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ABSTRACT
Multiple scattering theory is applied to the study of clusters of point-like scatterers attached to a thin elastic plate and arranged in quasi-
periodic distributions. Two types of structures are specifically considered: the twisted bilayer and the quasi-periodic line. The former consists
in a couple of two-dimensional lattices rotated a relative angle, so that the cluster forms a moiré pattern. The latter can be seen as a periodic
one-dimensional lattice where an incommensurate modulation is superimposed. Multiple scattering theory allows for the fast and efficient
calculation of the resonant modes of these structures as well as for their quality factor, which is thoroughly analyzed in this work. The results
show that quasi-periodic structures present a large density of states with high quality factors, being therefore a promising way for the design
of high quality wave-localization devices.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0098239

I. INTRODUCTION
The study of quasi-periodic structures has a long history in

all domains of physics,1–8 although recently an increasing interest
has emerged due to the extraordinary properties of twisted bilayer
graphene.9–11

In the realm of classical waves (mainly photonic and acoustics),
different quasi-periodic structures have been recently studied in one
and two dimensions, and localized and robust interface states have
been found both theoretically and experimentally.12–20 The theoret-
ical analysis of quasi-periodic distributions of scatterers is extremely
challenging, since these contain a large number of scatterers and
some periodicity might only be retrieved in a higher-dimensional
space, where the analysis might be simplified making use of a sin-
gle unit cell.21 Recently, we found that multiple scattering theory
is a reliable method for the study of quasi-periodic arrangement of
scatterers,22,23 and we showed that these structures present a large
density of states.

However, the analysis of these states is incomplete if the imag-
inary part of the frequency is not taken into account, since open
systems have finite mean-life resonances whose quality can be more
than relevant for their use as wave-trapping devices. Consequently,
a deeper analysis of these structures has yet to be done.

In this work, we will revisit the structures studied in Refs. 22
and 23 to further analyze the resonances found therein. Multiple
scattering theory allows for the analysis of the resonances’ quality in
finite clusters of scatterers. This can be done mainly by two methods,
based on the analysis of the response of the system to real or complex
frequencies. Both methods are similar for high quality resonances,
but only the latter is accurate for low quality factor resonances, as
will be shown in the following sections.

This paper is organized as follows: After this introduction, in
Sec. II, we will present a brief description of the use of multiple scat-
tering theory for the analysis of resonant frequencies of finite clusters
of scatterers. Then, Sec. III will analyze the quality factor of the
eigenmodes of the quasi-periodic line of scatterers, and in Sec. IV,
the same analysis will be performed for the two-dimensional twisted
bilayer structure. Finally, Sec. V will summarize the work.

II. RESONANT MODES BY MULTIPLE SCATTERING
THEORY

Given a cluster of N point scatterers attached to a thin
elastic plate at positions Rα, for α = 1, . . . , N, the eigenmodes of
such a cluster are defined as the zeros of the determinant of the
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multiple scattering matrix M when no incident field is present.22,23

This matrix is defined as

Mαβ = δαβt−1
α −G(Rα − Rβ), (1)

where Green’s function G(r) for flexural waves is given by

G(r) = i
8k2 [H0(kr) −H0(ikr)], (2)

and the scalar quantity tα defines the impedance of each
scatterer.22–26

The matrix M is a function of frequency via both tα and G(r).
However, the determinant is never zero for a real frequency for an
open system (spectra of open systems depart from the real line and
populate the complex plane27), as it is the case of our finite cluster.
Therefore, in order to find the eigenmodes of the cluster, we should
solve the equation

det M(Ω) = 0 (3)

for a complex frequency ω. The real part of such a complex fre-
quency corresponds to the peak expected upon excitation of the
cluster while the imaginary part is related with the quality factor
of the eigenmode, i.e., the larger the imaginary part, the lower the
quality factor.

Finding the complex zeros of a determinant is in general a
difficult problem, since the determinant itself is complex-valued.
However, an approximate value for the real part of the eigenfre-
quency can be obtained as those frequencies that minimize the value
of the determinant, or, more efficiently, those frequencies that min-
imize the smallest eigenvalue of the matrix M. If the quality of the
resonance is high, it will have a small imaginary part so that the
complex zero can be found around the approximate real frequency
that minimizes the smallest eigenvalue of M. Obviously, the closer
the smallest eigenvalue to zero, the smaller the imaginary part of the
eigenfrequency.

If the analysis is performed only analyzing the behavior of the
minimum eigenvalue as a function of the real part of the frequency,
the quality factor can be found from the response in the neighbor-
hood of the minimum. Thus, the quality factor of a resonance is
defined as

Q = f0

δ f
, (4)

with f0 being the resonant frequency and δf the full width half
maximum.

Both methods will be applied below for the characterization of
the eigenmodes of the clusters.

III. ONE-DIMENSIONAL ARRAY OF SCATTERERS
We will consider first the analysis of eigenfrequencies of one-

dimensional arrays of scatterers. Let us assume that a cluster of N
scatterers are arranged in positions Rα as shown in Fig. 1, lower
panel, such that

Rα = aα + ρm sin(αθ), (5)

with a being the lattice constant, ρm the radius of the modu-
lation circle, and θ the angle rotated in the circle (as defined

FIG. 1. Schematics of the two structures analyzed in this work: A twisted bilayer
configuration (upper panel) and an aperiodic line of scatterers (lower panel). The
scatterers consist of spring-mass resonators attached to a thin elastic plate by
means of a point-like contact. The geometrical parameters are indicated in the
drawing (see text for further explanation).

in Ref. 28). This type of arrangement allows us to define peri-
odic or aperiodic clusters depending on the nature of the θ
parameter (rational or irrational, respectively).

Figure 2, left panel, shows the evolution of the minimum eigen-
value of the M matrix as a function of the normalized frequency
of the system (only real component) and the modulation para-
meter θ. The diagram shows the well-known Hofstadter’s butterfly,29

and it was previously found for these systems.23 This structure is

FIG. 2. Left panel: evolution of the minimum eigenvalue of the multiple scatter-
ing matrix (M) as a function of the modulation parameter of a one-dimensional
array of scatterers and the normalized frequency of the system (real frequency).
The scatterers’ properties are γα = 100 and Ωα ⋅ a/π = 0.25. Upper right panel:
evolution of the minimum eigenvalue as a function of the normalized frequency
for two spatial configurations, corresponding to θ = 0.26○ and θ = 0.45○. Lower
right panels: these two maps show the evolution of the minimum eigenvalue as a
function of the normalized frequency of the system in the complex plane.
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characterized by a set of gaps without modes all over the spectrum,
defining the contour of the butterfly (yellow and green regions in
Fig. 2 left panel). The upper right panel of Fig. 2 shows the frequency
evolution of the smallest eigenvalue for θ = 0.26○ (green line) and
θ = 0.45○ (orange line). Two points, highlighted in red, belong to
two different zones where two bandgaps are approaching each other.
These bandgaps will collapse as the modulation parameter increases;
however, before this occurs, they confine a state in between. The
green line shows a resonance in the middle of two bandgaps, and at
low frequencies, several resonances appear. The complex frequency
map shown below also depicts these minima: the imaginary part that
must be added in order to obtain the cancellation of the eigenvalue
is negligible. Concerning the second configuration, one minimum
has been chosen (red point). However, the chosen window lets us
appreciate four different minima in the eigenvalue; three of them
having high quality factor, while another one having low quality fac-
tor (near Ω = 0.23). The complex frequency map below also shows
these four minima: the three in the upper part correspond to the high
quality resonances; they are at the center of the map, with almost
null imaginary frequency component. Meanwhile, the fourth reso-
nance is shifted to the left, stating the need of a higher imaginary
component for achieving the cancellation of the determinant.

These modes tend to localize at the edge of the structure, so
that by adding the mirror symmetric cluster we will increase the
robustness of the mode, as will be shown below. They appear as a
consequence of having a finite structure. If we were able to simu-
late the infinite structure, we would not be able to find these modes
inside the gap. This result can be approached by only evaluating our
structure for modulation parameters such that

θ = n
N

, n = 1, . . . , N, (6)

with N being the number of scatterers in the finite cluster, as
explained in Ref. 30. Edge states became interface states by the
addition of mirror symmetry.

Figure 3, upper panels, show the same insight of the
Hofstadter butterfly, but the left map corresponds to the linear array
of scatterers without mirror symmetry, while the second one corre-
sponds to the addition of mirror symmetry to the structure. These
insights are centered in a bandgap; therefore, the vertical lines that
appear in both maps (in the left one they are hardly visible, while
they are clearer in the right one) correspond to modes inside the
gap. One point has been chosen from each map (they have not
exactly the same properties due to the fact that vertical lines are
slightly shifted when adding the mirror symmetry to the structure).
Figure 3 lower panel shows the evolution of the eigenvalue as a func-
tion of the normalized frequency for the spatial configuration of the
red points. Whereas the simple structure shows a low quality fac-
tor resonance with a minimum far from zero, the mirror-symmetric
structure presents a narrower resonance (high quality factor) and the
minimum is two orders of magnitude smaller than the former one.

Figure 4 shows another example of the improvement in the
bandgap modes due to the addition of symmetry. In this case,
the chosen spatial configuration is found inside one of the smaller
bandgaps of the Hofstadter’s butterfly. However, the result is similar:
the evolution of the eigenvalue as a function of the frequency shows
that the resonance inside the bandgap gets narrower when adding
spatial symmetry to the system.

FIG. 3. Resonance comparison between modes found in the gaps of the
Hofstadter’s butterfly for a one-dimensional array of scatterers (upper left panel)
and bandgap modes found for a one-dimensional array of scatterers with mirror
symmetry (upper right pannel). Lower panel: evolution of the minimum eigenvalue
as a function of the normalized frequency for both structures with a given spatial
configuration. As can be seen, the mirror-symmetric structure presents a sharper
resonance compared with the simpler structure.

As discussed before, we expect a small imaginary part for these
two resonances when the zeros are searched in the complex plane,
since the eigenvalue is very close to zero.

IV. TWISTED BILAYERS
In this section, we will perform a similar analysis but for the

twisted bilayer analyzed in Ref. 22. This analysis is motivated by
the fractal energy landscapes of twisted bilayers,31 similarly to the
Hofstadter butterfly spectrum of the finite cluster studied previ-
ously. We will build clusters of scatterers by the superposition of
two identical periodic lattices with a relative angle between their lat-
tice vectors. Thus, defining the first lattice vectors as al = alx + ialy,

FIG. 4. Another example of comparison between one-dimensional arrays of scat-
terers (upper left panel) and one-dimensional arrays of scatterers with mirror
symmetry (upper right panel). Again, the lower panel shows the evolution of the
minimum eigenvalue for a given spatial configuration, showing that the resonance
near Ω = 0.24 is sharper in the case of the mirror-symmetric structure.
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for l = 1, 2, and similarly for the second lattice (bl = blx + ibly), they
will be simply related as bl = aleiθ0 , being θ0 the twisting angle
between both lattices. Scatterers in the cluster are located at posi-
tions Ra = n1a1 + n2a2 and Rb = m1b1 +m2b2, being ni, mi integer
numbers.

Figure 5, left panel, shows the evolution of the minimum eigen-
value of the M matrix as a function of the normalized frequency
of the system and the twisting angle of the bilayer structure. Blue
lines in the map correspond to configurations where the eigenvalue
approaches zero. The individual lattices forming the twisted bilayer
have triangular arrangement, and the properties of the scatterers
are constant (Ωαa/π = 20 and γα = 200). Triangular lattices have
π/6 symmetry; therefore, only the twisting angles between 0○ and
30○ have been shown. As explained in Ref. 22, modes are located
around commensurate angles of the twisted bilayer and also near
small twisting angles. Two points have been chosen in the map: they
have been highlighted in red. In the upper right panel, the evolu-
tion of the minimum eigenvalue with frequency is shown for the
two spatial configurations of the highlighted points: they correspond
to θ = 9.1○ and θ = 9.3○. Both curves present a resonance, being the
red point the minimum of the resonance. However, while the first
curve shows a sharp resonance with a high quality factor (Q = 81.4),
the second curve has a broader resonance with low quality factor
(Q = 4.6).

As explained before, once the resonant frequency has been
found, a detailed analysis in the complex frequency plane can be
done. Figure 5 lower panels show the evolution of the minimum
eigenvalue as a function of the complex normalized frequency of the
system. Both maps are centered at the resonant frequencies of the
chosen modes (red points). The first case, which presented a sharp
resonance, shows the minimum in the center of the complex map,
with a slight shift with respect to the red point. This means that a

FIG. 5. Left panel: evolution of the minimum eigenvalue of the multiple scattering
matrix (M) as a function of the twisting angle of the twisted bilayer structure and
the normalized frequency of the system (real frequency). The scatterers’ prop-
erties are γα = 200 and Ωα ⋅ a/π = 20. The original lattices forming the twisted
bilayer have a triangular arrangement. Upper right panel: evolution of the minimum
eigenvalue as a function of the normalized frequency for two spatial configurations,
corresponding to θ = 9.1○ and θ = 9.3○. Lower right panels: these two maps show
the evolution of the minimum eigenvalue as a function of the normalized frequency
of the system in the complex plane.

small imaginary frequency term is needed in order to achieve the
cancellation of the minimum eigenvalue and, therefore, the cancella-
tion of the determinant of the M matrix. As for the second mode, its
complex map shows a minimum shifted to the left part of the map. It
can be seen that the minimum is no longer a point but a distributed
structure, being this an artifact produced by the discretization of
the parameters in the simulation so that an artificial breaking of the
degeneracy is found.

By changing the normalized mass of the scatterers, we are able
to change their impedance, and then change the behavior of the
cluster. Figure 6 left panel shows the evolution of the minimum
eigenvalue of the cluster as a function of the twisting angle and the
real frequency of the system. This is the same map as in Fig. 5, but
this time, the normalized mass is γα = 20. What can be seen from
this map is that by reducing the impedance of the scatterers, the
behavior at low frequency becomes more complex. Compared to the
case γα = 200, this one shows more modes for small angles. Further-
more, dipolar behavior near commensurate angles, which was clear
in the previous case whenever Ωa/π > 1, is now more confusing.
Only when Ωa/π > 2.5 dipolar modes appear. Again, two configu-
rations in this map have been chosen, highlighted with red points in
the map. Their resonances as a function of the frequency are shown
in the upper right panels of Fig. 6. In this case, each resonance is
shown in a different graph. We have decided to split it due to the
complexity of the curve with frequency. Therefore, the graphs shown
are centered in the resonance, not as in Fig. 5, where all the fre-
quency range was plotted. The first resonance, which corresponds
to a spatial configuration of θ = 8.86○ and a resonant frequency of
Ωa/π = 3.23, shows a broad resonance behavior, having a low qual-
ity factor (Q = 5.98). This result is in accordance with what it is
seen in the complex map below. The minimum in the complex
map appears shifted with respect to the red point. The imaginary

FIG. 6. Left panel: evolution of the minimum eigenvalue of the multiple scattering
matrix (M) as a function of the twisting angle of the twisted bilayer structure and
the normalized frequency of the system (real frequency). The scatterers’ properties
are γα = 20 and Ωα ⋅ a/π = 20. The original lattices forming the twisted bilayer
have a triangular arrangement. Upper right panels: evolution of the minimum
eigenvalue as a function of the normalized frequency for two spatial configurations,
corresponding to θ = 8.86○ and θ = 14.17○. Lower right panels: these two maps
show the evolution of the minimum eigenvalue as a function of the normalized
frequency of the system in the complex plane.
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FIG. 7. Two more resonances on the γα = 20 twisted bilayers. The first one
(θ = 12.47)○, shown above, has been split in four sharp peaks. The second reso-
nance (θ = 0.65)○, shown below, is a wide one. However, the complex frequency
map shows the presence of different minima in the region where the resonance is
found.

part needed is higher than in the precedent cases. The second one
(θ = 14.17○ and Ωa/π = 2.88) shows a sharper behavior, and thus the
complex map shows that the minimum is almost at the center of the
map, near the brown point. These two cases have similar behavior to
those shown for the γα = 200 twisted bilayers.

Finally, other resonances with more complicated behavior can
be found in this second structure (twisted bilayers with γα = 20).
Figure 7 shows two more resonances (evolution of the minimum
eigenvalue with real frequency and the complex frequency map
around the resonance point). The one shown in the upper pan-
els has θ = 12.47○ and Ωa/π = 3.62, which is located in the dipolar
modes of the left panel in Fig. 6. In this case, the resonance is split in
four sharp minima. The same behavior is seen in both the real fre-
quency line and the complex map. In the latter, four minima appear
with the same imaginary component, which means that the qual-
ity factor of these resonances is the same. As for the second mode,
the spatial configuration is θ = 0.65○, and the resonant frequency is
Ωa/π = 2.47. This point belongs to the left part of Fig. 6 left panel,
in other words, to the small angle condition, where all the scatterers
in the cluster are close to each other. The behavior of the eigenvalue
with real frequency shows a single minimum with a wide resonance
and a low quality factor (Q = 20.58). However, the insight in the
complex plane reveals a more complex behavior, with four differ-
ent minima with different imaginary components and even different
real frequencies. As we have found in the aperiodic line of scatter-
ers, this structure also presents some regions with a high density of
states.

V. SUMMARY
In summary, we have analyzed the eigenfrequencies of finite

clusters of scatters arranged in quasi-periodic distributions by mul-
tiple scattering theory. Unlike in previous studies, in which only the
position of these modes has been considered, we have focused our
study on the quality of these modes, which is a more relevant para-
meter given the great amount of resonances that these structures
present. Two types of clusters have been studied, linear distributions
in which the modulation of the distance between scatterers creates

the aperiodicity and twisted bilayers, in which a moiré pattern is
formed. The former type of clusters presents localized modes at its
edges, although the quality of these modes is remarkably enhanced
at the interface between the cluster and its mirror symmetric struc-
ture. The latter type of clusters shows as well high quality modes,
although a strong variation of this quality can be found through the
configuration map, which shows that the analysis of the quality of
these modes is more than relevant for their use in operating devices.
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