs. Thus, crossing
a cherry type and a big-fruited line tomato may result in an aromatic profile close to the
cherry type tomato with lower content in such compounds in the HF1. On the other
hand, we didn’t study crosses involving two big-fruited lines where different patterns
may be observed. To date, numerous transgressions have been reported for tomato non-
volatile metabolite content [26–29]. We extend this knowledge to flavour and nutritional
quality-related compounds, which are the target of improvement programs.

With the five pairs of reciprocal hybrids, we investigated the impact of the cross
direction on metabolite content and gene expression. We report only seven significant
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differences between reciprocal HF1 metabolic content, three of which for VOCs correlated
to consumer liking. We observed an over-recessive mode of inheritance when the cherry
type parent was used as a female in the SLC2 × SL cross and additivity when SL was the
female parent. Choosing SL as the female parent in SL × SLC2 crosses resulted in higher
content in the carotenoid-derived VOC BDAM positively correlated to consumer liking.
Three phenolics also exhibited significant differences and choosing a small-fruited parent
as female instead of the big-fruited SL was more beneficial for increasing the corresponding
metabolite contents. We looked for DEGs between reciprocal hybrids that may drive the
significant differences observed at the metabolic level. First, the lowest number of DEGs
between the contrasts we considered was found for reciprocal HF1 with zero to 15 DEGs
identified. None of these DEGs were correlated to the metabolites displaying significant
differences between reciprocal hybrids. However, three DEGs were consistently found
among several pairs of reciprocal HF1. Though we didn’t correlate them to metabolite
content variation between reciprocal HF1, they may influence other important traits and
thus require further investigation. While 46% of the metabolites [29] investigated displayed
significant variations according to the cross direction, we report such differences for only
10% (7/68) of the metabolites, with only MESA inheritance pattern changing due to this
difference. Thus, we would suggest investing more efforts towards the achievement of
transgressions based on the patterns and the metabolic clusters we highlighted. Cross
direction did not appear to affect VOC and phenolic content as much as it did on amino
acids, sugars and organic acids as reported in [29].

Moreover, since we found consistency in the mode of inheritance of metabolites
belonging to the same clusters, transgressions may be achieved for several compounds
concomitantly. For phenylalanine-, carotenoid- and benzenoid VOCs displaying consistent
correlations to consumer liking within their own metabolic pathway (positive, positive
and negative, respectively), this finding may help breeders reduce the number of VOCs to
target while increasing the number of crosses investigated as, for a given cross, consistent
modes of inheritance and thus increase/decrease of the corresponding metabolites may be
achieved. Finally, as we found positive correlations between phenylalanine-derived VOCs
and phenylpropanoids, improving both flavour and nutritional quality may be achieved
given the identification of common QTLs between the two classes of metabolites, with care-
ful attention to not increase benzenoid VOCs. However, using small-fruited parental lines
may prevent increase of benzenoid compounds, although further investigation is necessary.

4. Materials and Methods
4.1. Plant Material

We studied a factorial design comprising six parental lines and 14 F1 hybrids (HF1).
Among the parental lines, two were tomato wild relatives S. pimpinellifolium –“L. pimpinel-
lifolium atypique, site 10” (‘SP1’) and LA1589 (‘SP2’)-, three were cherry type tomatoes
–Cervil (‘SLC1’), Stupicke Polni Rane (‘SLC2’) and LA1420 (‘SLC3’)- and the last one was
a big-fruited line S. lycopersicum L. var. lycopercisum –Ferum TMV (‘SL’)- also used as a
common tester in GWAS panels in [25]. We produced four intraspecific (two SP × SP and
two SLC × SLC) and ten interspecific HF1 (two SP × SLC, four SP × SL and four SLC × SL
(Figure 1). Although SL and SLC both belong to the S. lycopersicum species, we considered
their HF1 as interspecific to ease the reading. Ten HF1 resulted from five reciprocal crosses:
SP1 × SP2, SL × SP1, SL × SP2, SL × SLC2, SL × SLC3 were studied both ways.

4.2. Growth Conditions and Fruit Sampling

Plants from the factorial design were grown from April to July 2019 in a plastic green-
house under soilless and passive irrigation condition on the experimental site of the seed
company Gautier Semences in Eyragues, France. Five plants per genotype were cultivated.

Three harvests of red ripe fruits, representing three replicates, were conducted during
three consecutive weeks, starting from the 2nd truss for the first harvest and finishing
around the 5th truss for the 3rd harvest. At least ten fruits were harvested from each plot
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and each harvest (up to 30 fruits per harvest for SP accessions). The harvested fruits from
each plot were divided in two pools. With the first pool of fruits, we measured an average
fruit weight (‘weight’) before crushing the fruit pericarps to measure Soluble Solid Content
(‘SSC’ in degree Brix). For the second pool, the pericarp from at least five fruits per plot was
flash frozen in liquid nitrogen, ground to powder with a cryogenic mill, and then stored
at −80 ◦C. The original powder was subsampled into three vials destined to (i) VOCs
profiling; (ii) quantification of polyphenolic compounds; (iii) RNA-seq analysis. Phenotypic
values are available in Table S1.

4.3. VOC Profiling by Gas Chromatography/Mass Spectrometry

Profiling of volatile compounds was performed at the Instituto de Biología Molecular y
Celular de Plantas, at the Universidad Politécnica de Valencia, Spain, following the protocol
described in [25]. A homogenate comprising the three replicates of the 20 genotypes
was injected before and after each batch of the GC-MS as a reference for correction of
instrumental drift and fiber aging, in a daily basis. The abundancy of a given VOC in
a sample was expressed as the ratio between the VOCs in the sample and the amount
detected on that batch in the tomato homogenate.

4.4. Phenolic Compound Quantification via UPLC-DAD-ESI-TQ Analysis

Phenolic compounds were quantified on the Avignon metabolomic platform. All
solvents were analytical or LC/MS grade. Twenty mg of frozen-dried pericarp were
extracted with 1.36 mL of methanol acidified with formic acid (0.1%; v/v). 5 µg of Taxifolin
was added as internal standard. The samples were homogenized with a vortex, placed in
a water bath at 70 ◦C for 10 min. During the treatment, the samples were homogenized
twice with a vortex. Then, 0.44 mL of ultrapure water were added and the extraction was
performed as before. The extract was centrifuged at 5300 rcf for 5 min at 4 ◦C and the
supernatant was filtered through a 0.2 µm membrane and stored at −20 ◦C until analysis.

UPLC was carried out using an Acquity UPLC Class I (Waters, Milford, MA, USA).
Chromatographic separation was achieved on a reversed-phase column, BEH C18 1.7 µm
2.1 × 100 mm, equipped with a guard column (Waters, USA). The mobile phase, consisting
of water with formic acid (0.1%, v/v) (eluent A) and acetonitrile with formic acid (0.1%, v/v)
(eluent B), was pumped at 0.4 mL/min. The following gradient was applied: 0–0.5 min, 2%
B, 0.5–6.5 min, 44.5% B, 6.5–7.5 min, 100% B, 7.5–9 min, 100% B. Then the concentration of
B decreased to 2% and the column was equilibrated before the next injection (total run time
10 min). The column temperature was kept at 35◦C and the samples at 10 ◦C. 1 µL was
injected. The system was controlled by MassLynx version 1.2 (Waters, Milford, MA, USA).
The UPLC system was coupled with a triple quadrupole mass spectrophotometer TQ-XS
XEVO (Waters, Milford, MA, USA) working with an electrospray source (ESI) at 150 ◦C in
negative ion mode. Mass acquisitions were performed in scan mode and MRM mode. The
MassLynx software controlled the MS analyser. We quantified 20 polyphenolic compounds
in addition to two alkaloids as part of the untargeted analysis. Major metabolites were
identified according to their MS/MS data with pure standard. Other compounds were
identified by comparing their MS/MS data with published data. UPLC-DAD-ESI-TQ data
were processed with the TargetLynx software (Waters, USA) to integrate peaks in MRM
mode. Results were expressed in area of peak per gram of fresh matter.

4.5. RNA Extraction

We performed RNA extraction on the three biological replicates obtained from pools of
ripe tomato pericarp. For each sample, total RNA was extracted using the “Spectrum Plant
Total RNA” Kit (Sigma-Aldrich, St. Louis, MO, USA) following the manufacturer’s protocol
and treated for 15 mn at 20 ◦C with “On Column DNAse Digestion Set” (Sigma-Aldrich) to
remove genomic DNA traces. After extractions, RNA purity was assessed on Nanodrop
1000 (Thermo Fischer Scientific, Waltham, MA, USA); all ratios (A260/280 and A260/230)
were comprised between 1.8 and 2.2. RNA integrity was assessed on Bioanalyzer 2100
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(Agilent, Santa Clara, CA, USA) using RNA Nano 6000 kit; all RNA integrity numbers
(RIN) were between 7.7 and 9.2 and samples were not degraded. RNA concentration was
assessed on Qubit 3.0 Fluorometer (Thermo Fischer Scientific, USA) using Qubit RNA
Broad Range Assay Kit.

4.6. RNA Sequencing, Data Processing and Analysis

Library construction and sequencing (100 bp paired-end strand) of the 60 samples
were subcontracted to BGI Genomics. The minimal, maximal, and average amounts
of raw sequencing data per sample were estimated to be 2.05 × 109 bp, 2.72 × 109 bp
and 2.54 × 109 bp, respectively. Raw sequencing data quality was assessed using FASTQC
v.0.11.8 software [48] and aggregated with MULTIQC v.1.7 [49]. Sequences were trimmed us-
ing FASTP v.0.20.0 [50]. On average, cleaning steps removed 4.03% of the data (min = 4.02%,
max = 4.04%). Remaining data were aligned onto the tomato reference genome (Heinz
1706, v.4.0.0 available on https://solgenomics.net (accessed on 27 April 2022)) and raw
read counts per gene were generated for each library using STAR v.2.7.3 with two passes
and providing the tomato gene model (annotation v4.0) to support the mapping pro-
cess. Alignments were filtered to keep only concordantly mapped reads using SAMtools
v.1.9 [51].

On average, 95.8% of read pairs were uniquely mapped per library (min = 91.7%,
max = 96.72%) and 2.1% multi-mapped (min = 1.6%, max = 5.4%). We filtered out genes
mapping on chromosome 0 and performed quality control, read count normalization and
sampling of genes expressed in the experiment using the workspace DiCoExpress with
recommended parameters [52]. A total of 13,127 genes remained after the quality control
procedure (39% of all detected genes). We performed the DEG analysis on this subset using
the workspace DiCoExpress with recommended parameters. After normalization, a princi-
pal component analysis (PCA) was performed to assess the diversity of the transcriptome
data in the 6 lines and 14 F1 hybrids. Then DEGs were detected for all possible contrasts
-190- between the 14 HF1 and six parental lines using the edgeR package: first, we detected
genes with significant expression differences between the 20 genotypes; second, we identi-
fied genes with significant expression differences between the five pairs of reciprocal F1
hybrids. The p-values were corrected for multiple comparisons using the false discovery
rate [53] using a global threshold of 0.05. For further explanations, we refer to the manual
of DiCoExpress.

4.7. Data Processing and Statistics

We used the R software v.3.6.2 [54] to perform statistical analyses and data pro-
cessing. We first performed a fixed effect analysis of variance with the car package on
the 66 secondary metabolites, SSC and fruit weight to test for genotype effect with the
following model:

yij = µ + gi + rj + εij, (1)

where yij is the trait value of genotype i in harvest j, µ is the intercept, gi and rj represent
the fixed effects of the genotype and the harvest, respectively, and εij the residual effect.
Broad-sense heritability (h2) was then computed for every trait with the lme4 package by
using the following linear mixed model:

yij = µ + gi + rj + εij, (2)

where yij is the trait value of genotype i in harvest j, µ is the intercept, gi the random
effect of genotype i, rj the fixed effect of harvest j, and εij the random residual effect. Then
heritability was derived from the variance components of the model as:

h2 = σG
2
/(σG

2
+ σe

2), (3)

where σG
2 and σe

2 are the genetic and residual variance, respectively.

https://solgenomics.net
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We computed pairwise non-parametric Spearman’s rank correlation coefficients be-
tween the 68 scaled traits. We represented significant pairwise correlations using a
0.05 p-value threshold with the R packages corrplot and the ‘hclust’ clustering method.

Metabolomic profiles from each biological replicate were produced with the R pack-
ages ComplexHeatmap and dendextend on scaled datasets. Clusters for metabolites and
accession profiles were produced with the R package hclust and the ‘average’ method on
scaled dataset. Metabolic clusters were further validated with the pvclust R package based
on ‘Euclidean’ distance, ‘average’ method, and n = 1000 bootstrap replications as explained
in [25].

4.8. Trait and Gene Inheritance Mode

We compared the values of the 14 HF1 to their respective parent values for every trait
to decipher trait inheritance pattern. Likewise, we compared candidate gene expression
levels within each cross to assess gene inheritance. We first computed a one-way ANOVA
to assess the genotype effect of gene and trait variation within each cross. For significant
tests (p < 0.05), we estimated additive (A) and dominance (D) components of the genetic
variation as described in [28]. Fruit weight, SSC, secondary metabolite and gene inheritance
modes were thus classified as over-recessive (OR; D/A < −1.2), recessive (R; −1.2 ≤ D/A
≤ −0.8), additive (A; −0.8 < D/A < 0.8), dominant (D; 0.8 ≤ D/A ≤ 1.2), or over-dominant
(OD; D/A > 1.2) in a given cross depending on the D/A ratio. We classified the trait or
gene inheritance as ‘ns’ when no significant genotype effect was found within a cross.

4.9. Identifying Maternal Effects for Traits and Genes

We computed Student’s t-Tests for each pair of reciprocal hybrids and each trait to
identify maternal effects driving trait variation with a 0.05 p-value threshold. Maternal
effects for gene expression were identified with the DiCoExpress pipeline, where each of the
five pairs of reciprocal hybrid expression were compared.

5. Conclusions

The present analysis provides a detailed characterization of the modes of inheritance
of tomato fruit volatiles and phenolics within 20 HF1 and their six parental lines covering a
wide range of genetic variation. We report several conclusions that may help flavour and
nutritional quality improvement in tomato modern varieties. First, we highlighted patterns
in the mode of inheritance of metabolites: (i) transgressions were mostly of a single type
for a metabolite whichever the cross; (ii) modes of inheritance were scarcely consistent for
a metabolite between the 14 crosses, except for terpenoid-derived VOCs and benzenoid
VOCs; (iii) metabolites belonging to the same cluster displayed similar modes of inheritance
for a given cross. Knowing these patterns and focusing on key compounds where non-
additive patterns may be exploited, breeders may screen their hybrids for the combination
of alleles needed (i) in F1 hybrids outperforming their parents for the metabolites they are
interested in; (ii) at markers associated to the metabolites in previous GWAS and linkage
mapping analyses.

The co-expression network we build using the DEGs, followed by correlation anal-
ysis with metabolites, provided information on candidate genes that might be targets
for improving metabolite contents. Future perspectives lie in confirming these results by
studying a larger experimental design where an expression GWAS combined with GWAS
for metabolite content may further link the correlations herein highlighted between tran-
scriptome and metabolome, in addition to identifying causal polymorphisms to be used
in MAS: as a medium-term objective, the expensive quantification of VOCs that cannot
be assessed routinely in a breeding program could be avoided with the development of
efficient markers to screen in breeding material.
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