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Abstract

We provide a comprehensive survey of splitting and composition
methods for the numerical integration of ordinary differential equations
(ODEs). Splitting methods constitute an appropriate choice when the
vector field associated with the ODE can be decomposed into several
pieces and each of them is integrable. This class of integrators are
explicit, simple to implement and preserve structural properties of the
system. In consequence, they are specially useful in geometric numerical
integration. In addition, the numerical solution obtained by splitting
schemes can be seen as the exact solution to a perturbed system of ODEs
possessing the same geometric properties as the original system. This
backward error interpretation has direct implications for the qualitative
behavior of the numerical solution as well as for the error propagation
along time. Closely connected with splitting integrators are composition
methods. We analyze the order conditions required by a method to
achieve a given order and summarize the different families of schemes
one can find in the literature. Finally, we illustrate the main features of
splitting and composition methods on several numerical examples arising
from applications.

1 Introduction by examples

The basic idea of splitting methods for the time integration of ordinary
differential equations (ODEs) can be formulated as follows. Given the initial
value problem

x′ = f(x), x0 = x(0) ∈ RD (1)
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with f : RD −→ RD and solution ϕt(x0), let us suppose that f can be expressed
as f =

∑m
i=1 f

[i] for certain functions f [i] : RD −→ RD, in such a way that the
equations

x′ = f [i](x), x0 = x(0) ∈ RD, i = 1, . . . ,m (2)

can be integrated exactly, with solutions x(h) = ϕ
[i]
h (x0) at t = h, the time step.

Then, by combining these solutions as

χh = ϕ
[m]
h ◦ · · · ◦ ϕ[2]

h ◦ ϕ[1]
h (3)

and expanding χ into Taylor series, one finds that χh(x0) = ϕh(x0) + O(h2), so
that χh provides a first-order approximation to the exact solution. As we will
see, it is possible to get higher order approximations by introducing more maps

with additional coefficients, ϕ
[i]
aijh, in the previous composition (3).

One thus may say that splitting methods involve three steps: (i) choosing
the set of functions f [i] such that f =

∑
i f

[i]; (ii) solving either exactly or
approximately each equation x′ = f [i](x); and (iii) combining these solutions
to construct an approximation for (1). One obvious requirement is that the
equations x′ = f [i](x) should be simpler to integrate than the original system.

Some of the advantages that splitting methods possess can be summarized
as follows:

• They are usually simple to implement.

• They are, in general, explicit.

• Their storage requirements are quite modest. The algorithms are
sequential and the solutions at intermediate stages are stored in the
solution vectors. This property can be of great interest when they are
applied to partial differential equations (PDEs) previously semidiscretized.

• There exist in the literature a large number of specific methods tailored
for different structures.

• They preserve structural properties of the exact solution, thus conferring
to the numerical scheme a qualitative superiority with respect to
other standard integrators, especially when long time intervals are
considered. Examples of these structural features are symplecticity,
volume preservation, time-symmetry and conservation of first integrals.
In this sense, splitting methods constitute an important class of geometric
numerical integrators.

Let us give more details on this last item. Traditionally, the goal of numerical
integration of ODEs consists in computing the solution to the initial value
problem (1) at time tN = Nh with a global error ‖xN − x(tN )‖ smaller than
a prescribed tolerance and as efficiently as possible. To do that one chooses
the class of method (one-step, multistep, extrapolation, etc.), the order (fixed
or adaptive) and the time step (constant or variable). In contrast, with a
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geometric numerical integrator one typically fix a (not necessarily small) time
step and compute solutions for very long times for several initial conditions, in
order to get an approximate phase portrait of the system. It turns out that,
although the global error of each trajectory may be large, the phase portrait is
in some sense close to that of the original system.

The aim of geometric numerical integration is thus to reproduce the
qualitative features of the solution of the differential equation which is being
discretised, in particular its geometric properties [17, 41]. The motivation
for developing such structure-preserving algorithms arises independently in
areas of research as diverse as celestial mechanics, molecular dynamics, control
theory, particle accelerators physics, and numerical analysis [41, 44, 57, 58, 49].
Although diverse, the systems appearing in these areas have one important
common feature. They all preserve some underlying geometric structure which
influences the qualitative nature of the phenomena they produce. In the
field of geometric numerical integration these properties are built into the
numerical method, which gives the method an improved qualitative behaviour,
but also allows for a significantly more accurate long-time integration than with
general-purpose methods. In addition to the construction of new numerical
algorithms, an important aspect of geometric integration is the explanation of
the relationship between preservation of the geometric properties of the scheme
and the observed favorable error propagation in long-time integration.

Before proceeding further, let us introduce at this point some splitting
methods and illustrate them on simple examples.

Example 1: Symplectic Euler and leapfrog schemes. Suppose we have
a Hamiltonian system of the form H(q, p) = T (p) + V (q), where q ∈ Rd are
the canonical coordinates, p ∈ Rd are the conjugate momenta, T represents the
kinetic energy and V is the potential energy. Then the equations of motion read
[36]

q′ = Tp(p), p′ = −Vq(q), (4)

where Tp and Vq denote the vectors of partial derivatives. Equations (4) can be
formulated as (1) with x = (q, p)T , f(x) = (Tp,−Vq)

T = J∇H(x) and D = 2d.
Here J denotes the 2d× 2d canonical symplectic matrix

J =

(
0 Id

−Id 0

)

and Id stands for the d-dimensional identity matrix. In this case the exact flow
ϕt is symplectic [1]. The simple Euler method applied to this system provides
the following first order approximation for a time step h:

qn+1 = qn + hTp(pn)
pn+1 = pn − hVq(qn).

(5)

On the other hand, if we consider H as the sum of two Hamiltonians, the first
one depending only on p and the second only on q, the corresponding Hamilton
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equations

q′ = Tp(p)
p′ = 0

and
q′ = 0
p′ = −Vq(q)

(6)

with initial condition (q0, p0) can be readily solved to yield

ϕ
[T ]
t :

q(t) = q0 + t Tp(p0)
p(t) = p0

and ϕ
[V ]
t :

q(t) = q0
p(t) = p0 − t Vq(q0),

(7)

respectively. Composing the time t = h flow ϕ
[V ]
h (from initial condition (qn, pn))

followed by ϕ
[T ]
h , gives the scheme

χh ≡ ϕ
[T ]
h ◦ ϕ[V ]

h :
pn+1 = pn − hVq(qn)
qn+1 = qn + hTp(pn+1).

(8)

Since it is a composition of the flows of two Hamiltonian systems and in addition
the composition of symplectic maps is again symplectic, χh is a symplectic
integrator, which can be called appropriately the symplectic Euler method. It is

of course also possible to compose the maps in the opposite order, ϕ
[V ]
h ◦ ϕ[T ]

h ,
thus obtaining another first order symplectic Euler scheme:

χ∗h ≡ ϕ
[V ]
h ◦ ϕ[T ]

h :
qn+1 = qn + hTp(pn)
pn+1 = pn − hVq(qn+1).

(9)

One says that (9) is the adjoint of χh. Yet another possibility consists in using
a ‘symmetric’ version

S
[2]
h ≡ ϕ

[V ]
h/2 ◦ ϕ

[T ]
h ◦ ϕ[V ]

h/2, (10)

which is known as the Strang splitting [77], the leapfrog or the Störmer–
Verlet method [85], depending on the context where it is used. Observe that

S
[2]
h = χh/2 ◦ χ∗h/2 and it is also symplectic and second order.

Example 2: Harmonic oscillator. Let us consider now the Hamiltonian
function H(q, p) = 1

2 (p2 + q2), where now q, p ∈ R. Then the corresponding
equations (4) are linear and can be written as

x′ ≡
(
q′

p′

)
=
[(

0 1
0 0

)
︸ ︷︷ ︸

A

+

(
0 0
−1 0

)
︸ ︷︷ ︸

B

](
q
p

)
= (A+B)x. (11)

This system has periodic solutions for which the energy H is conserved. In
addition, it is area preserving and time reversible. The numerical solution
obtained by the Euler scheme (5) reads(

qn+1

pn+1

)
=

(
1 h
−h 1

) (
qn
pn

)
, (12)
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whereas the symplectic Euler method (9) leads to(
qn+1

pn+1

)
=

(
1 h
−h 1− h2

) (
qn
pn

)
= ehBehA

(
qn
pn

)
. (13)

Both render first order approximations to the exact solution, which can be
expressed as x(t) = eh(A+B)x0, but there are important differences between
them. First, the map (13) is area preserving (because it is symplectic), in
contrast with (12). Second, the approximation obtained by the symplectic Euler
scheme verifies

1

2
(p2

n+1 + hpn+1qn+1 + q2n+1) =
1

2
(p2

n + hpnqn + q2n).

Third, it can be shown that (13) is the exact solution at t = h of the perturbed
Hamiltonian system

H̃(q, p, h) =
2 arcsin(h/2)

h
√

4− h2
(p2 + h p q + q2) (14)

=
1

2
(p2 + q2) + h

(
1

2
p q +

1

12
h(p2 + q2) + · · ·

)
.

In other words, the numerical approximation (13), which is only of first order
for the exact trajectories of the Hamiltonian H(q, p) = 1

2 (p2 + q2), is in fact the
exact solution of the perturbed Hamiltonian (14).

How these features manifest in actual simulations? To illustrate this point
we take initial conditions (q0, p0) = (4, 0) and integrate with a time step h = 0.1.
Figure 1 shows the first five numerical approximations obtained by the Euler
method (12) and the symplectic Euler scheme (13) in the left panel, and the
results for the first 100 steps in the right panel. It is clear that for one time
step there are not significant differences between the standard Euler and the
symplectic Euler methods, but the picture is completely different for longer
integrations, where the superiority of the splitting symplectic method is evident.
Note that the numerical solution it provides evolves on a slightly perturbed
ellipse.

Example 3: The 2-body problem (Kepler problem). The motion of two
bodies attracting each other through the gravitational law can be described by

q′′i = − qi
(q21 + q22)3/2

, i = 1, 2 (15)

in conveniently normalized coordinates in the plane of motion. This system has
a number of characteristic geometric properties. First, equations (15) can be
derived from the Hamiltonian function

H(q, p) = T (p) + V (q) =
1

2
(p2

1 + p2
2)−

1

r
, r =

√
q21 + q22 . (16)
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Figure 1: Numerical integration of the harmonic oscillator using the Euler
method (white circles) and the symplectic Euler method (black circles) with
initial condition (q0, p0) = (4, 0) and time step h = 1

10 . The left panel shows
the results for the first 5 steps, whereas the right panel shows the results for the
first 100 steps. The exact solution corresponds to the solid line.

Second, it is invariant under continuous translations in time and rotations
in space, and thus both the Hamiltonian and the angular momentum L =
q1p2−q2p1 are preserved. In addition, the so-called Laplace–Runge–Lenz vector
is also constant along their solutions, due to the fact that the symmetry group
of this problem is the group of four-dimensional real proper rotations SO(4)
[36].

For the numerical integration of this problem we choose as initial value

q1(0) = 1− e, q2(0) = 0, p1(0) = 0, p2(0) =

√
1 + e

1− e , (17)

where 0 ≤ e < 1 represents the eccentricity of the orbit. In this case the total
energy is H = H0 = −1/2, the period of the solution is 2π, the initial condition
corresponds to the pericenter and the major semiaxis of the ellipse is 1.

Figure 2 shows some numerical solutions obtained with schemes (5) and (8)
for the initial conditions (17) with eccentricity e = 0.6. The left panel shows
the results for the integration of 3 periods with time step h = 1

100 . As in
the previous example, the explicit Euler method provides an approximate orbit
that spirals outwards, whereas the symplectic Euler scheme merely distorts the
ellipse, but also exhibits a precession effect. To better illustrate this effect,
we repeat the experiment for a longer interval (15 periods) and a larger time
step (h = 1

20 ) in the right panel. The explanation of these phenomena can be
formulated as follows. On the one hand, the symplectic Euler method exactly
conserves the angular momentum. On the other hand, the numerical solution
it provides can be seen as the exact solution of a slightly perturbed Kepler
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problem, and thus SO(4) is no longer the symmetry group of the problem, so
that the Laplace–Runge–Lenz vector is not preserved and the trajectories are
not closed anymore.
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Figure 2: Numerical integration of the 2-body problem using the Euler method
(white circles) and the symplectic Euper scheme (black circles) for the initial
conditions (17) with eccentricity e = 0.6. The left panel shows the results for
h = 1

100 and the first 3 periods and the right panel shows the results for h = 1
20

and the first 15 periods.

Next we check how the error in the preservation of energy and the global
error in position propagates with time. For comparison, we also include the
results obtained with a Runge–Kutta method of order 2 (Heun’s method) and
the leapfrog scheme (10). We now consider e = 1/5 and integrate for 500
periods. The step size is h = 2π

1500 in all cases, except for the Heun method
which uses h = 2π

750 instead. In this way all methods require the same number
of force evaluations (Heun’s method computes twice the force per step). The
corresponding results are shown in Figure 3 in a log-log scale. Notice that the
average error in energy does not grow for the split symplectic methods and
the error in positions grows only linearly with time, in contrast with Euler and
Heun schemes. The Störmer–Verlet integrator provides more accurate results
than the Heun method with the same computational cost.

A collection of (additional) examples. Splitting methods constitute an
important tool in different areas of science. In addition to Hamiltonian
systems, they can be successfully applied in the numerical study of Poisson
systems, systems possessing integrals of the motion (such as energy and
angular momentum) and systems with (continuous, discrete and time-reversal)
symmetries. As a matter of fact, splitting methods have been designed (often
independently) and extensively used in fields as distant as molecular dynamics,
simulation of storage rings in particle accelerators, celestial mechanics and
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Figure 3: Error growth in energy and position for the Kepler problem with
e = 1/5 and 500 periods achieved by the first order symplectic Euler (EulerSI)
and the second order Störmer–Verlet integrator (SI2). For comparison, we also
include the first order Euler and the second order Heun (RK2) methods. The
time step is adjusted in such a way that all methods use 1500 force evaluations
per period.

quantum physics simulations. To see why this is so, next we collect a number of
differential equations which appear in different contexts ranging from Celestial
Mechanics to electromagnetism and Quantum Mechanics. These examples also
try to illustrate the fact that very often one particular equation can be split
into different ways and the most appropriate methods may depend on the split
chosen.

We (arbitrarily) classify our examples into three different categories.

1. Hamiltonian systems.

(a) Generalized harmonic oscillator (M,N ∈ Rd×d):

H =
1

2
pTMp+

1

2
qTNq. (18)

(b) Hénon–Heiles Hamiltonian [43]:

H =
1

2
(p2

1 + p2
2) +

1

2
(q21 + q22) + q21q2 −

1

3
q32 . (19)

(c) Perturbed Kepler problem. It models the dynamics of a satellite
moving into the gravitational field produced by a slightly oblate
planet:

H =
1

2
(p2

1 + p2
2)−

1

r
− ε

2r3

(
1− 3q21

r2

)
(20)

where ε is typically a small parameter. When ε = 0, the 2-body
problem (16) is recovered.
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(d) The gravitational N -body problem (qi, pi ∈ R3, i = 1, . . . , N):

H =
1

2

N∑
i=1

1

2mi
pT

i pi −G
N∑

i=2

i−1∑
j=1

mimj

‖qi − qj‖ . (21)

(e) The motion of a charged particle in a constant magnetic field
perturbed by k electrostatic plane waves [21]:

H(q, p, t) =
1

2
p2 +

1

2
q2 + ε

k∑
i=1

cos(q − ωit). (22)

2. More general dynamical systems.

(a) The Volterra–Lotka problem [41],

d

dt

[
u
v

]
=

[ −2 0
0 1

] [
u
v

]
+

[
uv

−uv
]

=

[
u(v − 2)

0

]
+

[
0

v(1− u)
]
,

(23)
with first integral I(u, v) = log u− u+ 2 log v − v.

(b) The Lorenz system [52, 39] (split into linear and non-linear parts):

d

dt

⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ −σ σ 0

r −1 0
0 0 b

⎤
⎦
⎡
⎣ x
y
z

⎤
⎦+

⎡
⎣ 0 0 0

0 0 −x
0 x 0

⎤
⎦
⎡
⎣ x
y
z

⎤
⎦ .
(24)

Here σ, r, b > 0 are constant. The values considered in [52] were
σ = 10, r = 28 and b = 8/3.

(c) The ABC-flow (f = fA + fB + fC , but other splits are also possible
[57]):

d

dt
(x, y, z) = A(0, sinx, cosx) +B(cos y, 0, sin y) + C(sin z, cos z, 0).

(25)

3. Evolutionary PDEs.

Although we are mainly concerned here with splitting methods applied to
ODEs, it turns out that they can also be used in the numerical integration
of certain partial differential equations. Specifically, a number of PDEs
relevant in the applications, after an appropriate space discretization, lead
to a system of ODEs which can be subsequently solved numerically by
splitting methods. Among these equations, the following are worth to be
mentioned.

(a) The Schrödinger equation (� = 1):

i
∂

∂t
Ψ(x, t) =

(
− 1

2m
∇2 + V (x)

)
Ψ(x, t). (26)
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(b) The Gross–Pitaevskii equation [68]:

i
∂

∂t
Ψ(x, t) =

(
− 1

2m
∇2 + V (x) + α|Ψ(x, t)|2

)
Ψ(x, t) (27)

(c) The Maxwell equations

∂

∂t
B = − 1

μ
∇×E,

∂

∂t
E =

1

ε
∇×B, (28)

where E(x, t), B(x, t) are the electric and magnetic field vectors, μ(x)
is the the permeability and ε(x) is the permittivity.

As we stated before, splitting methods form a subclass of geometric numerical
integrators for various types of ODEs. The reason is easy to grasp from the
examples analyzed before. Suppose that the flow of the original differential
equation (1) forms a particular group of diffeomorphisms (in the case of
Hamiltonian system, the group of symplectic maps). If f is conveniently split
as f =

∑
i f

[i] (step (i) in the construction process of a splitting scheme)
and the flows corresponding to each f [i] also belong to the same group of
diffeomorphisms in such a way that they can be explicitly obtained (step (ii)),
then, by composing these flows (step (iii)) we get an approximation in the group,
thus inheriting geometric properties of the exact solution. These considerations
also hold (with some modifications) when the exact flow forms a semigroup or
a symmetric space.

With respect to steps (i) and (ii) before, several comments are in order.
First, whereas for certain classes of ODEs, the splitting can be constructed
systematically for any f , in other cases no general procedure is known, and
thus one has to proceed on a case by case basis. Second, sometimes a standard
splitting is possible for a certain f , but there exist other possible choices leading
to more efficient schemes (we will see some examples in section 8). Third,
whereas the original system possesses several geometric properties which are
interesting to preserve by the numerical scheme, different splittings preserve
different properties and it is not always possible to find one splitting preserving
all of them. These aspects have been analyzed in detail in [57], where a
classification of ODEs and general guidelines to find suitable splittings in each
case is provided. Here, by contrast, we will concentrate on the third step of any
splitting method: given a particular splitting, we will show how to combine the
flows of the pieces f [i] to get efficient higher order approximations. In any case,
the reader is referred to the excellent review paper [57] and the monographs
[41, 49], where these and other issues, mainly in connection with geometric
numerical integration, are thoroughly examined.
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2 Splitting and composition methods

2.1 Increasing the order of an integrator by composition

It is well known that numerical integrators of arbitrarily high order can be
obtained by composition of a basic integrator of low order. Consider for instance
the leapfrog scheme (10), which is a second-order integrator S[2] : R2d → R2d.
Then, a 4th order integrator S[4] : R2d → R2d can be obtained as

S
[4]
h = S

[2]
αh ◦ S

[2]
βh ◦ S

[2]
αh, with α =

1

2− 21/3
, β = 1− 2α. (29)

More generally, if one recursively defines S[2k+2] : R2d → R2d for k = 1, 2, . . . as

S
[2k+2]
h = S

[2k]
αh ◦ S

[2k]
βh ◦ S

[2k]
αh , (30)

with

α =
1

2− 21/(2k+1)
, β = 1− 2α, (31)

then the schemes S
[2k]
h are of order 2k (k ≥ 1) [78, 88]. We will prove later

on this assertion. At this point it is useful to introduce the notion of adjoint
of a given integrator ψh [73]. By definition, this is the method ψ∗h such that
ψ∗h = ψ−1

−h. A method that is equal to its own adjoint is called self-adjoint or
(time-)symmetric. In this case, ψ−h ◦ ψh = id. Since the leapfrog scheme (10)
can be rewritten as

S
[2]
h = χh/2 ◦ χ∗h/2, (32)

where χh is the symplectic Euler method (8), then S
[2]
h is certainly time-

symmetric. Actually, given any basic first order integrator χh : RD → RD for
the ODE system (1), the composition (32) is a time-symmetric method of order
2, and the other way around: any self-adjoint second order integrator can be

expressed as (32). Furthermore, the integrators S
[2k]
h (k = 1, 2, . . .) recursively

defined by (30)–(31) are time-symmetric methods of order 2k. In particular, if
f(x) in the ODE (1) is split as

f(x) =

m∑
i=1

f [i](x) (33)

then, time-symmetric integrators S
[2k]
h of order 2k can be constructed in this

way by considering the basic first order integrator

χh = ϕ
[m]
h ◦ · · · ◦ ϕ[2]

h ◦ ϕ[1]
h (34)

and its adjoint

χ∗h = χ−1
−h = ϕ

[1]
h ◦ ϕ[2]

h ◦ · · · ◦ ϕ[m]
h .

This general procedure of constructing geometric integrators of arbitrarily high
order, although simple, presents some drawbacks. In particular, the resulting
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methods require a large number of evaluations and usually have large truncation
errors.

As we will show, efficient schemes can be built by considering more general

composition integrators. First observe that the (2k)th order integrators S
[2k]
h

can be rewritten in the form

ψh = χα2sh ◦ χ∗α2s−1h ◦ · · · ◦ χα2h ◦ χ∗α1h (35)

with s = 3k−1 and some fixed coefficients (α1, . . . , α2s) ∈ R2s. Then the idea is
to consider composition integrators of the form (35) with appropriately chosen
coefficients (α1, . . . , α2s) ∈ R2s.

In the particular case where the ODE (1) is split in two parts f = f [a] + f [b]

and χh = ϕ
[b]
h ◦ϕ[a]

h , one can trivially check that the composition integrator (35)
can be rewritten as

ψh = ϕ
[b]
bs+1h ◦ ϕ[a]

ash ◦ ϕ[b]
bsh ◦ · · · ◦ ϕ[b]

b2h ◦ ϕ[a]
a1h ◦ ϕ[b]

b1h, (36)

where b1 = α1 and for j = 1, . . . , s,

aj = α2j−1 + α2j , bj+1 = α2j + α2j+1 (37)

(with α2s+1 = 0). Conversely, any integrator of the form (36) satisfying that∑s
i=1 ai =

∑s+1
i=1 bi can be expressed in the form (35) with χh = ϕ

[b]
h ◦ ϕ[a]

h . For
later reference, we state the following result, due to McLachlan [54].

Theorem 1 The integrator (36) is of order r for ODEs of the form (1) with
f : RD −→ RD arbitrarily split as f = f [a]+f [b] if and only if the integrator (35)
(with coefficients αj obtained from (37)) is of order r for arbitrary consistent
integrators χh.

2.2 Integrators and series of differential operators

Before proceeding further with the analysis, let us relate generic numerical
integrators with formal series of differential equations. This relationship will
allow one to formulate in a rather simple way the conditions to be satisfied by
an integration scheme to achieve a given order of consistency.

First of all, let us recall that an integrator ψh : RD → RD for the system
(1) is said to be of order r if for all x ∈ RD

ψh(x) = ϕh(x) + O(hr+1) (38)

as h→ 0, where ϕh is the h-flow of the ODE (1).
It is well known that, for any smooth function g : RD → R, it formally holds

that [66]

g(ϕh(x)) = g(x) +
∑
n≥1

1

n!
Fn[g](x) = exp(hF )[g](x),
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where F is the Lie derivative associated to the ODE system (1), i.e., the first
order linear differential operator F acting on functions in C∞(RD,R) as follows.
For each g ∈ C∞(RD,R) and each x = (x1, . . . , xD) ∈ RD

F [g](x) =

D∑
j=1

fj(x)
∂g

∂xj
(x), (39)

where f(x) = (f1(x), . . . , fD(x))T . Motivated by this fact, we consider for a
basic integrator χh : RD → RD, the linear differential operators Xn (n ≥ 1)
acting on smooth functions g ∈ C∞(RD,R) as follows:

Xn[g](x) =
1

n!

dn

dhn
g(χh(x))|h=0 , (40)

so that formally g(χh(x)) = X(h)[g](x), where

X(h) = I +
∑
n≥1

hnXn, (41)

and I denotes the identity operator. Thus, the integrator χh is of order r if

Xn =
1

n!
Fn, 1 ≤ n ≤ r.

Alternatively, one can consider the series of vector fields

Y (h) =
∑
n≥1

hnYn = log(X(h)) =
∑
m≥1

(−1)m+1

m

(
hX1 + h2X2 + · · · )m ,

that is,

Yn =

n∑
m≥1

(−1)m+1

m

∑
j1+···+jm=n

Xj1 · · ·Xjm
,

so that X(h) = exp(Y (h)), and formally, g(χh(x)) = exp(Y (h))[g](x). Clearly,
the basic integrator is of order r if

Y1 = F, Yn = 0 for 2 ≤ n ≤ r.

For the adjoint integrator χ∗h = χ−1
−h, one obviously gets g(χ∗h(x)) =

e−Y (−h)[g](x). This shows that χh is time-symmetric if and only if Y (h) =
hY1 + h3Y3 + · · · , and in particular, that time-symmetric methods are of even
order.

It is possible now to check that the symmetric integrators S
[2k]
h given by

(30)–(31) are actually schemes of order 2k provided that S
[2]
h is a symmetric

second order integrator. Consider the series of differential operators

F [2k](h) = hF + h2k+1F
[2k]
2k+1 + h2k+3F

[2k]
2k+3 + · · ·
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such that g(S
[2k]
h (x)) = exp(F [2k](h))[g](x). Then one clearly has

exp(F [2k+2](h)) = exp(F [2k](αh)) exp(F [2k](βh)) exp(F [2k](αh))

which implies

F [2k+2](h) = h (2α+ β)F + h2k+1 (2α2k+1 + β2k+1)F
[2k]
2k+1 + O(h2k+3),

and thus S
2k+2
h is of order 2k + 2 provided that S2k

h is of order 2k and α and β
satisfy the equations

2α+ β = 1, 2α2k+1 + β2k+1 = 0,

whose unique real solution is given by (31).
In the general case, for the composition method (35) we have

g(ψh(x)) = Ψ(h)[g](x),

where Ψ(h) = I+hΨ1 +h2Ψ2 + · · · is a series of differential operators satisfying

Ψ(h) = X(−α1h)
−1X(α2h) · · ·X(−α2s−1h)

−1X(α2sh), (42)

where the series X(h) is given by (40)–(41), and

X(h)−1 = I +
∑
m≥1

(−1)m+1
(
hX1 + h2X2 + · · · )m . (43)

Thus, the order of a composition integrator of the form (35) can be checked
by comparing the series of differential operators Ψ(h) with the series exp(hF )
associated to the flow of the system (1). That is, the integrator (35) is of order
r if

Ψn =
1

n!
Fn, 1 ≤ n ≤ r. (44)

Instead of using (42) to obtain the terms Ψn of the series Ψ(h), one can
equivalently consider the formal equality

Ψ(h) = e−Y (−hα1) eY (hα2) · · · e−Y (−hα2s−1) eY (hα2s), (45)

to obtain the series expansion of log(Ψ(h)) =
∑

n≥1 h
nFn, so that rth order

compositions methods can also be characterized by the conditions

F1 = F, Fn = 0 for 2 ≤ n ≤ r. (46)

As for the splitting integrator (36) when the ODE (1) is split in two parts,

f(x) = f [a](x) + f [b](x), (47)

let F [a] and F [b] be the Lie derivatives corresponding to f [a] and f [b] respectively,
that is,

F [a][g](x) =

D∑
j=1

f
[a]
j (x)

∂g

∂xj
(x), F [b][g](x) =

D∑
j=1

f
[b]
j (x)

∂g

∂xj
(x) (48)
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for each g ∈ C∞(RD,R) and each x ∈ RD. Then, the series Ψ(h) of differential
operators associated to the integrator ψh in (36) can be formally written as

Ψ(h) = eb1hF [b]

ea1hF [a] · · · ebshF [b]

eashF [a]

ebs+1hF [b]

. (49)

3 Order conditions of splitting and composition methods

There are several procedures to get the order conditions for the coefficients
of splitting and composition methods of a given order. These are, generally
speaking, large systems of polynomial equations in the coefficients which are
obtained from equations (46). Perhaps the two most popular are (i) the
expansion of the series log(Ψ(h)) =

∑
n≥1 h

nFn of vector fields by applying
recursively the Baker–Campbell–Hausdorff (BCH) formula [88], and (ii) a
generalization of the theory of rooted trees used in the theory of Runge–Kutta
methods, which allows one to get an equivalent set of simpler order conditions
in a systematic way [63] (see also [41]). In this section we first summarize briefly
how to get these equations with the BCH formula, and then we present a novel
approach, related to that in [63], but based on Lyndon words instead of rooted
trees.

3.1 Order conditions via BCH formula

As is well known, if X and Y are two non-commuting operators, the BCH
formula establishes that formally, eXeY = eZ , where Z belongs to the Lie
algebra L(X,Y ) generated byX and Y with the commutator [X,Y ] = XY−Y X
as Lie bracket [84]. Moreover,

Z = log(eX eY ) = X + Y +

∞∑
m=2

Zm, (50)

with Zm(X,Y ) a homogeneous Lie polynomial in X and Y of degree m, i.e., it is
a Q-linear combination of commutators of the form [V1, [V2, . . . , [Vm−1, Vm] . . .]]
with Vi ∈ {X,Y } for 1 ≤ i ≤ m. The first terms read

Z2 =
1

2
[X,Y ]

Z3 = − 1

12
[[X,Y ], X] +

1

12
[[X,Y ], Y ]

Z4 =
1

24
[[[X,Y ], Y ], X],

and explicit expressions up to m = 20 have been recently computed in an
arbitrary generalized Hall basis of L(X,Y ) [22].

The procedure to get the order conditions for the composition method
(35) with this approach can be summarized as follows. First, consider the
series of differential operators Ψ(h) associated to the integrator (35), expressed
as a product of exponentials of vector fields, i.e., equation (45). Then,



104 S. Blanes, F. Casas y A. Murua

apply repeatedly the BCH formula to get the series expansion log(Ψ(h)) =∑
n≥1 h

nFn. In this way, one gets

log(Ψ(h)) = hw1Y1 + h2w2Y2 + h3(w3Y3 + w12[Y1, Y2]) (51)

+h4(w4Y4 + w13[Y1, Y3] + w112[Y1, [Y1, Y2]]) + O(h5)

where the wj1···jm
are polynomials of degree n = j1 + · · ·+ jm in the parameters

α1, . . . , α2s. The first such polynomials are

w1 =

2s∑
i=1

αi, w2 =

2s∑
i=1

(−1)iα2
i , w3 =

2s∑
i=1

α3
i . (52)

In general, the expressions of the polynomials wj1···jm
in (51) obtained by

repeated application of the BCH formula are rather cumbersome.
The order conditions for the composition integrator (35) are then obtained

by imposing equations (46) to guarantee that the scheme has order r ≥ 1. Thus,
the order conditions are w1 = 1, and wj1···jm

= 0 whenever 2 ≤ j1+· · ·+jm ≤ r.
One can proceed similarly to get the order conditions of the splitting scheme

(36) in terms of the coefficients ai, bi: Consider the series of differential operators
Ψ(h) associated to the integrator (36) expressed as (49); then, apply repeatedly
the BCH formula to get the series expansion log(Ψ(h)) =

∑
n≥1 h

nFn, so that
the order conditions will be obtained by imposing equations (46) to guarantee
order r ≥ 1. It can be seen that the following holds for log(Ψ(h)),

log(Ψ(h)) = h(vaF
[a] + vbF

[b]) + h2vabF
[ab] + h3(vabbF

[abb] + vabaF
[aba])

+h4(vabbbF
[abbb] + vabbaF

[abba] + vabaaF
[abaa]) + O(h5), (53)

where

F [ab] = [F [a], F [b]], F [abb] = [F [ab], F [b]], F [aba] = [F [ab], F [a]],

F [abbb] = [F [abb], F [b]], F [abba] = [F [abb], F [a]], F [abaa] = [F [aba], F [a]],

and va, vb, vab, vabb, vaba, vabbb, . . . are polynomials in the parameters ai, bi of the
splitting scheme (36). In particular, one gets

va =
s∑

i=1

ai, vb =
s+1∑
i=1

bi, vab =
1

2
vavb −

∑
1≤i≤j≤s

biaj , (54)

2vaba = −1

6
v2

avb +
∑

1≤i<j≤k≤s

aibjak, 2vabb =
1

6
vav

2
b −

∑
1≤i≤j<k≤s+1

biajbk.

From (53), we see that a characterization of the order of the splitting
scheme (36) can be obtained by considering va = vb = 1 and vab = vabb =
vaba = · · · = 0 up to polynomials of that form of the required order. The
set of order conditions thus obtained will be independent in the general case
if the vector fields F [a], F [b], F [ab], F [abb], F [aba] considered in (53) correspond
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to a basis of the free Lie algebra on the alphabet {a, b}. Notice that in (53)
we have considered a Hall basis (the classical basis of P. Hall) associated to
the Hall words a, b, ab, abb, aba, abbb, abba, abaa, · · · [69]. The coefficients vw

in (53) corresponding to each Hall word w can be systematically obtained
using the results in [62] in terms of rooted trees and iterated integrals. An
efficient algorithm (based on the results in [62]) of the BCH formula and related
calculations that allows one to obtain (53) up to terms of arbitrarily high degree
is presented in [22].

3.2 A set of independent order conditions

We next present a set of order conditions for composition integrators (35)
derived in [25].

From (41)–(43), it follows that

Ψ(h) = I +
∑
n≥1

hn
∑

j1+···+jr=n

uj1···jr
(α1, . . . , α2s)Xj1 · · ·Xjr

, (55)

for some polynomial functions uj1···jr
of the parameters α1, . . . , α2s of the

method. We next introduce some notation in order to explicitly write these
polynomials. For each positive integer j, we write j∗ = j − 1 if j is even,
and j∗ = j if j is odd. Finally, for each pair (i, j) of positive integers, we

write α
(i)
j = (−1)j(i−1)(αj)

i. That is, α
(i)
j = (αj)

i if j is even or i is odd, and

α
(i)
j = −(αj)

i if j is odd and i is even. Now, it is not difficult to check that, for

each multi-index (i1, . . . , im) of length m ≥ 1 and (α1, . . . , α2s) ∈ R2s,

ui1···im
(α1, . . . , α2s) =

∑
1≤j1≤j∗1≤j2≤···≤jm−1≤j∗m−1≤jm≤2s

α
(i1)
j1
· · ·α(im)

jm
. (56)

Obviously, each ui1···im
can be seen as a real-valued function defined on the set

{(α1, . . . , α2s) ∈ R2s : s ≥ 1}. (57)

Observe that each ui1···im
(α1, . . . , α2s) is a polynomial of degree n = i1+· · ·+im

in the variables α1, . . . , α2s.
Now, the order conditions of the composition scheme (35) can be obtained

by comparing the series (55) with exp(hF ), that is, (44). Since X1 = F , as the
basic integrator χh is assumed to be of order 1, we have that the method is of
order r if for each multi-index (i1, . . . , im) with i1 + · · ·+ im = n ≤ r,

ui1···im
(α1, . . . , α2s) =

{
1
n! if (i1, . . . , im) = (1, . . . , 1),
0 otherwise.

(58)

However, such order conditions are not independent. For instance, it can be
checked that

u11 =
1

2
(u2

1 + u2), u21 = −u12 + u3 + u1u2, u111 =
1

6
u3

1 +
1

2
u12 +

1

3
u3,
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which implies that the order conditions (58) for u11, u12, u111 are fulfilled
provided that the conditions for u1, u2, u3, u12 hold.

A set of independent order conditions can be obtained as follows. Consider
the lexicographical order < (i.e., the order used when ordering words in the
dictionary) on the set of multi-indices. A multi-index (i1, . . . , im) is a Lyndon
multi-index if (i1, . . . , ik) < (ik+1, . . . , im) for each 1 ≤ k < m. For each n ≥ 1,
we denote as Ln the set of functions ui1···im

such that (i1, . . . , im) is a Lyndon
multi-index satisfying that i1 + · · ·+ im = n. The first sets Ln are

L1 = {u1}, L2 = {u2}, L3 = {u12, u3}, L4 = {u112, u13, u4},
L5 = {u1112, u113, u122, u14, u23, u5}.

In particular, we have

u1(α1, . . . , α2s) =

2s∑
j=1

αj ,

u2(α1, . . . , α2s) =

2s∑
j=1

(−1)jα2
j ,

u3(α1, . . . , α2s) =

2s∑
j=1

α3
j ,

u12(α1, . . . , α2s) =

2s∑
j2=1

(−1)j2α2
j2

j∗2∑
j1=1

αj1 ,

u4(α1, . . . , α2s) =

2s∑
j=1

(−1)jα4
j ,

u13(α1, . . . , α2s) =

2s∑
j2=1

α3
j2

j∗2∑
j1=1

αj1 ,

u112(α1, . . . , α2s) =
2s∑

j3=1

(−1)j3α2
j3

j∗3∑
j2=1

αj2

j∗2∑
j1

αj1 ,

and so on.
We can finally state the following result [25]: Given (α1, . . . , α2s), the

integrator (35) is of order r for arbitrary ODE systems (1) and arbitrary
consistent integrators χh if and only if α1 + · · ·+α2s = 1 (i.e. u1(α1, . . . , α2s) =
1) and

∀u ∈
r⋃

n≥2

Ln, u(α1, . . . , α2s) = 0. (59)

Furthermore, such order conditions are independent to each other if arbitrary
sequences (α1, . . . , α2s) of coefficients of the method are considered.
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3.3 Order conditions of compositions methods with symmetry

The order conditions are simplified for (2s)-tuplas (α1, . . . , α2s) such that

α2s−j+1 = αj , for all j. (60)

It is easy to check that the simplifying assumption (60) implies that the
composition integrator (35) is time-symmetric (i.e., ψ∗h = ψh). In that case,
only the conditions for u ∈ Ln with odd n remain independent.

The order conditions can be alternatively simplified by requiring that

α2j = α2j−1, ∀ j, (61)

in which case, only the conditions for Lyndon multi-indices (i1, . . . , im) with
odd i1, . . . , im are required. The simplifying assumption (61) means that the
composition integrator (35) can be rewritten as

ψh = S
[2]
hβs

◦ · · · ◦ S
[2]
hβ1

, (62)

where βj = 2α2j and S
[2]
h is the self-adjoint second order integrator S

[2]
h =

χh/2 ◦ χ∗h/2.
The order conditions are thus considerably reduced if one considers

composition methods satisfying both assumptions (60)–(61), that is, methods
of the form (62) satisfying that

βj = βs−j+1, ∀ j. (63)

Schemes of this form can be dubbed as symmetric compositions of symmetric
schemes. For instance, for order r ≥ 6 one has the conditions

2s∑
j=1

αj = 1,
2s∑

j=1

α3
j = 0,

2s∑
j=1

α5
j = 0,

2s∑
j3=1

α3
j3

j∗3∑
j2=1

αj2

j∗2∑
j1

αj1 = 0

in terms of the αi coefficients (the actual expressions in terms of βi are slightly
more involved). In Table 1 we display for each k ≥ 1 the number nk of Lyndon
multi-indices (i1, . . . , im) with i1 + · · ·+ im = k, and the number mk of Lyndon
multi-indices (i1, . . . , im) with i1 + · · · + im = k and odd indices i1, . . . , im.
Thus, the number of independent conditions to guarantee that the general
composition integrator (35) is at least of order r is n1 + · · · + nr, while in the

case of the composition (62) based on a symmetric second order integrator S
[2]
h

(or equivalently, a composition integrator (35) with the additional symmetry
condition (61)), the number of independent order conditions is m1 + · · ·+mr.
If time-symmetry is imposed in the method (35) (resp. (62)) by the additional
assumption (60) (resp. (63)), then there are n1 + n3 + · · · + n2l−1 (resp.
m1 + m3 + · · · + m2l−1) independent conditions that guarantee order at least
r = 2l.
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k 1 2 3 4 5 6 7 8 9 10 11
nk 1 1 2 3 6 9 18 30 56 99 186
mk 1 0 1 1 2 2 4 5 8 11 17

Table 1: The numbers nk and mk of independent order conditions for general
composition methods (35) and for compositions (62) of a basic time-symmetric
method, respectively.

3.4 Relation among different sets of order conditions of composition

methods

In [63], a set of independent necessary and sufficient order conditions is given
using labelled rooted trees (see also [41]). A family of sets {Tn}n=1,2,... of
functions defined on the set (57) is identified such that the integrator (35) is of
order r if and only if α1 + · · ·+ α2s = 1 and

∀u ∈
r⋃

n≥2

Tn, u(α1, . . . , α2s) = 0. (64)

Each u(α1, . . . , α2s) with u ∈ Tn is (as in the case where u ∈ Ln), a polynomial
of homogeneous degree n. In particular,

T1 = {u1}, T2 = {u2}, T3 = {u21, u3}, T4 = {v211, u31, u4},

where the functions of the form ui1···im
are defined in (56), and

v211(α1, . . . , α2s) =

2s∑
j2=1

(−1)j2α2
j2

⎛
⎝ j∗2∑

j1=1

αj1

⎞
⎠2

.

As shown in [25], the order conditions (64) are equivalent to the conditions (59),
as both ∪n≥1Ln and ∪n≥1Tn generate the same graded algebra H =

⊕
n≥1 Hn

of functions on the set (57) (for each u ∈ Hn, u(α1, . . . , α2s) is a polynomial of
homogeneous degree n, actually, a linear combination of polynomials ui1···im

of
homegeneous degre n = i1 + · · ·+ im). For instance, it can be seen that

v211 = 2u211 − u22 = 2(u112 − u13 + u1u12 + u3u1) + u2
1u2 +

1

2
(u4 − u2

2).

Finding an independent set of order conditions for composition integrators is
equivalent to finding a set of functions of homogeneous degree that generate the
algebra H (see [25]) for more details.

Of course, the functions wi1···im
in (51) obtained when deriving the order

conditions of composition integrators by repeated use of the BCH formula
also belong to the same algebra of functions. For instance, wn = un, and
w12 = u12 − u3 − u1u2.
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Recall that Theorem 1 characterizes the order conditions of splitting
integrators of the form (36), where the ODE (1) is split in two parts (47),
in terms of the order conditions of composition integrators (35). Actually, the
polynomials va, vb, vba, vbaa, vbab, vbaaa, . . . (on the parameters ai, bi) in (53) can
be rewritten as linear combinations of the polynomials (on the parameters αi)
in (56) provided that (37) and va = vb = u1 hold. In particular, it can be seen
that

vab =
u2

2
,

vabb =
1

12
(−u3 − 3u12 + 3u21) ,

vaba =
1

12
(u3 − 3u12 + 3u21) ,

vabbb =
1

12
(u22 − u31 + u112 − 2u121 + u211) ,

vabba =
1

24
(−u4 − 2u13 + 4u22 − 2u31 + 4u112 − 8u121 + 4u211) ,

vabaa =
1

12
(−u13 + u22 + u112 − 2u121 + u211) .

3.5 Negative time steps

It has been noticed that some of the coefficients in splitting schemes (36) are
negative when the order r ≥ 3. In other words, the methods always involve
stepping backwards in time. This constitutes a problem when the differential
equation is defined in a semigroup, as arises sometimes in applications, since
then the method can only be conditionally stable [57]. Also schemes with
negative coefficients may not be well-posed when applied to PDEs involving
unbounded operators.

The existence of backward fractional time steps in this class of methods
is unavoidable, as shown in [35, 75, 79]. In fact, it can be established in an
elementary way by virtue of the relationship between the order conditions of
schemes (36) and (35) stated in Theorem 1 [4]: Any splitting method of the
form (36) that has order r ≥ 3 neccesarily must fullfil the condition

u3(α1, . . . , α2s) =
2s∑

i=1

α3
i =

s∑
i=1

(α3
2i−1 + α3

2i) = 0, (65)

with coefficients αj obtained from the relations (37). Since, for all x, y ∈ R, it is
true that x3+y3 < 0 implies x+y < 0, then there must exist some i ∈ {1, . . . , s}
in the sum of (65) such that

α3
2i−1 + α3

2i < 0 and thus α2i−1 + α2i = ai < 0.

Obviously, one can also write (by taking α0 = 0)

u3(α1, . . . , α2s) =

2s+1∑
i=0

α3
i =

s+1∑
i=1

(α3
2i−1 + α3

2i−2) = 0
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just by grouping terms in a different way, and thus, by repeating the argument,
there must exist some j ∈ {1, . . . , s+ 1} such that

α2j−1 + α2j−2 = bj < 0.

This proof shows clearly the origin of the existence of backward time steps: the
equation u3 = 0 can be satisfied only if at least one ai and one bi are negative.
According to this conclusion, any splitting method of the form (36) verifying
the order condition u3 = 0 has necessarily some negative coefficient ai and also
some negative bi.

3.6 Near-integrable systems

In Hamiltonian dynamics one often encounters systems whose Hamiltonian
function H is a small perturbation of an exactly integrable Hamiltonian H0,
that is H = H0 + εH1 with ε 1. The perturbed Kepler problem (20) belongs
to this category of near-integrable Hamiltonian systems. The gravitational N -
body problem (21), when using Jacobi coordinates, also falls within this class
of problems. In that case, H0 represents the Keplerian motion and εH1 the
mutual perturbations of the bodies on one another [86].

More generally, let us consider an ODE system

x′ = f [a](x) + εf [b](x), (66)

containing a small parameter |ε|  1. If the exact h-flows ϕ
[a]
h and ϕ

[b]
h of

x′ = f [a](x) and x′ = ε f [b](x) respectively can be efficiently computed, then
a scheme ψh of the form (36) can perform particularly well provided that
the coefficients ai, bi are appropriately chosen. To see this, consider the Lie
derivatives (48) of f [a] and f [b] respectively, so that the corresponding series
Ψ(h) (49) of differential operators associated to the scheme (36) becomes

Ψ(h) = eb1hεF [b]

ea1hF [a] · · · ebshεF [b]

eashF [a]

ebs+1hεF [b]

.

Successive application of the BCH formula then leads to (53) with F [b] replaced
by εF [b], that is

log(Ψ(h)) = hvaF
[a] + ε(hvbF

[b] + h2vabF
[ab] + h3vabaF

[aba] + h4vabaaF
[abaa])

+ε2(h3vabbF
[abb] + h4vabbaF

[abba]) + ε3h4vabbbF
[abbb] + O(εh5).

In practical applications one usually has ε  h (or at least ε ≈ h), so that
one is mainly interested in eliminating error terms with small powers of ε. For
instance, if the coefficients ai, bi of the splitting methods are chosen in such a
way that

va = 1 = vb, vab = vaba = vabaa = vabb = 0,

then

log(Ψ(h))− hF = O(εh5 + ε2h4),
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where F = F [a] + εF [b]. More generally, one is interested in designing methods
such that [12]

log(Ψ(h))− hF = O(εhs1+1 + ε2hs2+1 + ε3hs3+1 + · · ·+ εmhsm+1). (67)

Observe that s1 is the order of consistency the method would have in the
limit ε → 0. It is relatively easy to eliminate errors of order εhk because
there is only one such term for each order k, namely hkε vaba···aF

[aba···a] (with
F [aba···a] = [[· · · [[F [a], F [b]], F [a]] . . .], F [a]]).

If one is interested in designing methods that approximate the exact solution
up to higher powers of ε, more terms have to be considered. In particular, there
are

⌊
1
2 (k − 1)

⌋
terms of order O(ε2hk) and

⌊
1
6 (k − 1)(k − 2)

⌋
terms of order

O(ε3hk) [53].

3.7 Runge–Kutta–Nyström methods

Suppose now that one is interested in integrating numerically second-order ODE
systems of the form

y′′ = g(y), (68)

where y ∈ Rd and g : Rd −→ Rd. In this case it is still possible to
use schemes (36) applied to the equivalent first-order ODE system. More
specifically, introducing the new variables x = (y, v), with v′ = y, and the
maps f [a] : R2d → R2d and f [b] : R2d → R2d defined as

f [a](y, v) = (v, 0), f [b](y, v) = (0, g(y)), (69)

equation (68) can be rewritten as x′ = f [a](x) + f [b](x). Then, the splitting

scheme (36) can be efficiently implemented, as the exact h-flows ϕ
[a]
h and ϕ

[b]
h

of x′ = f [a](x) and x′ = f [b](x) are simply given by

ϕ
[a]
h (y, v) = (y + hv, v),

ϕ
[b]
h (y, v) = (y, v + hg(y)).

(70)

It is not difficult to check that the splitting schemes of the form (36)
are particular instances of Runge–Kutta–Nyström (RKN) methods (see for
instance [41]).

One of the most important applications of this class of schemes is the study of
Hamiltonian systems of the formH(q, p) = T (p)+V (q), where the kinetic energy
T (p) is quadratic in the momenta p, i.e., T (p) = 1

2p
TMp for a symmetric square

constant matrix M , and V (q) is the potential. In that case, the corresponding
Hamiltonian system can be written in the form (68) with y = q, y′ = v = Mp,
and g(y) = −∇V (y).

Although a splitting integrator (36) designed for arbitrary ODE systems
x′ = f(x) split into two parts (47) will perform well when applied to a second
order ODE system of the form (68) with the splitting (69), much more efficient
methods can be designed in that case [56, 19]. The main point here is that in the
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k 2 3 4 5 6 7 8 9 10 11
nk 1 2 3 6 9 18 30 56 99 186
lk 1 2 2 4 5 10 14 25 39 69

Table 2: The numbers lk of independent order conditions (at order k) for
splitting methods in the RKN case compared to the numbers nk of conditions
in the general case.

case (69) (we will refer to that as the RKN case), [[[F [b], F [a]], F [b]], F [b]] = 0
identically. This is equivalent to F [babb] = 0 in (53), which introduces some
linear dependencies among higher order terms in the expansion of log(Ψ(h))
(see [59] for a detailed study). This means that the characterization given in
Theorem 1 for a splitting integrator (36) to be of order r (for r ≥ 4) is no longer
applicable if one restricts to the case (69). In Table 2, the number of necessary
and sufficient independent order conditions for a splitting method (36) to be of
order r in the RKN case is compared to the general case: For arbitrary systems
split into two parts (47), there are 2 + n2 + · · · + nr independent conditions
(including the two consistency conditions va = vb = 1), while in the RKN case,
the number of independent order conditions is 2 + l2 + · · ·+ lr. Unfortunately,
up to order three the order conditions are the same in both cases and then, the
results for negative time steps still apply.

Since the reduction in the number of order conditions is due to the fact
that f [a](y, v) is linear in v, it is immediate to see that the methods obtained
in this way also apply to the more general problem f [a](y, v) = (w1(x)v +
w2(y), w3(x)v + w4(y)), which includes the system

y′′ = My′ + g1(y) + g2(y). (71)

Here splitting RKN methods are useful if the reduced problem y′′ = My′+g1(y)
(i.e., f [a](y, v) = (v,Mv + g1(y))) is easily solvable. For Hamiltonian systems,
this generalization corresponds to H(q, p) = T (q, p) + V (q), where T (q, p) =
1
2p

TM(q)p + fT (q)p + W (q). Obviously, the exact solution for T (q, p) is only
known for some particular cases, e.g. if T corresponds to the Kepler problem
in (20) or (21) or to the harmonic oscillator in (19) or (22).

It is interesting to note that in quantum mechanics the kinetic and potential
energy verify analogue commutator rules to classical mechanics and then RKN
methods can also be used. If applied, for instance to problems (26) and (27),

one should keep in mind that in the resulting composition method ϕ
[a]
h must

correspond to the kinetic part.
We should also remark that, if the Hamiltonian functionH(p, q) = 1

2p
TMp+

V (q) is such that in addition V (q) = 1
2q

TNq (i.e., it corresponds to the
generalized harmonic oscillator (18)), then the number of order conditions
reduces drastically: it is not difficult to see that there is only one independent
condition to increase the order from r = 2k − 1 to r = 2k, and only two to
increase the order from r = 2k to r = 2k + 1 (see [9] for more details). We



Splitting and composition methods . . . 113

will return later to this system and take profit of its special features to design
specially adapted splitting methods.

4 Additional techniques to reduce the number of order conditions

4.1 Methods with modified potentials

The splitting method (36) can be generalized by composing the exact flows
of other vector fields in addition to F [a] and F [b], provided that they lie on
the Lie algebra generated by F [a] and F [b]. For instance, one could consider

compositions that, in addition to ϕ
[a]
h and ϕ

[b]
h , use the h-flow ϕ

[abb]
h of the vector

field F [abb] = [[F [a], F [b]], F [b]]. To illustrate this fact, consider the composition

ψh = ϕ
[b]
h/6 ◦ ϕ

[a]
h/2 ◦ ϕ

[b]
h/3 ◦ ϕ

[abb]
−h/72 ◦ ϕ

[b]
h/3 ◦ ϕ

[a]
h/2 ◦ ϕ

[b]
h/6. (72)

The scheme (72), constructed in [26, 47], is of order four. Indeed, by repeated
application of the BCH formula to

Ψ(h) = e
h
6 F [b]

e
h
2 F [a]

e
h
3 F [b]

e−
h
72 F [abb]

e
h
3 F [b]

e
h
2 F [a]

e
h
6 F [b]

one can check that Ψ(h) = eh(F [a]+F [b])+O(h5).

Recall that, although the h-flows ϕ
[a]
h and ϕ

[b]
h of the vector fields F [a] and

F [b] are by assumption computed easily, this is not necessarily the case for the

h-flow ϕ
[abb]
h of the vector field F [abb]. However, in the RKN case (68) considered

in Subsection 3.7, where f [a] and f [b] are of the form (69), the h-flow of F [abb]

is of the form

ϕ
[abb]
h (y, v) = (y, v + h3g[3](y)), where g[3](y) = 2g′(y)g(y).

This shows in addition that ϕ
[b]
h and ϕ

[abb]
h commute, and that in particular, for

arbitrary bj , cj ∈ R,

ϕ
[b]
bj h ◦ ϕ[abb]

cj h ◦ ϕ[b]
bj h(y, v) = (y, v + 2hbj g(y) + h3cj g

′(y)g(y)), (73)

which is precisely the h-flow of the vector field 2bj F
[b] + cjh

2F [abb]. It thus

makes sense to construct methods defined as compositions of ϕ
[a]
ajh and maps of

the form (73) for j = 1, . . . , s.
For Hamiltonian systems H(p, q) = T (p) + V (q) with quadratic kinetic

energy T (p) = 1
2p

TMp, the vector field F [abb] = [[F [a], F [b]], F [b]] is the vector
field associated to the Hamiltonian function (∇V )T∇V , which only depends
on the position vector q. Thus, (73) is just the h-flow of the system with
Hamiltonian function

2bj V (q) + cj h
2(∇V (q))T∇V (q), (74)

which reduces to the potential V (q) of the system for bj = 1/2 and cj = 0.
This explains the term ‘splitting methods with modified potentials’ used in the
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recent literature [51, 71, 87] to refer to splitting methods obtained by composing
the h-flows of T and modified potentials of the form (74).

This procedure can be generalized by considering “modified potentials” of

higher degree in h. In particular, the flow ϕ
[abbab]
h of the vector field

F [abbab] = [[[F [a], F [b]], F [b]], [F [a], F [b]]], (75)

is of the form ϕ
[abbab]
h (y, v) = (y, v+h5g[5](y)), and similarly for the vector fields

F [abbabab] = [[[[F [a], F [b]], F [b]], [F [a], F [b]]], [F [a], F [b]]], (76)

F [abbaabb] = [[[[F [a], F [b]], F [b]], F [a]], [[F [a], F [b]], F [b]]],

with h5g[5](y) replaced by h7g[7,1](y) and h7g[7,2](y) respectively. The functions
g[5], g[7,1], g[7,2] can be written in terms of g and its partial derivatives (see [13]
for more details).

In some applications, the simultaneous evaluation of g(y), g[3](y), g[5](y),
g[7,1](y) and g[7,2](y) is not substantially more expensive in terms of
computational cost than the evaluation of g(y) alone. In that case, by replacing

in the scheme (36) each ϕ
[b]
bih

by the h-flow of

Ch(bi, ci, di, ei1, ei2) ≡ bi F
[b] + h2ci F

[abb] + h4di F
[abbab]

+h6(ei,1F
[abbabab] + ei,2 F

[abbaabb]) (77)

additional free parameters are introduced to the scheme without increasing too
much the computational cost, which allows the construction of more efficient
integrators.

Of course, this can be further generalized by considering more general nested
commmutators of F [a] and F [b] that gives rise to “modified potentials”. In that
case, higher degree commutators afected by higher powers of h should be added
in (77).

Notice that in this case the coefficients ai, bi have not to satisfy all the order
conditions at order r ≥ 3 and then, the results for negative time steps do not
apply in this case. As a result, schemes with positive coefficients do exist. In
this case, negative coefficients appear in methods of order six [27].

4.2 Methods with processing

Recently, the processing technique has been used to find composition methods
requiring less evaluations than conventional schemes of order r. The idea
consists in enhancing an integrator ψh (the kernel) with a parametric map
πh : RD −→ RD (the post-processor) as

ψ̂h = πh ◦ ψh ◦ π−1
h . (78)

Application of n steps of the new (and hopefully better) integrator ψ̂h leads to

ψ̂n
h = πh ◦ ψn

h ◦ π−1
h ,
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which can be considered as a h-dependent change of coordinates in phase space.
Observe that processing is advantageous if ψ̂h is a more accurate method than
ψh and, either the cost of πh is negligible or frequent output is not required,
since in that case, it provides the accuracy of ψ̂h at essentially the cost of the
least accurate method ψh.

The simplest example of a processed integrator is provided in fact by the
Störmer–Verlet method. As a consequence of the group property of the exact
flow, we have

S
[2]
h = ϕ

[a]
h/2 ◦ ϕ

[b]
h ◦ ϕ[a]

h/2 = ϕ
[a]
h/2 ◦ ϕ

[b]
h ◦ ϕ[a]

h ◦ ϕ[a]
−h ◦ ϕ[a]

h/2

= ϕ
[a]
h/2 ◦ χh ◦ ϕ[a]

−h/2 = πh ◦ χh ◦ π−1
h (79)

with πh = ϕ
[a]
h/2 and the symplectic Euler method χh = ϕ

[b]
h ◦ ϕ[a]

h . Hence,

applying the basic integrator χh = ϕ
[b]
h ◦ ϕ[a]

h with processing yields a second
order of approximation.

Although initially proposed for Runge–Kutta methods [18], the processing
technique has proved its usefulness mainly in the context of geometric numerical
integration [41], where constant step-sizes are widely employed.

We say that the method ψh is of effective order r if a post-processor πh

exists for which ψ̂h is of (conventional) order r [18], that is,

πh ◦ ψh ◦ π−1
h = ϕh + O(hr+1).

Hence, as the previous example shows, the basic splitting ϕ
[b]
h ◦ϕ[a]

h is of effective
order 2. Obviously, a method of order r is also of effective order r (taking
πh = id) or higher, but the converse is not true in general.

The analysis of the order conditions of the method ψ̂h shows that many
of them can be satisfied by πh, so that ψh must fulfill a much reduced set of
restrictions [6, 11]. For instance, if the kernel is defined as (35) with a basic
first order integrator χh and the post-processor is similarly defined as

πh = χγ2mh ◦ χ∗γ2s−1h ◦ · · · ◦ χγ2h ◦ χ∗γ1h (80)

then, conditions

u1(α) = 1, u2(α) = u3(α) = u4(α) = 0 (81)

guarantee that the kernel ψh is of effective order four. If in addition the post-
processor (80) satisfies

u1(γ) = 0, u2(γ) = u12(α), u3(γ) = u13(α), u12(γ) = u112(α),

then the processed integrator (78) has conventional order four. Here, we use
the notation α = (α1, . . . , α2s) and γ = (γ1, . . . , γ2m) for the coefficients of the
kernel and the post-processor respectively. If in addition the following conditions
are fulfilled by the coefficients of the kernel,

u5(α) = u23(α) = 0, 2u122(α) + u14(α) + u12(α)2 = 0,
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then the kernel ψh has at least effective order five. In that case, the processed
method (78) achieves conventional order five if in addition, the equalities

u4(γ) = u14(α), u13(γ) = u113(α),

u112(γ) = u1112(α) +
1

2
u12(α)2 − 1

2
u112(α)− 1

6
u12(α)

hold for the coefficients of the post-processor (80).
Thus, the number and complexity of the conditions to be verified by the

coefficients αj of a kernel of the form (35) is notably reduced. Highly efficient
processed composition methods that take advantage of that have been proposed
[11, 57]. Nevertheless, when both the kernel ψh and the post-processor πh are
constructed as a composition of the form (35) (or (36)), the use of the resulting
processed scheme is not recommended in situations where intermediate results
are required at each step. Indeed, the total number of compositions per step in a
processed method (78) of that form is typically higher than for a non-processed
method of comparable accuracy.

To overcome this drawback, in [6] a technique has been developed for
obtaining approximations to the post-processor at virtually cost free and
without loss of accuracy. The key idea is to replace πh by a new map π̃h � πh

obtained from the intermediate stages in the computation of ψh. The post-
processor πh can safely be replaced by an approximation π̃h, since the error
introduced by the cheap approximation π̃h is of a purely local nature [6] (it is
not propagated along the evolution, contrarily to the error in π−1

h ).
In [6], a general study of the number of independent effective order order

conditions versus the number of conventional order conditions is presented. In
particular, it is shown that, in the case of kernels of the form (35), the number
of conditions to increase the effective order of the kernel from k > 1 (resp.
k = 1) to k + 1 is nk+1 − nk (resp. n2 − n1 + 1), where each nk is the cardinal
of Lk, that is, the number Lyndon multi-indices of degree k. Thus, whereas
the total number of independent conditions to achieve conventional order r is
n1 + · · · + nr, only 1 + nr conditions have to be imposed to the kernel for
effective order r. If the kernel (35) is time-symmetric (i.e., if its coefficients
satisfy (60)), then there are Nr =

∑q
i=1 n2j−1 independent conditions for order

r = 2q, and N∗r = n1 +
∑q−1

i=1 (n2j+1−n2j) conditions for effective order r = 2q.
A similar situation occurs for the total numbers Mr and M∗

r of conventional
and effective order conditions of symmetric kernels of the form (62) with (63)
(where the nk are replaced by the number mk in Table 1). That also happens
to be true for symmetric kernels of the form (36), both in the general case
(which is essentially equivalent to the case of kernels of the form (35)) and in
the RKN case considered in Subsection 3.7. In Table 3, the total number of
conditions for conventional order r = 2q for symmetric kernels is compared with
the total number of effective order conditions in three kinds of integrators: (i)
(Nr, N

∗
r ) for composition (35) of a basic first order integrator and its adjoint, (ii)

(Mr,M
∗
r ) for compositions (62) of a symmetric second order basic integrator,

(iii) (Lr, L
∗
r) for splitting integrators in the RKN case.
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r 2 4 6 8 10 12
Nr 1 3 9 27 83 269
N∗r 1 2 5 14 40 127
Mr 1 2 4 8 16 33
M∗

r 1 2 3 5 8 14
Lr 2 4 8 18 43 112
L∗r 2 3 5 10 21 51

Table 3: Number of conventional and effective order conditions for symmetric
kernels: (i) (Nr, N

∗
r ) for composition integrators (35), (ii) (Mr,M

∗
r ) for

compositions (62) of symmetric second order basic integrator, (iii) (Lr, L
∗
r) for

splitting integrators in the RKN case.

5 A collection of splitting methods

As we have mentioned before, splitting methods have found application in
many different areas of science during the last decades. It is therefore not
surprising that there is a large number of different schemes available in the
literature. Sometimes, even the same method has been rediscovered several
times in different contexts. Our aim in this section is to offer the reader
a comprehensive overview of the existing methods, by classifying them into
different families and giving the appropriate references where the corresponding
coefficients can be found.

At this point it is important to remark that the efficiency of a method is
measured by taking into account the computational cost required to achieve a
given accuracy (we do not take into account the important property of the
stability of the methods). For instance, given several methods of order r
with different computational cost (usually measured as the number of stages
or evaluations of the functions involved), the most efficient method does not
necessarily correspond to the cheapest method. The extra cost of some methods
can be compensated by an improvement in the accuracy obtained.

We next present a short review indicating the splitting methods which have
been published in the literature at different orders, with different number of
stages and for several families of problems.

Symmetric compositions of symmetric methods. As we pointed out
in section 2.1, although by applying recursively the composition (30)-(31) it
is possible to increase the order, the resulting methods are computationally
expensive. To reduce the number of evaluations the more general composition
(62) may be considered to achieve a given order r. If we choose symmetric
compositions (βs+1−i = βi), then half of the parameters of the method are
fixed, but the order conditions at even orders are automatically satisfied. In
other words, the parameters of a (non-symmetric) method of order r = 2k have

to solve a system of
∑2k

i=1mi equations (see Table 3), whereas for a symmetric
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composition er = m2 + m4 + · · · + m2k order conditions are automatically
satisfied if the order conditions at odd orders are fulfilled. In this way, only
Mr = m1+m3+· · ·+m2k−1 independent order conditions need to be imposed in
the case of symmetric compositions. Due to this fact, the number of conditions
to be solved (which is typically the bottleneck in the numerical search of
methods) is reduced considerably when imposing symmetry. Furthermore, since
m2i−1 < m2i then Mr < er and symmetric compositions, in addition to having
more favourable geometric properties (due to the time-symmetric property),
usually require smaller number of stages than their non-symmetric counterparts.
Taking into account the number Mr (resp. M∗

r ) of independent conditions to
achieve conventional order r (resp. effective order r) from Table 3, it is possible
to determine the minimum number sr = 2Mr − 1 of stages of the integrator
(resp. the minimum number kr = 2M∗

r − 1 of stages for the kernel) required by
a method of order r (resp. effective order r)

In this way one has to solve a system of Mr or M∗
r nonlinear polynomial

equations with the same number of unknowns βi. The number of real solutions
typically increase a good deal with r. In general, these equations have to be
solved numerically and getting all solutions is a very challenging task, even for
moderate values of r. Once a number of solutions for the parameters βi have
been obtained, there remains to select that solution one expects will give the
best performance when applied on practical problems, typically by minimizing
some objective function. What is the most appropriate objective function in
this case? A frequently used criterion is to choose the solution which minimizes
C =

∑s
i=1 |βi|.

If one takes additional stages in (62), for instance s = sr + 2, then one has
an extra free parameter (notice the scheme is symmetric and two stages are
required to introduce one parameter). By choosing β1 as this free parameter,
then it is clear that 1-parameter families of solutions are obtained. For instance,
taking β1 = 0 one has the previous solutions and by continuation it is possible
to get several of these 1-parameter families of solutions, but this procedure does
not guarantee to find all solutions.

Finally, one has to select that solution minimizing the value of C. Of course,
additional stages can be introduced and the process is similar but technically
much more involved. This objective function allows one to find very efficient
methods involving additional stages, although the efficiency of methods with
the same order but different number of stages cannot be compared from the
value obtained for C.

When we stop including additional stages in the composition (62)? Two
criteria are possible: (i) when one has enough stages available to achieve a
higher order; (ii) when the performance of the actual methods constructed
with additional stages do not show a significant improvement in numerical
experiments.

For instance, the simple 4th-order scheme (29) can be improved just by the
5-stage generalized composition [78]

S
[2]
αh ◦ S

[2]
αh ◦ S

[2]
βh ◦ S

[2]
αh ◦ S

[2]
αh, (82)
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Order
4 6 8 10

3-[34, 30, 88, 78] 7-[88] 15-[88, 81, 54, 45] 31-[81, 45, 41, 76]
5-[78, 54] 9-[54, 45] 17-[54, 45] 33-[45, 40, 83, 76]

11-13-[76] 19-21-[76] 35-[40, 76]
24-[20]

P:3-17-[55] P:5-15-[7] P:9-19-[7] P:15-25-[7]

Table 4: Symmetric compositions of symmetric methods published in the
literature. We indicate the number of stages (in boldface) and the pertinent
reference. Processed methods are preceded by P.

with α = 1/(4 − 41/3), β = 1 − 4α, as numerical experiments clearly indicate.
This is a particular case of (62) where the value of C reaches a minimum and if
we add two new stages with a new parameter then a 6th-order method can be
obtained.

In Table 4 we collect some of the most relevant methods from the literature
with different orders and number of stages. At each order, r, we label the
methods by the number of stages s and the reference where this method can
be found. We also include methods obtained by using the processing technique,
which are referred as P:s, where s is the number of stages for the kernel. We
write s1-s2 for indicating that methods from s1 up to s2 stages are analyzed in
that particular reference.

Splitting into two parts. Composition of method and its adjoint.
Next we review methods of the form (36) (for ODEs that can be split into two
parts) and (35). It is important to emphasize that, although the order conditions
for both classes of methods are equivalent, the optimization procedures carried
out to identify the most efficient schemes may differ. In consequence, a
particular method optimized for equations separable into two parts is not
necessarily the best choice for a composition (35), although their performances
are closely related.

Considering, as before, symmetric compositions, i.e., as+1−i = ai, bs+2−i =
bi in (36) and α2s+1−i = αi in (35), it is easy to verify, from Table 3, that the
minimum number of stages required to get a method of order r is sr = Nr and
of effective order r it is kr = N∗r .

Note that schemes of order six or higher require more stages
than compositions (62), and only fourth-order methods seem promising.
Nevertheless, one should recall that by including additional stages more efficient
methods could be obtained. For instance, sixth-order methods require at least
9 stages (unless they are considered as composition of symmetric-symmetric
methods in which case the 9 equations can be solved with only 7 unknowns) and
the coefficients ai, bi or αi have to solve a system of eight nonlinear equations (in
addition to consistency conditions). These equations have a very large number
of solutions and it might be the case that one of them could correspond to a
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Order
3 4 6 8

3-[72] 3-[34, 30, 88, 78] 9-[33] 27-?
4-5-[54] 10-[16]
6-[16]

P:3,4-[11] P:5-[11] P:14-?
P:2-7-[7] P:5-10-[7]

Table 5: Symmetric composition schemes of the form (36) (appropriate when the
ODE is split in two parts) and (35) (composition of a method and its adjoint).
At order eight, we have not found methods. They would require at least 27
stages or at least 14 stages for processed schemes. The notation is the same as
in Table 4.

method with very small error terms.

One optimization criterion frequently used when dealing with composition
(36) is to work with the homogeneous subspace Lr+1 = 〈Fr+1,1, . . . , Fr+1,nr+1

〉
(where by Fr+1,i we denote the elements of the basis of the Lie algebra
generated by F [a], F [b] at order r+1) and the leading error term, which can be
expressed as

∑nr+1

i=1 ciFr+1,i. In this setting, one selects the solution minimizing

Er+1 =
(∑nr+1

i=1 |ci|2
)1/2

. This optimization criterion allows one to compare
the performance of methods with different number of stages by introducing the

effective error, Ef = sE
1/r
r+1, which normalizes with respect to the number of

stages.

For the composition (35), it is not so clear how to assign a weight to each
element of the associated Lie algebra since their contribution on the error can
differ significantly. One accepted choice consists in minimizing the objective
function C =

∑2s
i=1 |αi|.

Methods up to order six built by applying this procedure can be found in the
literature. They show for most problems a better efficiency than compositions
(62) at the same order when applied to the same class of problems. We collect
some of the most relevant schemes in Table 5. As before, we also include
processed methods.

We have not found methods of order eight. In fact, it is an open problem
to determine if such a large system of polynomial equations admits solutions
leading to more efficient methods than those collected in Table 4.

Runge–Kutta–Nyström methods. As we have seen in section 3.7, methods
of this class may be considered as particular examples of composition (36).
Nevertheless, their wide range of applicability to relevant physical problems has
originated an exhaustive search of efficient schemes. Moreover, since in this case
the associated vector fields F [a] and F [b] have different qualitative properties,
methods with different features may be found in the literature. Thus, one may
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find non-symmetric methods of the form

AB ≡ ψh = ϕ
[a]
ash ◦ ϕ[b]

bsh ◦ · · · ◦ ϕ[a]
a1h ◦ ϕ[b]

b1h

BA ≡ ψh = ϕ
[b]
bsh ◦ ϕ[a]

ash ◦ · · · ◦ ϕ[b]
b1h ◦ ϕ[a]

a1h (83)

where AB and BA are conjugate to each other, leading to the same performance.
However, to take profit of the FSAL (First Same As Last) property, we can
consider the following non equivalent compositions

ABA ≡ ψh = ϕ
[a]
as+1h ◦ ϕ[b]

bsh ◦ ϕ[a]
ash ◦ · · · ◦ ϕ[b]

b1h ◦ ϕ[a]
a1h (84)

and

BAB ≡ ψh = ϕ
[b]
bs+1h ◦ ϕ[a]

ash ◦ ϕ[b]
bsh ◦ · · · ◦ ϕ[a]

a1h ◦ ϕ[b]
b1h. (85)

The symmetric case (as+2−i = ai, bs+1−i = bi for the composition ABA and
bs+2−i = bi, as+1−i = ai for the composition BAB) has also been proposed in
this setting to get more efficient schemes. In this case, the minimum number of
stages is, from Table 3, sr = Lr − 1 (resp. kr = L∗r − 1), to get a method of
order r (resp. effective order r). For non-symmetric compositions this minimum
number can be obtained from Table 2.

Highly efficient methods up to order six have been published. In Table 6 we
collect the most representative within this class. We add S or N to distinguish
symmetric from non-symmetric schemes and the subindex AB, ABA and BAB
to denote compositions (83), (84) and (85), respectively. Processed methods
have also been included.

To achieve order eight, the coefficients ai, bi in a non-processed scheme have
to solve (in addition to consistency) a system of 16 nonlinear equations. A large
number of solutions could exist, although, as far as we know, only one attempt
to solve these equations has been reported [64] (the performance of such method
was not clearly superior symmetric-symmetric methods).

In [16] the authors have carried out a detailed analysis of the order conditions
for symmetric compositions ABA and BAB. In this work 4th-order methods
from 3 to 6 stages, and also 6th-order methods from 7 to 14 stages are analysed.
The integrators selected perform extraordinarily well indeed. For instance,
on the Hénon–Heiles Hamiltonian (19) the 4th-order 6-stage method is more
accurate (at constant work) than leapfrog in a wide range of step sizes, whereas
its global error is about 0.00175 times that of the classical 4th-order Runge–
Kutta method. In consequence, its computational cost for a given error is about
0.31. This has to be compared with the composition (29) based on leapfrog,
which have truncation errors about 10 times larger than the classical Runge–
Kutta scheme.

On the other hand, as we have seen in subsection 4.1, the particular structure
of problem (68) allows one to use modified potentials in compositions (83)-
(85). This is appealing when the evaluation of such modified potentials is not
particularly costly. In such circumstances one may replace in (83)-(85) flows
associated to hbiF

[b] with the corresponding to hCh(bi, ci, di, ei1, ei2), as given in



122 S. Blanes, F. Casas y A. Murua

Order
4 5 6 8

3S-[34, 30, 88, 78] 5NABA-[65] 7SABA-[33, 65] 17SABA-[64]
4NAB-[56] 6NAB-[56] 7SBAB-[33]
4NBAB-[19] 6NAB-[29] 8-15SABA,BAB-[16]
4-5SABA-[54] 7,11SBAB-[16]
5SBAB-[15]

6SABA,BAB-[16]

P:2NAB-[11] P:4-6SABA,BAB-[13] P:9SABA-[13]
P:7SBAB-[14] P:11SBAB-[14]

Table 6: RKN splitting integrators. Since the role of the flows ϕ
[a]
t and ϕ

[b]
t

is not interchangeable here, we distinguish symmetric S and non-symmetric N
compositions with a subindex AB,ABA,BAB for the compositions (83), (84)
and (85). As usual, processed methods are preceded by P.

Order

3 4 6 8

2NAB-[72] 2SABA,BAB-[47, 26] 4,5SABA,BAB-[67] 11SABA,BAB-[67]
4SABA,BAB-[80]

3,4SABA,BAB-[28, 67]

P:1SBAB-[82, 71, 87, 11] P:3SABA,BAB-[11] P:4SABA-[13]
P:2SBAB-[51] P:5SBAB-[13, 14]

Table 7: RKN splitting methods with modified potentials. Schemes are coded
as in Table 6.

(77). The coefficients ci, di, etc. can be used to solve some order conditions, so
that methods with a reduced number of stages can be obtained. We emphasize
that these schemes are of interest when the extra cost due to the modified
potentials is moderate, as is the case in many problems arising in classical and
quantum mechanics. In Table 7 we collect some relevant methods we have found
in the literature, both processed and non-processed.

Methods for near-integrable systems. As we have seen in section 3.6,
splitting methods designed for equation (66) have typically two relevant
parameters: h (the step size) and ε (the size of the perturbation). In
consequence, the dominant error in a given scheme depends on their relative size,
and this depends usually on the particular problem considered (and sometimes
even on the initial conditions). For this reason, a number of methods at different
orders in both parameters h and ε are found in the literature. We collect some
of them in Table 8. Here the notation is a bit clumsy: a method of order (n,4),
say, means that the exact and the modified vector fields, i.e., hF and log(Ψ(h))
in (67), differ in terms O(εhn+1 + ε2h5 + · · · ), whereas in a method (7,6,4) this
difference is O(εh8 + ε2h7 + ε3h5 + · · · ). In both cases, the order of consistency
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Order
(n,2) (n,4) (n,5)

1(2,2)S-[86] 4(6,4)SABA,BAB-[53]
n(2n,2)SABA,BAB-[53, 48] 5(8,4)SABA,BAB-[53]

P:1(32,2)-[87] P:3(7,6,4)SABA-[12]
P:2(6,4)SAB-[12] P:3(7,6,5)SAB-[12]
P:1(6,4)SABA-[12] P:2(7,6,5)SAB-[12]
P:n(n,4)SABA-[48]

Table 8: Splitting methods for near-integrable systems. For processed methods
we also include methods applicable when [[[F [b], F [a]], F [b]], F [b]] = 0 (second
row) and schemes with modified flows (last two rows of processed methods).

in the limit h→ 0 is four, but the last method incorporates more terms in the
asymptotic expansion of the error.

In [53] both families (ABA and BAB) of symmetric (2s, 2) schemes for
s ≤ 5 with positive coefficients are proposed which are about three times more
accurate (at constant work) than leapfrog, whereas in [48] a systematic study of
(2s, 2) methods is carried out, obtaining new schemes up to s = 10 with positive
coefficients.

In some near-integrable problems, the identity [[[F [b], F [a]], F [b]], F [b]] = 0
still holds, where F [i] is the vector field associated to f [i], i = a, b, in (66).
This takes place, in particular, in Hamiltonian problems H = H0 + εH1 where
H0 is quadratic in the kinetic energy and εH1 depends only on the coordinates
(e.g. examples (19)-(22) can be split in this way, where H0 is the harmonic
oscillator or the Kepler problem and H1 depends only on the coordinates). In
consequence, the previous techniques used to obtain RKN methods still apply
here, as well as the inclusion of flows of modified potentials in the composition.

In Table 8 we separate, as usual, non-processed from processed schemes
(preceded by P). In the later case we also include methods applicable when
[[[F [b], F [a]], F [b]], F [b]] = 0 (second row) and schemes with modified potentials
(last two rows of processed methods).

6 Preserving properties and backward error analysis

Much insight into the long-time behavior of splitting methods (including
preservation of invariants and structures in the phase space) can be gained
by applying backward error analysis techniques. We will summarize here some
of the main issues involved and refer the reader to [41] for a detailed treatment
of the theory.

When we analyzed in the Introduction the symplectic Euler scheme as
applied to the simple harmonic oscillator, we associated its good qualitative
properties with the fact that the numerical solution can be interpreted as the
exact solution of a perturbed Hamiltonian system. This remarkable feature
constitutes a simple illustration of the insight provided by backward error
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analysis (BEA) in this setting. More generally, suppose that we apply the
splitting method (36) to solve equation (11). Then the corresponding numerical
solution at time t = h is given by

x(h) = K(h)x0 ≡ ebs+1hB eashA ebshB · · · eb2hB ea1hA eb1hBx0,

where the so-called stability matrix K(h) is given explicitly by

K(h) =

(
1 0

−bs+1h 1

) (
1 ash
0 1

)
· · ·
(

1 a1h
0 1

) (
1 0

−b1h 1

)
.

In this way, one gets

K(h) =

(
K1(h) K2(h)
K3(h) K4(h)

)
where K1(h), K4(h) (respectively, K2(h), K3(h)) are even (resp. odd) functions
and detK(h) = 1. As a matter of fact, any splitting method is uniquely
determined by its stability matrix, so that the analysis can be carried out
only with K(h) [9]. If in addition the splitting method is symmetric then
K(h)−1 = K(−h) and we can write

K(h) =

(
p(h) K2(h)
K3(h) p(h)

)

where p(h) = 1
2 tr(K(h)) = 1

2 (K1(h) +K4(h)). It can be shown that the matrix
K(h) is stable for a given h ∈ R, i.e., K(h)n is bounded for all the iterations
n, if and only if there exist real functions φ(h), γ(h) such that p(h) = cos(φ(h))
and K2(h) = −γ(h)2K3(h). In that case

K(h) =

(
cos(φ(h)) γ(h) sin(φ(h))

− sin(φ(h))
γ(h) cos(φ(h))

)
= exp

(
0 γ(h)φ(h)

−φ(h)
γ(h) 0

)

where, by consistency, φ′(0) = 1 and γ(0) = 1, whereas symmetry imposes
φ(−h) = −φ(h) and γ(−h) = γ(h).

This result implies, in particular, that the numerical solution (qn, pn) at time
tn = nh obtained by applying the splitting method to the linear system (11)
verifies (

qn
pn

)
=

(
cos(tnω̃) γ(h) sin(tnω̃)

−γ(h)−1 sin(tnω̃) cos(tnω̃)

) (
q0
p0

)

for values of h such that K(h) is stable. Here ω̃ = φ(h)/h. Equivalently,

qn = q̃(tn), pn = (φ(h)γ(h)/h)−1 d

dt
q̃(tn),

where q̃(t) is the exact solution of

d2

dt2
q̃ + ω̃2q̃ = 0
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with initial condition q̃(0) = q0, q̃
′(0) = (φ(h)γ(h)/h)p0. In other words, the

numerical solution provided by the splitting method is the exact solution of
a harmonic oscillator with frequency ω̃ ≈ 1, i.e., of a system of equations
satisfying the same geometric properties as the original system. The existence of
such a backward error interpretation has direct implications for the qualitative
behavior of the numerical solution, as well as for its global error.

The main idea can be extended to an arbitrary non-linear ODE (1). Recall
from Subsection 2.2 that each integrator ψh has associated a series Ψ(h) =
I + hΨ1 + h2Ψ2 + · · · of differential operators acting on smooth functions
g ∈ C∞(RD,R), and its formal logarithm log(Ψ(h)) is a series of vector fields
(viewed as first order differential operators) log(Ψ(h)) = hF1 + h2F2 + · · · .
For g ∈ C∞(RD,R), the result of acting each Fk on g is of the form Fk[g] =
g′(x)fk(x), for a certain smooth map fk : RD −→ RD. Now, consider the
modified differential equation (defined as a formal series in powers of h)

x̃′ = fh(x̃) ≡ f(x̃) + hf2(x̃) + h2f3(x̃) + · · · (86)

associated to the integrator ψh. Then one has that xn = x̃(tn), with tn = nh,
which allows studying the long-time behaviour of the numerical integrator by
analysing the solutions of the system (86) viewed as a small perturbation of the
original system (1). This allows one to get important qualitative information
about the numerical solution. In particular,

• for symmetric methods, the modified differential equation only contains
even powers of h;

• for volume-preserving methods applied to a divergence-free dynamical
system, the modified equation is also divergence-free;

• for symplectic methods applied to a Hamiltonian system, the modified
differential equation is (locally) Hamiltonian.

In the particular case of a symplectic integration method, this means that
there exist smooth functions Hj : R2d −→ R for j = 2, 3, . . ., such that
fj(x) = J∇Hj(x), where J is the canonical symplectic matrix. In consequence,
there exists a modified Hamiltonian of the form

H̃(q, p) = H(q, p) + hH2(q, p) + h2H3(q, p) + h3H4(q, p) + · · · (87)

such that the modified differential equation is given by

q′ = ∇pH̃(q, p), p′ = −∇qH̃(q, p).

Of course, if the method has order r, say, then Hi = 0 for i ≤ r in (87). In
other words, the modified Hamiltonian has the form H̃ = H + hrHr+1 + · · · .
In particular, for the Störmer-Verlet method (10) applied to the Hamiltonian
H(q, p) = T (p) + V (q), one has

H̃ = H + h2

(
− 1

24
Vqq(Tp, Tp) +

1

12
Tpp(Vq, Vq)

)
+ · · ·
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Apart from the linear case analyzed before, the series in (86) does not
converge in general. To make this formalism rigorous, one has to give bounds
on the coefficient functions fj(x) of the modified equation so as to determine an
optimal truncation index and finally one has to estimate the difference between
the numerical solution xn and the exact solution x̃(h) of the modified equation.

These estimates constitute in fact the basis for rigorous statements about
the long term behavior of the numerical solution. For instance, this theory
allows one to proof rigorously that a symplectic numerical method of order
r with constant step size h applied to a Hamiltonian system H verifies that
H(xn) = H(x0) + O(hr) for exponentially long time intervals [41].

On the other hand, since the modified differential equation of a numerical
scheme depends explicitly on the step size used, one has a different modified
equation each time the step size h is changed. This fact seems to be the reason
of the poor long time behavior observed in practice when a symplectic scheme
is implemented directly with a standard variable step-size strategy.

7 Special methods for special problems

7.1 Splitting methods for linear systems

Suppose one is interested in solving numerically the differential equations
arising from the generalized harmonic oscillator with Hamiltonian function (18).
Although RKN methods with modified potentials can be always used for this
purpose, we will see in the sequel that the particular structure of this system
allows one to design specially tailored schemes which are orders of magnitude
more efficient than other integrators frequently used in the literature.

At this point, the reader could reasonably ask about the convenience of
designing new numerical methods for the harmonic oscillator (18). It turns
out, however, that efficient splitting methods for this system can be of great
interest for the numerical treatment of partial differential equations appearing
in quantum mechanics, optics and electrodynamics previously discretized in
space.

Suppose, in particular, that we have to solve numerically the time dependent
Schrödinger equation (26) with initial wave function ψ(x, 0) = ψ0(x). We can
write (26) as

i
∂

∂t
ψ = (T (P ) + V (X))ψ, (88)

where T (P ) =
1

2m
P 2, and the operators X, P are defined by their actions on

ψ(x, t) as
Xψ(x, t) = xψ(x, t), Pψ(x, t) = −i∇ψ(x, t).

For simplicity, let us consider the one-dimensional problem and suppose that
it is defined in a given interval x ∈ [x0, xN ] (ψ(x0, t) = ψ(xN , t) = 0 or it has
periodic boundary conditions). A common procedure consists in taking first a
discrete spatial representation of the wave function ψ(x, t): the interval is split in
N parts of length Δx = (xN−x0)/N and the vector u = (u0, . . . , uN−1)

T ∈ CN
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is formed, with un = ψ(xn, t) and xn = x0 + nΔx, n = 0, 1, . . . , N − 1. The
partial differential equation (88) is then replaced by the N -dimensional linear
ODE

i
d

dt
u(t) = Hu(t), u(0) = u0 ∈ CN , (89)

where H ∈ RN×N represents the (in general Hermitian) matrix associated
with the Hamiltonian [32]. The formal solution of equation (89) is given by
u(t) = e−itHu0, but to exponentiate this N × N complex and full matrix can
be prohibitively expensive for large values of N , so in practice other methods
are preferred.

In general H = T + V, where V is a diagonal matrix associated with the
potential energy V and T is a full matrix related to the kinetic energy T .
Their action on the wave function vector is obtained as follows. The potential
operator being local in this representation, one has (Vu)n = V (xn)un and
thus the product Vu requires to compute N complex multiplications. Since
periodic boundary conditions are assumed, for the kinetic energy one has
Tu = F−1DT Fu, where F and F−1 correspond to the forward and backward
discrete Fourier transform, and DT is local in the momentum representation
(i.e., it is a diagonal matrix). The transformation F from the discrete coordinate
representation to the discrete momentum representation (and back) is done via
the fast Fourier transform (FFT) algorithm, requiring O(N logN) operations.
It is therefore possible to use the methods of subsection 2.1 with this splitting.

There are other ways, however, of using splitting techniques in this context.
To this end, notice that e−itH is not only unitary, but also symplectic with
canonical coordinates q = Re(u) and momenta p = Im(u). Thus, equation
(89) is equivalent to [37, 38]

d

dt
q = Hp,

d

dt
p = −Hq, (90)

where Hq and Hp require both a real-complex FFT and its inverse.
In addition, system (90) can be seen as the classical evolution equations
corresponding to the Hamiltonian function (18) with M = N = H. Thus,
efficient schemes for solving numerically the generalized harmonic oscillator can
be applied directly to this problem. Also the Maxwell equations (28) in an
isotropic, lossless and source free medium, when they are previously discretized
in space have a similar structure [70]. In consequence, numerical methods of
this class are well adapted for their numerical treatment.

Clearly, one may write

d

dt

{
q
p

}
=

(
0 H
−H 0

){
q
p

}
= (A + B)

{
q
p

}
, (91)

with the 2N × 2N matrices A and B given by

A ≡
(

0 H
0 0

)
, B ≡

(
0 0
−H 0

)
.
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The evolution operator corresponding to (91) is

O(t) =

(
cos(tH) sin(tH)

− sin(tH) cos(tH)

)
, (92)

which is an orthogonal and symplectic 2N×2N matrix. As before, its evaluation
is computationally very expensive and thus some approximation is required.
The usual procedure is to split the whole time interval into M steps of length
h = t/M , so that O(t) = [O(h)]M , and then approximate O(h) acting on the
initial condition at each step.

In this respect, observe that

eA =

(
I H
0 I

)
, eB =

(
I 0
−H I

)

and the cost of evaluating the action of eA and eB on z = (q,p)T is essentially
the cost of computing the products Hp and Hq, respectively. It makes sense,
then, to use splitting methods of the form (36), which in this context read

On(h) = ehbs+1B ehasA · · · ehb2B eha1A ehb1B. (93)

Several methods with different orders have been constructed along these lines
indeed [37, 50, 89]. Of particular relevance are the schemes presented in [37],
since only s = r exponentials ehaiA and ehbiB are used to achieve order r for
r = 4, 6, 8, 10 and 12. By contrast, in a general composition (93) the minimum
number s of exponentials ehaiA and ehbiB (or stages) required to attain order
r = 8, 10 is k = 15, 31, respectively [41, 45].

Furthermore, one can use processing to reduce even more the number of
exponentials. A different approach can also be followed, however: to take a
number of stages larger than strictly necessary to solve all the order conditions
to improve the efficiency and stability of the resulting schemes. The idea is to
use the extra cost to reduce the size of the error terms, enlarge the stability
interval and achieve therefore a higher efficiency but without raising the order.

Kernels with up to 19, 32 and 38 stages have been proposed, and for each
kernel the corresponding coefficients ai, bi have been determined according to
two different criteria. The first set of solutions is taken so as to provide methods
of order r = 10, 16 and 20. The second set of coefficients bring highly accurate
second order methods with an enlarged domain of stability. A more detailed
treatment can be found in [8, 9].

7.2 Splitting methods for non-autonomous systems

So far we have considered the problem of designing splitting methods for the
numerical integration of autonomous differential equations (1). As we have
shown, there are a large number of schemes of different orders in the literature,
and some of them are particularly efficient when the system possesses some
additional structure, e.g., for the second-order differential equation y′′ = g(y)
and the generalized harmonic oscillator (18). In this section we will review two
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different strategies to apply the splitting schemes when there is an explicit time
dependency in the original problem.

To fix ideas, let us assume that our system is non-autonomous and can be
split as

x′ = f(x, t) = f [a](x, t) + f [b](x, t), x(0) = x0. (94)

The first, most obvious procedure consists in taking t as a new coordinate,
so that (94) is transformed into an equivalent autonomous equation to which
standard splitting algorithms can be applied. More specifically, equation (94)
is equivalent to the enlarged system

d

dt

⎧⎨
⎩

x
xt1

xt2

⎫⎬
⎭ =

⎧⎨
⎩

f [a](x, xt1)
0
1

⎫⎬
⎭︸ ︷︷ ︸

f̂ [1]

+

⎧⎨
⎩

f [b](x, xt2)
1
0

⎫⎬
⎭︸ ︷︷ ︸

f̂ [2]

(95)

with xt1, xt2 ∈ R. Note that if the systems

y′ = f̂ [A](y), y′ = f̂ [B](y)

with y = (x, xt1, xt2) are solvable, then a splitting method similar to (36) can be
used, since xt1 is constant when integrating the first equation and xt2 is constant
when solving the second one. This, in fact, can be considered as a generalization
of the procedure proposed in [74] for time-dependent and separable Hamiltonian
systems, and is of interest if the time-dependent part in f [a] and f [b] is cheap to
compute. Otherwise the overall algorithm may be computationally costly, since
these functions have to be evaluated s times (the number of stages in (36)) per
time step.

Another disadvantage of this simple procedure is the following. Suppose
that, when the time is frozen, the function f in (94) has a special structure
which allows to apply highly efficient splitting schemes. If now t is a variable,
with (95) this time dependency is eliminated but the structure of the equation
might be modified so that one is bound to resort to more general and less
efficient integrators. This issue has been analyzed in detail in [5].

A second procedure which avoids the difficulties exhibited by the previous
example consists in approximating the exact solution of (94) or equivalently the
flow ϕh by the composition

ψ
[r]
s,h = ϕ

[B̂s+1]
h ◦ ϕ[Âs]

h ◦ ϕ[B̂s]
h ◦ · · · ◦ ϕ[B̂2]

h ◦ ϕ[Â1]
h ◦ ϕ[B̂1]

h , (96)

where the maps ϕ
[Âi]
h , ϕ

[B̂i]
h are the exact 1-flows corresponding to the time-

independent differential equations

x′ = Âi(x), x′ = B̂i(x), i = 1, 2, . . . (97)

respectively, with

Âi(x) ≡ h

k∑
j=1

ρijf
[a](x, τj), B̂i(x) ≡ h

k∑
j=1

σijf
[b](x, τj). (98)
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Here τj = t0 + cjh and the (real) constants cj , ρij , σij are chosen such that

ϕh = ψ
[r]
s,h +O(hr+1). Furthermore, the new schemes, when applied to (94) with

the time frozen, reproduce the standard splitting (36). This is accomplished by
ensuring that

∑
j ρij = ai and

∑
j σij = bi. The cj coefficients, on the other

hand, are typically chosen as the nodes of a symmetric quadrature rule of order
at least r. In particular, if a Gauss–Legendre quadrature rule is adopted, with
k evaluations of f [a](x, τj) and f [b](x, τj) a method of order r = 2k can be built
(taking s sufficiently large).

Once the quadrature nodes τj and the number of stages s are fixed, there still

remains to obtain the coefficients ρij , σij such that ψ
[r]
s,h has the desired order.

This is done by requiring that the composition (96) match the solution of (94)
as given by the Magnus expansion [10]. The task is made easier by noticing that
the order conditions to be satisfied by ρij and σij are identical both for linear
and nonlinear vector fields. Thus, the problem for the linear case is solved
first and then one generalizes the treatment to arbitrary nonlinear separable
problems.

The integrators of order four and six constructed along these lines in [5] are
generally more efficient than standard splitting methods applied to the enlarged
system (95).

8 Numerical examples with selected methods

This section intends to illustrate the relative performance between different
splitting methods, and occasionally we compare with other standard methods.
We consider first a relatively simple problem where most of the methods
previously mentioned can be used, showing their good features. We show the
interest of the high order methods when accurate results are desired and the
improvement which can be achieved when choosing a method from the most
appropriate family of methods for each problem. Next, we consider a problem
which, due to its very particular structure, allows to build tailored methods
whose performance is much superior to other splitting methods.

8.1 The perturbed Kepler problem

As a first example, we take the perturbed Kepler problem with Hamiltonian
(20)

H =
1

2
(p2

1 + p2
2)−

1

r
− ε

2r3

(
1− α3q21

r2

)
, (99)

where r =
√
q21 + q22 and the additional parameter α has been introduced for

convenience. This Hamiltonian describes in first approximation the dynamics
of a satellite moving into the gravitational field produced by a slightly oblate
spheric planet. The motion takes place in a plane containing the symmetry axis
of the planet when α = 1, whereas α = 0 corresponds to a plane perpendicular
to that axis [60].
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This simple (but non trivial) example constitutes in fact an excellent test
bench for most of the methods of this paper. Notice that the system is separable
into kinetic and potential parts, and we can use, for instance, the symmetric
second order method (10) which allows us to get higher order methods by
composition, as given in (62). On the other hand, since the system is separable
into two solvable parts, then we can also use methods from Table 5, which
should show better performances than methods of the same order considered
from the previous family of methods. In addition, the kinetic energy is quadratic
in momenta, so that RKN methods from Table 6 can be used, and one expect
a further improvement. Finally, observe that one may split the system as

H = H0 + εHI , (100)

where H0 corresponds to the Kepler problem, which is exactly solvable. The
Keplerian part of the Hamiltonian can be solved in action-angle coordinates,
where two changes of variables are needed. Alternatively, if desired, H0 can be
integrated in cartesian coordinates using the f and g Gauss functions, but then
a nonlinear equation must be solved with an iterative scheme [31]. In any case,
if ε  1, methods from Table 8 can be used which should be superior to all
previous methods in the limit ε→ 0.

We must also mention that the performance of all methods previously
mentioned can be further improved by using the processing technique, and even
additional improvements can be achieved if modified potentials are considered.

We take ε = 0.001, which approximately corresponds to a satellite moving
under the influence of the Earth [46] and initial conditions q1 = 1 − e, q2 = 0,
p1 = 0, p1 =

√
(1 + e)/(1− e), with e = 0.2 (this would be the eccentricity

for the unperturbed Kepler problem). In general, no closed orbits are present
and a precession is observed. Notice that for the Hamiltonian (99) the strength
of the perturbation depends obviously of the value of ε, but also on the initial
conditions. We take α = 1 and determine numerically the trajectory for up
to the final time tf = 500 · 2π (the exact solution is accurately approximated
using a high order method with a very small time-step, and this computation
was repeated with different time steps and methods to assure the accuracy is
reached up to round off).

To compare the performance of different methods it is usual to consider
efficiency curves. We measure the average error in energy computed at times
tk = k · 2π for k = 401, 402, . . . , 500 and this is repeated several times for each
method and using different time steps (changing the computational cost for the
numerical integration).

In the first numerical test, we compare the relative performance between
different symmetric-symmetric methods collected in Table 4. We choose as the
basic method the symmetric second order composition (10) to build higher
order methods with the composition (62). As mentioned, in general, the
performance of the methods of the same order increase with the number of
stages for the methods in Table 4. This is illustrated in Figure. 4 where we
show the performance of two 4th-order methods with three stages (given by
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(29)) and five stages (given by (82)). The results show that for this problem
the five stage method is more accurate for all computational costs considered.
A similar feature is observed for the other methods at higher orders (with the
exception of the 24-stage 8th-order method which was obtained in a different
way and the 21-stage methods shows a better performance). We choose the
best method from Table 4 at each order (including the well known three-stages
4th-order method as a reference) where we denote by SSsr the corresponding
method of order r using a s-stage composition:

• SS12: The 2nd-order method (10) which has the highest possible stability
among splitting methods.

• SS34 The well known 3-stage 4th-order method (29).

• SS54 The 5-stage 4th-order method (82) [78].

• SS136, SS218, SS3510: The composition from Table 4 and whose
coefficients are given in [76].

The results are shown in Fig. 4, where we clearly observe that the high order
methods have better performance when high accuracy is desired.
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Figure 4: Average error in energy versus number of force evaluations in a
double logarithmic scale for the numerical integration of the Hamiltonian system
(99). It is shown performance of the most efficient non-processed symmetric-
symmetric methods from Table 4.

The following numerical experiment intends to illustrate the interest of the
methods designed for problems with some particular structure. For simplicity,
in this numerical test we only consider fourth-order methods from different
families of methods which can be used on this problem, in order to observe the
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benefit of tuned methods for problems with particular structures. The following
methods are considered in addition to SS34 and SS54:

• S64: The symmetric 6-stage 4th-order method for separable problems [16]
from Table 5.

• RKN64: The symmetric 6SBAB 4th-order method for Nyström problems
[16] from Table 6.

• NI(8,4): The 5-stage fourth-order method 5(8,4)SBAB given in [53] from
Table 8.

• RK44: The standard 4-stage 4th-order non-symplectic Runge-Kutta
methods, used as a reference method.

Figure 5 shows in double logarithmic scale the results obtained. In the left
panel we show the average error in energy versus the number of force evaluations
and in the right panel we repeated the same experiment, but we measured the
average error in position (computed at the same instants). For the method
NI(8,4) this counting of the computational cost is not an appropriate measure.
Its computational cost strongly depends on each particular problem since the
evolution of H0 has to be computed exactly (or very accurately). For simplicity,
in our experiments, we have considered that one stage of NI(8,4) is twice as
expensive as one evaluation of the force. We have also included as a reference
the curve obtained in Fig. 4 by SS3510.

Observe that in the first case the results will be largely independent of tf
because the average error in energy does not increase secularly for symplectic
integrators. For comparison, we have also included the results obtained by the
standard 4-stage fourth-order Runge-Kutta method whose error in energy grows
linearly and the error in positions quadratically.

Even more accurate results could be obtained as follows. As mentioned, for
this particular problem, modified potentials could be used and this can be done
at a very low computational cost. Then, methods from Tables 7 and 8 can be
used. For instance, for the split (100) we can apply methods which incorporate
modified perturbations exp(εCh(b, c)) into the algorithm. Then the following
map has to be evaluated:

eεCh(b,c)p1 = p1 + hε

(
b
A

r7
− h2εc

C

(r7)2

)
q1

eεCh(b,c)p2 = p2 + hε

(
b
B

r7
− h2εc

D

(r7)2

)
q2, (101)

where A = (3/2)(α(3q21−2q22)−r2), B = (3/2)(α5q21−r2), C = 9(2r4+3αr2(q22−
4q21)+α2(18q41+q21q

2
2−2q42)) andD = 9(2r4−15αr2q21+5α2q21(5q21+2q22)). Notice

that the increment in the computational cost with respect to the evaluation

of ehεbF [b]

(which corresponds to c = 0) is only due to a few very simple
additional operations. For this particular example, the evaluation of the

modified perturbation eεCh(b,c) is about a 10−20% more expensive than ehbF [b]

.
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Figure 5: Average error in energy (left panel) and position (right panel) versus
number of force evaluations in a double logarithmic scale for the numerical
integration of the Hamiltonian system (99). The performance of different 4th-
order methods from Tables 4-8 is shown. As a reference, we also shown the
results obtained by the standard 4-stage fourth-order Runge-Kutta method.

As a result, more elaborated and efficient methods are obtained by
considering the schemes (n, 4) and (n, 5) from Table 8 with processing (which
only requires a few more code lines to program) for RKN problems and which
incorporate modified potentials (see [12]).

8.2 The Schrödinger equation

As a second example we consider the one-dimensional time-dependent Schrö-
dinger equation (26) with the Morse potential V (x) = D (1− e−αx)

2
. We fix

the parameters to the following values in atomic units (a.u.): μ = 1745 a.u.,
D = 0.2251 a.u. and α = 1.1741 a.u., which are frequently used for modelling
the HF molecule. As initial conditions we take the Gaussian wave function
ψ(x, t) = ρ exp

( − β(x − x̄)2
)
, with β =

√
kμ/2, k = 2Dα2, x̄ = −0.1 and ρ

is a normalizing constant. Assuming that the system is defined in the interval
x ∈ [−0.8, 4.32], we split it into d = 128 parts of length Δx = 0.04, take periodic
boundary conditions and integrate along the interval t ∈ [0, 20 · 2π/w0] with
w0 = α

√
2D/μ (see [8] for more details on the implementation of the splitting

methods to this particular problem).

Figure 6 shows the error in the Euclidean norm of the vector solution at the
end of the integration versus the number of FFT calls in double logarithmic
scale. The integrations are done starting from a sufficiently small time step and
repeating the computation by slightly increasing the time step until an overflow
occurs, which we identify with the stability limit. We present the results for the
following methods (in addition to the previous ones SS12, SS34 and SS218):
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• RKN116: The 11-stage 6th-order method 11SBAB-[16] from Table 6.

• GM1212: The 12-stage 12th-order method from [37] tailored for linear
problems with this particular structure.

• P382: The 38-stage second order processed method with coefficients given
in [8] tailored for linear problems with this particular structure (only the
computational cost required to evaluate the kernel has been taken into
consideration).

• Trr, r = 8, 12: r-stage rth-order Taylor methods obtained by truncating
the exponential up to order r.
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Figure 6: Error of the vector solution for the Schrödinger equation versus the
number of FFT calls in a log-log scale for the symmetric-symmetric composition
methods: SSkn, for methods of order n using k-stage compositions; RKN116 is
an 11-stage 6th-order methods from [16] for Nyström problems; the 12-stage
12th-order method, GM1212, from [37]; and P382, a 38-stage second order
processed method.

From the figure we observe that, for this numerical experiment, standard
Taylor methods outperform to general symmetric-symmetric splitting methods
and are also more accurate than the RKN method. This is because this
problem has a very particular structure and these splitting methods are not
optimized for them. However, the schemes GM1212 and P382 are built for
linear problems with this structure and their superiority is clearly manifest. It
is important to remember that Taylor methods are non-geometric integrators.
The numerical experiments are carried out for a relatively short time, and
the relative performances of the Taylor methods deteriorates with respect to
splitting methods for longer integrations.
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9 Conclusions and outlook

Splitting methods are a flexible and powerful way to solve numerically the
initial value problem defined by (1) when f can be decomposed into two
or more parts and each of them is simpler to integrate than the original
problem. This is especially true when the exact flow possesses some structural
features which seems natural to reproduce at the discrete level, as happens,
for instance, in Hamiltonian, Poisson, volume-preserving or time-reversible
dynamical systems. They are explicit, usually simple to apply in practice
and constitute an important class of geometric numerical integrators. Closely
connected with splitting schemes are composition methods. In this case, the idea
is to construct numerical integrators of arbitrarily high order by composing one
or more basic schemes of low order with appropriately chosen coefficients. The
resulting method inherits the relevant properties that the basic integrator shares
with the exact solution, provided these properties are preserved by composition.

In this paper we have reviewed some of the main features of splitting
and composition methods in the numerical integration of ordinary differential
equations. We have presented a novel approach to get the order conditions of
this class of schemes based on Lyndon words and we have seen how these order
conditions particularize when coping with special classes of dynamical systems
(near-integrable systems and second-order differential equations of the form
y′′ = g(y)). It turns out that the number of equations to be solved increases
dramatically with the order considered, as so does the complexity of the problem
of finding efficient high order methods. One way to circumvent (up to a certain
point) this difficulty consists in applying the processing technique, since then
it is possible to design algorithms with fewer evaluations per time step. In this
sense, one could say that the use of processing is perhaps the most economical
path to achieve high order.

Since splitting methods are widely applied in many areas of science, it is
not surprising that a great number of different schemes are available in the
mathematical, physical and chemical literature. We have collected here some
of the most representative integrators, classified according to the particular
structure of the differential equations, the number of stages and the order of
consistency, citing in each case the actual reference where the method has been
first proposed.

The good qualitative behavior exhibited by splitting methods (including
preservation of invariants and structures in phase space), as well as their
favorable error propagation in long-time integrations can be accounted for by
applying the theory of backward error analysis. Loosely speaking, the observed
performance is related with the fact that the numerical solution provided by the
splitting method is the exact solution of a differential equation with the same
geometric properties as the original system. This interpretation constitutes in
addition the basis for rigorous estimates on the numerical solution.

In contrast with standard integration methods (Runge–Kutta, multistep),
whose efficiency is essentially independent of the particular differential equation
considered, splitting schemes can be designed to incorporate in their formulation
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some of the most relevant properties of the original system. This feature has
to be taken into account when comparing the efficiency of splitting methods
with respect to other general purpose integrators. In this sense, Figures 4 and
5 are quite illustrative. For this particular problem, specially adapted 4th-
order splitting schemes are up to 6 orders of magnitude more accurate with
the same computational cost than the well known Runge–Kutta method. They
even outperform other standard higher order composition integrators for a wide
range of values of the step size h.

As an additional evidence of the extraordinary flexibility of splitting
methods, we have considered the problem of designing specially tailored schemes
for the numerical integration of the generalized harmonic oscillator (18). It turns
out that several partial differential equations appearing in quantum mechanics,
optics and electrodynamics give rise, once discretized in space, to this system
with different matrices M and N . The particular structure of this dynamical
system can be exploited to build an optimized processed second order method
involving a large number of stages that nevertheless is far more efficient than
other integrators.

There are other issues in connection with splitting and composition methods
that we have not tackled here, however, and that are also important in this
context. Among them we can mention the following.

• As was remarked in the introduction, no general rule is provided here
to split any given function f in the differential equation (1). It turns
out that, for f within a certain class of ODEs, this can be done
systematically, whereas for other functions one has to proceed on a
case by case basis. Sometimes, several splittings are possible, and the
different schemes built from them lead to the preservation of distinctive
geometric properties. It makes sense, then, to classify the ODEs and their
corresponding integration methods into different categories. This aspect
has been analyzed in [57]. Moreover, in many physical problems there are
several geometric properties that are conserved simultaneously along the
evolution and it is not clear at all how to design methods preserving all
of them. In that case, which one is the most relevant from a numerical
point of view?

• In this paper we have only considered the initial value problem defined by
eq. (1) and integration methods with constant step size h. Backward
error analysis provides an argument why this has to be the case in
geometric numerical integration: the modified equation corresponding to
the numerical method depends explicitly on h, so that if h is changed so
does the modified equation and no preservation of geometric properties is
guaranteed. There are problems, however, where the use of an adaptive
step size is mandatory, for instance in configurations of the N -body
problem allowing close encounters. In this case one may apply splitting
methods with variable step size by using some specifically designed
transformations involving the time variable, in such a way that in the
new variables the resulting time step is constant (see, e.g., [3]).
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• As we have shown in section 3.5, the presence of negative coefficients in
splitting methods of order higher than two is unavoidable. This is not
a problem when the flow of the differential equation evolves in a group
(such as in the Hamiltonian case), but may be unacceptable when the
ODE originates from a partial differential equation that is ill-posed for
negative time progression. Several alternatives have been proposed in the
literature, mainly by considering, when possible, modified potentials [4], as
noted in section 4.1. One should observe, however, that the analysis done
in section 3.5 does not preclude the existence of complex coefficients with
positive real parts. As a matter of fact, splitting methods with complex
coefficients have been developed and tested for problems in which the
Hamiltonian is split into kinetic and potential energy terms [24], for the
time-dependent Schrödinger equation [2], for generic parabolic equations
[23] and also in the more abstract setting of evolution PDEs in analytic
semigroups [42].

• An important characteristic of any numerical integration method is
stability. Roughly speaking, the numerical solution provided by a stable
numerical integrator does not tend to infinity when the exact solution
is bounded. Although important, this feature has received considerably
less attention in the specific case of splitting methods. To test the (linear)
stability of the method (36), instead of the linear equation y′ = ay as in the
usual stability analysis for ODE integrators, one considers the harmonic
oscillator y′′ + λ2y = 0, λ > 0, as a model problem with a splitting of
the form (11). The idea is to find the time steps for which all numerical
solutions remain bounded. The integrator (36) typically will be unstable
for |hλ| > x∗, where the parameter x∗ determines the stability threshold
of the numerical scheme. In particular, for the leapfrog method one has
x∗ = 2. Although the stability threshold imposes restrictions on the step
size, in the process of building high order schemes, linear stability is not
usually taken into account, ending sometimes with methods possessing
such a small relative stability threshold that they are useless in practice.
In this way, constructing high order splitting methods with relatively large
linear stability intervals and highly accurate is of great interest. This has
been achieved in reference [9] for linear systems, but remains an open
problem in general.

• In section 5 we have mentioned an optimization criterion to choose the
free parameters in splitting and composition methods, which consist in
minimizing the Euclidean norm of the coefficients that constitute the
leading error term of the method. It is clear, however, that minimizing
the leading error term does not guarantee that the method thus obtained
is the most efficient: it might occur that the influence of the subsequent
error terms is the decisive factor in the performance of the scheme. In
this sense, it would be extremely interesting to have estimates on all the
error terms in the asymptotic expansion of the modified equation and get
the coefficients of the method that minimize these estimates.
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• The numerical analysis of second-order differential equations with
oscillatory solutions has aroused much interest during the past few years.
The typical test problem in this setting is the equation q′′ + Ω2q = f(q),
where Ω is a symmetric and positive definite matrix. Here the aim is to
design new methods which improve in accuracy and stability the standard
Störmer–Verlet integrator. We refer the reader to [41] and references
therein for a comprehensive study of this problem.

• Although only ODEs have been considered here, splitting methods have
been also applied with success to stochastic differential equations (SDEs).
Here the aim is, as in the deterministic case, to design integration
methods which automatically incorporate conservation properties the SDE
possesses [61].
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