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Abstract

Nitrogen dioxide is one of the pollutants with the most significant health effects. Advanced

information on its concentration in the air can help to monitor and control further conse-

quences more effectively, while also making it easier to apply preventive and mitigating mea-

sures. Machine learning technologies with available methods and capabilities, combined with

the geospatial dimension, can perform predictive analyses with higher accuracy and, as a

result, can serve as a supportive tool for productive management. One of the most advanced

machine learning algorithms, Bidirectional convolutional LSTM, is being used in ongoing

work to predict the concentration of nitrogen dioxide. The model has been validated to per-

form more accurate spatiotemporal analysis based on the integration of temporal and geos-

patial factors. The analysis was carried out according to two scenarios developed on the

basis of selected features using data from the city of Madrid for the periods January-June

2019 and January-June 2020. Evaluation of the model’s performance was conducted using

the Root Mean Square Error and the Mean Absolute Error which emphasises the superiority

of the proposed model over the reference models. In addition, the significance of a feature

selection technique providing improved accuracy was underlined. In terms of execution time,

due to the complexity of the Bidirectional convolutional LSTM architecture, convergence and

generalisation of the data took longer, resulting in the superiority of the reference models.

1 Introduction

The increase in the level of urbanisation, in addition to positive consequences, also causes

some problems associated with environmental changes, one of which is the deterioration of air

quality [1, 2]. According to the observations of the World Health Organisation (WHO), seven

million deaths due to short-term and long-term exposure to air pollutants are recorded every

year [3]. Regarding Spain, studies show that over 93,000 people have died in Spain due to air

pollution in recent decades [4]. The WHO has identified the most dangerous pollutants and

established guidelines with specific thresholds for each of them, including particulate matter

(PM), ozone (O3), nitrogen dioxide (NO2) and sulphur dioxide (SO2) [5, 6]. The prediction of

one of these pollutants, NO2, is the main focus of the current work. The main source of NO2
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formation is the combustion of fossil fuels, especially that produced by traffic. There are many

works devoted to the study of the effects of NO2, in particular, the increase in mortality from

cardiovascular and respiratory diseases. For example, Faustini et al. found out that the effect of

an increase in the annual concentration of NO2 by 10 μg/m3 on cardiovascular mortality was

Relative Risk (RR) 1.13 (95% CI 1.09–1.18) and on respiratory mortality was RR 1.03 (95% CI

1.02–1.03) [7]. According to Hoek et al. long-term exposure to NO2 increases the risk of death

by 5% for every 10 μg/m3 NO2 [8]. Hamra et al. in their estimates showed that the change in

lung cancer incidence or mortality per 10 μg/m3 increase in exposure is 4% [95% confidence

interval (CI) 1%-8%] [9]. In the following study [10], the authors identified the relationship

between NO2 and chronic obstructive pulmonary disease (COPD). The pooled effect of a 10 g/

m3 increase in NO2 concentration on hospital admissions and on mortality was 1.3% and

2.6%, respectively. Long-term and short-term NO2 exposure on COPD cases had an RR 2.5

and 1.4%, respectively. The COPD effect associated with a 10 μg/m3 increase in exposure to

outdoor-sourced NO2 and to an exclusively traffic-sourced NO2 was 1.7 and 17.8%, respec-

tively. According to Brønnum-Hansen et al., reducing NO2 exposure to rural levels (6 μg/m3)

could increase life expectancy by one year in 2040, and 20% reduction in NO2 would result in

1.3–1.6 years of disease-free life and 0.3-0.5 years of total life expectancy [11].

Given the aforementioned impacts, scientists and governments have turned their attention

to the challenge of reducing NO2 emissions. Knowing its concentration in advance can be par-

ticularly important for decision-makers when planning and implementing air pollution strate-

gies. The development of new technologies makes it possible to combine the components

affecting air pollution, to estimate and forecast them by establishing advanced models.

The model that will be used in this work is Bidirectional convolutional LSTM

(BiConvLSTM) to more efficiently capture space-time patterns and make very accurate predic-

tions. Several authors have implemented this model in their work [12, 13], but our study will

be the first to implement BiConvLSTM in the air quality domain. Regarding the baseline mod-

els, LSTM and ConvLSTM were selected (LSTM—based on the Table 1, which displays publi-

cations focusing on NO2 prediction with implemented methods extracted from the following

work [14]; ConvLSTM—given the fact that many authors have recently used it for air quality

prediction). Therefore, the main objective of this work is to predict NO2 concentration using

BiConvLSTM. The analysis was carried out in two scenarios: a) Including all datasets, and b)

Including datasets selected by the implementation of the feature selection technique. Both sce-

narios were designed to answer the following questions: Compare the selected model

(BiConvLSTM) with other models (LSTM-FC, ConvLSTM) for predicting NO2 in the city of

Madrid in terms of accuracy and runtime. The analysis was implemented using data from

Madrid during the period January-June 2019 (training set) and January-June 2020 (validation

and testing sets) with the purpose to predict the next 6 hours using the previous 6 hours of

data. The main contributions of ongoing work can be summarised as follows: a) The prediction

of NO2 deploying spatiotemporal method, b) Endorsement of the proposed model’s superiority

over the reference models, and c) Emphasis of the advantages of the feature selection method.

The rest of the paper is structured as follows. Section 2 is dedicated to identifying related

works. Section 3 introduces the case study and describes the datasets employed and the meth-

odology implemented. Section 4 presents the implementation process and the results obtained.

Finally, Section 5 includes the conclusions and future work.

2 Related work

Predicting air quality is challenging given the numerous factors that affect it. With the develop-

ment of technologies various models, including statistical and deep learning models, have

PLOS ONE Bidirectional convolutional LSTM for the prediction of nitrogen dioxide in the city of Madrid

PLOS ONE | https://doi.org/10.1371/journal.pone.0269295 June 1, 2022 2 / 20

Innovación —Spanish government (IJC2018-

035017-I). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0269295


been deployed to predict air quality. The choice of model can be adjusted depending on the

stated problem to be solved, for example, the predicted pollutant or the study region’s peculiar-

ities. Below are a few examples of research related to the subject area extracted from the follow-

ing works [14, 32].

For example, Xu et al. [33] employed the Extreme Gradient Boosting (XGBoost) integrated

with the Shapley additive explanation technique for ultrafine particle concentrations forecast.

Another work implemented XGboost was developed by Ma et al. [34] to predict PM2.5 in

Shanghai. Leong et al. [35] applied Support Vector Machine to predict air pollution index.

Lasisi et al. [36] proposed Fuzzy Rough Set and Artificial Immune System algorithms to pre-

dict air quality. Among many studies, many of them have confirmed the effectiveness of the

Table 1. Implemented algorithms and evaluation metrics extracted from the publications focused on the predic-

tion of NO2 (�).

Work ML Algorithm Evaluation Metric

[15] BRT, SVM, XGBoost, RF, GAM, Cubist RMSE, ME, NRMSE, NME,

POD, POF, R2

[16] LSTM RMSE, NSE, PBIAS, R

[17] LSTM MSE

[18] MLR, MLPNN, ELM, OSMLR, OSELM

[19] LSTM RMSE, MAE

[20] ELM RMSE, MAE, IA, R2

[21] ANN RMSE, R, NMB, NMSD, Rs,

SD, SD0

[22] SVM, M5P model trees, ANN RMSE, NRMSE, PTA

[23] Cluster-based bagging RMSE, R2, RMSEIQR

[24] MLP with hierarchical clustering, SOM and k-means clustering RMSE, MAE, NRMSE, MBE,

IA, R

[25] GAM, Bagging, RF, GBM, ANN, KRLS, SVR, Linear stepwise regression

algorithms, Regularization or shrinkage algorithms

RMSE, R2, MSE-R2

[26] Ensemble model with DRR RMSE

[27] AIS-RNN (RNN, LSTM, GRU) RMSE, MAE, MAPE

[28] SVM RMSE, MAE, CWIA, RE

[29] RF partition model MAPE, MADE, BIC, R2

[30] SVM RMSE, MAE, WIA

[31] LSTM RMSE

� ML Algorithms: BRT–Boosted Regression Trees, SVM–Support Vector Machine, XGBoost–EXtreme Gradient

Boosting, RF–Random Forest, GAN–Generalized Additive Model, LSTM–Long Short Term Memory, ANN–Artificial

Neural Network, GBM–Gradient Boosting Machines, KRLS–Kernel-based Regularized Least Squares, AIS–Adaptive

Input Selection, RNN–Recurrent Neural Network, GRU–Gated Recurrent Unit, MLR–Multiple Linear Regression,

MLPNN–Multi-layer Perceptron Neural Networks, ELM–Extreme Learning Machine, OSMLR–Online Sequential

Multiple Linear Regression, OSELM–Online Sequential Extreme Learning Machine, SOM–Self-organizing Map,

DRR–Discounted Ridge Regression; Evaluation Metrics: RMSE–Root Mean Squared Error, ME–Mean Error,

NRMSE–Normalized Root Mean Squared Error, NME–Normalized Mean Error, POD–Probability of Detection,

POF–Probability of False Alarm, R2–Coefficient of Determination, NSE–Nash–Sutcliffe Efficiency Index, PBIAS–

Percentage Bias, R–Pearson Correlation Coefficient, MSE–Mean Squared Error, MAE–Mean Absolute Error, IA–

Index of Agreement, NMB–Normalised Mean Bias, Rs–Rank Correlation by Spearman, SD–Standard Deviation,

PTA–Prediction Trend Accuracy, MBE–Mean Bias Error, MAPE–Mean Absolute Percentage Error, CWIA–

Complementary Willmott’s Index of Agreement, RE–Relative Error, MADE–Mean Absolute Deviation Error, BIC–

Bayesian Information Criterion, WIA–Willmott’s Index of Agreement.

https://doi.org/10.1371/journal.pone.0269295.t001
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Recurrent Neural Network due to the temporal correlation of air quality data. For example,

Fong et al. applied Long Short-Term Memory (LSTM) combined with transfer learning and

pre-trained neural networks [17] to predict air pollutants in the next day using meteorological

and air pollutant’s concentration data of Macau. Zhai and Cheng performed a one-day forecast

implementing LSTM on air quality, meteorological and social media data [19]. Another work

by Yang et al. proposed hybrid Convolutional Neural Network (CNN)-LSTM and CNN-Gated

Recurrent Unit (GRU) models to predict PM10 and PM2.5 for the next seven days in Seoul

using air pollution and meteorological data [37]. Heydari et al. [38] developed hybrid model

based on combination of LSTM and multi-verse optimization algorithm to predict the air pol-

lution obtained from Combined Cycle Power Plants (Kerman, Iran).

In addition to forecasting along the time axis, it is also important to consider the spatial

dimension, and identify the air quality value in places where there are no stations. Several

authors have focused on the spatial factor in their studies. Danesh Yazdi et al. [39] proposed

ensemble machine learning based on a Random Forest (RF), a Gradient Boosting Machine

(GBM), and a k-nearest Neighbor (KNN) to predict PM2.5 using air quality, satellite aerosol

optical depth, land use, and meteorological data. Li et al. [23] suggested Kruskal-K-means clus-

tering method to predict NO2 and NOx. Just et al. [40] applied XGBoost to predict PM2.5 using

satellite-derived aerosol optical depth integrated with recursive feature selection technique.

Zou et al. [41] applied spatiotemporal attention based LSTM on the Beijing dataset. Ma et al.

implemented a Bidirectional LSTM (BLSTM) network with Inverse Distance Weighting to

predict PM2.5 concentration at Guangdong, China [42]. Ma et al. [43] presented Transfer

Learning-based Stacked Bidirectional Long Short Term Memory network to predict air quality

in Anhui, China. Le et al. [44] implemented Convolutional LSTM (ConvLSTM) to interpolate

and predict PM2.5 in the city of Seoul. Also, Alléon et al. [45], and Liu and Shuo [46] applied

ConvLSTM for forecasting air quality. Phruksahiran implemented the geographically weighted

predictor method to predict air quality index in Bangkok and Thailand [47].

3 Materials and methods

3.1 Study area and data description

The study area considered in this work is the city of Madrid (Fig 1). It has an area of about

604.31 km2, and it is the second largest city in the European Union in terms of population

(3,305,408 [48]). According to the study by Sasha Khomenko et al. [49] related to premature

mortality due to air pollution in European cities, in which the pollutants PM2.5 and NO2 were

considered, Madrid was found to be at the top of the ranking of European cities with the high-

est NO2 mortality burden. Taking into consideration the importance of NO2 for Madrid, it

was selected as an air pollutant for predictive analysis.

In a study carried out by Cuevas et al. [51] the authors observed the temporal evolution of

NO2 in five Spanish cities, including Madrid, over the period 1996-2012. Applying the shift

trend model to NO2 data, they found that NO2 levels in the Madrid area had dropped by about

53%. A comparison of average annual values obtained from air quality monitoring stations

showed that the decline in Madrid is 37%. This decline is associated with the implementation

of environmental policies and technologies, as well as with the consequences of the global eco-

nomic crisis. The study shows that in the pre-recession period the annual decline was 1.1%,

and 7.8% during the economic recession. Therefore, it can be seen that economic and indus-

trial factors significantly affect NO2 emissions. According to the work by Izquierdo et al. [52],

the implementation of the Madrid City air-quality plan would lead to an annual mean decrease

in NO2 by 4.0 μg/m3 in 2020.
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While the implementation of control policies and strategies has a positive impact on reduc-

ing air pollution, the problem nevertheless still remains the focus of attention. New technolo-

gies can help make better and more efficient decisions. Following the aforementioned belief,

this work focuses on NO2 prediction in the city of Madrid using machine learning

technologies.

According to the following study [14], the publications related to the prediction of air qual-

ity using machine learning technologies used more than 26 datasets to supplement air quality

data (meteorological, spatial, traffic, social media, etc.). The datasets used in this work are NO2

data (μg/m3), meteorological data and traffic data from January to June 2019 and from January

to June 2020, and the location of the monitoring stations. The data were obtained from Open
Data portal of the Madrid City Council [53]. There are 24 air quality control stations, 26 meteo-

rological control stations and more than 4000 traffic measurement points (shapefiles of mea-

surement point locations are also provided for each month). The meteorological data include

ultraviolet radiation (Mw/m2), wind speed (m/s), wind direction, temperature (˚C), relative

humidity (%), barometric pressure (mb), solar irradiance (W/m2) and precipitation (l/m2),

Fig 1. Air quality stations, meteorological stations, traffic measurement points and grid cells segments on the defined area of the city of Madrid

(Map data © OpenStreetMap contributors, Microsoft, Esri Community Maps contributors, Map layer by Esri [50]).

https://doi.org/10.1371/journal.pone.0269295.g001
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while the traffic data include intensity, occupancy time, load and average traffic speed. The

datasets have an hourly rate. Since the attributes of the traffic data can be specific to a certain

area, the following are the selected traffic attributes with their definition for the city of Madrid:

Intensity—Intensity of the measurement point in a period of 15 minutes (vehicles/hour); Occu-
pancy time—Measurement point occupancy time in a period of 15 minutes (%); Load—Vehi-

cle loading in a 15-minute period. This is a parameter that takes into account intensity,

occupation and capacity of the road and establishes the degree of road use from 0 to 100; and

Average traffic speed—Average speed of the vehicles in a period of 15 minutes (km/h). Only

for M30 intercity measuring points.

From the above definitions it can be seen that the traffic data is recorded every 15 minutes.

However, since NO2 and meteorological data are at hourly rates, the traffic data were filtered

and only hourly records were selected (for example, with entries at 13:00, 13:15, 13:30, 13:45

and 14:00, we simply selected the entries at 13:00 and 14:00 and the same logic was applied for

the entire period).

Table 2 shows summary statistics of each type of data (since the location of traffic measure-

ment points changes monthly, summary statistics were calculated based on the part that was

Table 2. Summary statistics of the periods January-June 2019 and January-June 2020 for each data type.

Descriptors January-June 2019 January-June 2020

Nitrogen_dioxide Mean (SD) 36.69 (30.85) 26.03 (25.35)

Median [Min,Max] 27.0 [0.0, 328] 17.0 [0.0, 326]

Ultrav._rad. Mean (SD) 15.83 (30.27) -

Median [Min,Max] 1.0 [0.0, 199] -

Wind_speed Mean (SD) 1.41 (1.11) 1.31 (1.05)

Median [Min,Max] 1.14 [0.0, 8.75] 1.05 [0.0, 8.97]

Wind_direction Mean (SD) 167.80 (105.72) 140.82 (98.35)

Median [Min,Max] 182.0 [0.0, 359] 135.0 [0.0, 359]

Temperature Mean (SD) 13.38 (8.09) 13.63 (7.6)

Median [Min,Max] 12.5 [-55.0, 47.3] 12.6 [-55.0, 44.6]

Humidity Mean (SD) 48.73 (21.60) 60.76 (22.77)

Median [Min,Max] 47.0 [-25, 100] 62.0 [-25, 100]

Pressure Mean (SD) 943.3 (34.91) 940.62 (63.28)

Median [Min,Max] 945.0 [0.0, 962.0] 945.0 [0.0, 1073.0]

Solar_irradiance Mean (SD) 220.73 (301.06) 191.95 (279.83)

Median [Min,Max] 11.0 [0.0, 1103.0] 9.0 [0.0, 1113.0]

Precipitation Mean (SD) 0.03 (0.41) 0.03 (0.27)

Median [Min,Max] 0.0 [0.0, 30.4] 0.0 [0.0, 13.5]

Intensity Count_non_zero 885863 (59.98%) 892197 (60.09%)

Mean (SD) 245.69 (402.73) 161.45 (313.33)

Median [Min,Max] 63.0 [0.0, 6348.0] 34.19 [0.0, 6588.0]

Occupation Count_non_zero 845031 (57.21%) 822652 (55.41%)

Mean (SD) 3.96 (6.36) 2.57 (4.9)

Median [Min,Max] 0.95 [0.0, 100.0] 0.42 [0.0, 99.0]

Load Count_non_zero 881500 (59.68%) 884950 (59.60%)

Mean (SD) 11.65 (14.91) 7.85 (11.75)

Median [Min,Max] 4.0 [0.0, 100.0] 2.2 [0.0, 100.0]

Average_speed Count_non_zero 233415 (15.8%) 223052 (15.0%)

Mean (SD) 4.39 (13.28) 4.04 (12.96)

Median [Min,Max] 0.0 [0.0, 96.5] 0.0 [-127.0, 127.0]

https://doi.org/10.1371/journal.pone.0269295.t002
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used in the analysis). The datasets and the code implemented are available at the following

links [53–55].

Considering the spatial factor in air quality prediction, the Pearson correlation coefficients

between stations were calculated (Fig 2). It can be noticed that the stations are spatially corre-

lated. Fig 3 shows autocorrelation (or the correlogram, the correlation between values of the

same series at different time steps) and partial autocorrelation plots of NO2 concentration; the

daily interval is chosen as a lag length and the plots show the results of 80 lags. The difference

between autocorrelation and partial autocorrelation is that in the first case, it calculates the

correlation between two lags, taking into account the influence of previous observations

(direct and indirect affects), and in the case of partial autocorrelation, it is just a real correla-

tion between two lags without intervening observations (only direct effects). These functions

help to determine the best lags, which can be selected for effective forecasting. It can be seen

that in the autocorrelation plot more than 25 lags have a significant positive correlation,

although if we look at the partial autocorrelation plot, there is a statistically significant correla-

tion for lag 1 and 2 periods. In this work, 6-hour lag was chosen, which are in the range of sig-

nificant correlated lags.

Another interesting observation can be seen in Fig 4, which shows NO2 concentration dur-

ing different weekdays for the period of 2019 using boxplots (the numbers at the top of Fig 4

Fig 2. Heatmap showing spatial correlations of the 24 air quality monitoring stations.

https://doi.org/10.1371/journal.pone.0269295.g002
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are mean values corresponding to each boxplot). The concentration distribution can be

explained by the traffic factor, which plays a decisive role in raising the level of NO2. This

recent belief was also confirmed by the following study [56], which showed that in Madrid up

to 90% of NO2 comes from local traffic.

Fig 3. a) Autocorrelation and b) Partial autocorrelation plots with 80 lags from the NO2 dataset.

https://doi.org/10.1371/journal.pone.0269295.g003

Fig 4. The concentration of NO2 in weekdays dimension for the period January-June 2019.

https://doi.org/10.1371/journal.pone.0269295.g004
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3.2 Method

The algorithm that was used in this work is Bidirectional convolutional LSTM (BiConvLSTM).

It is an advanced version of ConvLSTM in which hidden and cell states are kept for forward

and backward sequences. Fig 5 shows the architecture of (a) ConvLSTM and (b) BiConvLSTM

cells. ConvLSTM was first used by Shi et al. [57], who showed that it is possible to preserve spa-

tial information in an LSTM implementation by converting internal matrix multiplication

into convolution operations. This spatiotemporal factor, combined with a bidirectional factor,

allows for an increased ability to capture more information in the temporal dimension. The

hidden states from forward and backward sequences are combined and then go through a con-

volution layer. There are several ways to execute the combination process (sum, calculate the

average, multiply or concatenate), which as a parameter has to be defined during the tuning

process (the parameter optimisation is presented in the next section).

Firstly, the ConvLSTM can be formulated with the following equations [57, 58]:

it ¼ sðWX
i � Xt þWH

i �Ht� 1Þ

ft ¼ sðWX
f � Xt þWf H �Ht� 1Þ

ot ¼ sðWX
o � Xt þWH

o �Ht� 1Þ

Ct ¼ ft � Ct� 1 þ it � tanhðWX
c � Xt

þWH
c �Ht� 1Þ

Ht ¼ ot � tanhðCtÞ

ð1Þ

where it is the input gate, ft is the forget gate, and ot is the output gate (these gates control the

flow of information through the cell), W is the weight matrix in the forward ConvLSTM cell,

Xt is the current input data, ht−1 is previous hidden output, Ct is the cell state, “�” represents

the convolution operation and “�” represents the Hadamard product. It can be seen that

ConvLSTM takes into account only information from past sequences, however combining

information from both forward and backward sequences may give better results. Below is the

Fig 5. a) The architecture of a ConvLSTM cell [57] and b) Bidirectional ConvLSTM cell [12].

https://doi.org/10.1371/journal.pone.0269295.g005
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mathematical expression of BiConvLSTM [58].

Yt ¼ tanhðWHf
y �Hf

t þWHb
y �Hb

t� 1
Þ ð2Þ

where Hf is hidden state from forward ConvLSTM unit, Hb is hidden state from backward

ConvLSTM unit, and Yt is the final output.

4 Experiments and results

4.1 Experimental settings

This section includes a detailed description of the workflow. The main goal of the current

work is to predict NO2 in the next 6 hours over a given area, which was carried out based on

the data on the previous 6 hours. The overall workflow of the analysis is presented in Fig 6. It

can be seen that the workflow consists of the following steps: Data Generation, Feature Engi-
neering, Model Development and Evaluation. In terms of tools, ArcGIS Pro software [59] and

Google Colab cloud service [60] (with GPU enabled for Pro version) were used to accomplish

the proposed tasks.

4.1.1 Data generation. As already mentioned, the raw data was obtained from Open Data
portal of the Madrid City Council [53]. Since the monitoring stations and measurement points

are different for each dataset, the first task is to combine them spatially and temporally. There-

fore, the grid was created in a given area, which was defined as a selected part of Madrid with a

width and height of 1,000 metres within the following extent: Top—4,486,449.725263 metres;

Bottom –4,466,449.725263 metres; Left—434,215.234430 metres; Right –451,215.234430

metres. It was created using ArcPy package [61], specifically the CreateFishnet function [62].

There are total of 340 cells (20 by 17) which cover 340 km2 or 56.27% of the total area of the

city of Madrid. The logic behind selecting this area was to have a minimum extent to include

all air quality control stations with the aim of obtaining higher accuracy. The value of each cell

includes the values of NO2, meteorological and traffic attributes obtained from assigned sta-

tions at a certain time. The value of the cells that do not include any stations was assigned as

zero and in the case of more than one station, an average value was assigned. The above

Fig 6. The detailed workflow of the analysis.

https://doi.org/10.1371/journal.pone.0269295.g006
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procedure was repeated for every hour of the selected period. The following functions were

used to execute aforementioned process, including arcpy.management.AddField [63], arcpy.
analysis.SpatialJoin [64], arcpy.da.SearchCursor [65], arcpy.da.UpdateCursor [66]. The output

was exported as Comma Separated Values (CSV) files, which were used as an input in further

stages of the analysis. Overall, 4344 and 4368 CSV files were generated corresponding to every

hour during January-June 2019 and January-June 2020, respectively. A formal description of

the data generation process is given by Algorithm 1.

Algorithm 1 Data generation
Input: Data—[Hourly NO2, Meteorological and Traffic data]; Period

-[01.01.2019-30.06.2019; 01.01.2020-30.06.2020]
1: for each hour 2 Period
2: Create grid with Fishnet tool (ArcPy library)
3: Add field to the Fishnet
4: for each item i 2 Data do
5: i spatial join with grid
6: input the mean of the values of each corresponding cell to the

field
7: end for
8: end for
Output: CSV files for each hour including NO2, Meteorological and

Traffic data

4.1.2 Feature engineering. After generating input data, the next step is feature engineer-

ing, which includes the following substeps: Handling Outliers, Imputation, Feature Selection,

Transformation, Scaling and Data Splitting.

4.1.2.1 Handling outliers. Outliers can reduce the accuracy of the model. Therefore, it is

important to process them. Looking at the summary statistics in Table 2, it can be seen that the

minimum humidity and temperature values are outliers. Temperatures below -3˚ for 2019

and -2˚ for 2020 [67] and humidity with negative values were considered outliers and replaced

with the average of the previous and the following values.

4.1.2.2 Imputation. This technique was applied to handle missing values of meteorological

data. Since meteorological data do not change dramatically within space, we have imple-

mented Nearest Neighbour Interpolation [68].

4.1.2.3 Feature selection. The presence of many features sometimes prevents a model from

generalising data efficiently, due to the curse of dimensionality. Hence, feature selection must

be implemented to select the best combination of datasets, which in turn will prompt the

model to efficiently generalise the data. First of all, the following variables were excluded for

future predictive analysis: average traffic speed, traffic load, UV, precipitation. Average traffic

speed was excluded because it is available only for M30 road which is 15.8% of the case study

(Table 2). Traffic load, according to the definition is the combination of intensity, occupancy

time and capacity of the road. Therefore, this variables also was excluded, taking into account

the fact that it is correlated with other variables. Regarding UV, it was observed that June of

2019 and the whole period of 2020 do not have records about UV. Regarding precipitation, it

was found out that around 99% of data were 0, so this feature was also eliminated. Afterwards,

the mutual information (MI) technique was implemented [69] on the remaining features. It

calculates the mutuality between additional datasets and the target dataset (NO2). The formula

to calculate mutual information is presented below (Eq (3)).

MIðx; yÞ ¼
Z Z

Pðxi; yÞlog
Pðxi; yÞ

PðxiÞPðyÞ
dxi dy

¼ HðxÞ � HðxjyÞ

ð3Þ
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where P(xi, y) is the joint probability distribution of two variables, P(xi) and P(y) are marginal

distributions, H(x) is the entropy for x, and H(x|y) is the conditional entropy.

Fig 7 shows the feature importance scores of 7 additional datasets based on mutual informa-

tion. For further analysis in the second scenario, features with a score above 0.005 were selected,

including wind speed, barometric pressure, intensity and occupancy time. It should be men-

tioned that wind direction also was selected considering the interconnection with wind speed.

The reason for not including wind direction in the mutual information calculation process is

that the wind direction is circular data and needs to be converted for later use (details below).

4.1.2.4 Transformation. In this step wind direction was converted in categorical data with

the following categories: north, east, south, west, southwest, northeast, southeast, northwest,

and later by implementing One Hot Encoder [70] it was included in the analysis. Another

transformation was the conversion of the input data into the supervised learning dataset. Inde-

pendent and dependent datasets were generated based on the defined time granularity (to pre-

dict NO2 in the next 6 hours on the basis of data for the previous 6 hours).

4.1.2.5 Scaling. Scaling is a very useful technique for handling differences that exist between

ranges of the features. The current work applied Min-Max (0-1) normalisation in order to nor-

malise the input data (Eq (4)).

Xnorm ¼
X � Xmin

Xmax � Xmin
ð4Þ

4.1.2.6 Data splitting. After preprocessing the data with the above-mentioned techniques,

the next step is to split the dataset into training, validation and testing sets. The data was

splitted with the following order: January-June 2019—training set; January-March 2020—vali-

dation set; April-June 2020—testing set. The dimension of each sets is illustrated in Table 3.

4.1.3 Model development. This step presents the process of model construction. The

parameter optimisation of the proposed model was performed by applying GridSearchCV

Fig 7. The feature importance scores based on mutual information.

https://doi.org/10.1371/journal.pone.0269295.g007
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with Blocking Time Series Split. Blocking Time Series Split was chosen instead of cross-valida-

tion because it considers the time series aspect and prevents leakage from one set to another.

In order to reduce the computation time for parameter optimisation, GridSearchCV was

applied on data for one month. Table 4 shows optimised parameters with the options that

were tried, and the one that was finally selected is indicated in bold.

Therefore, the architecture of the model was built based on the chosen parameters by stack-

ing 3 bidirectional ConvLSTM layers with a kernel size of 3x3 (it should be noted that a model

with a smaller kernel allows capturing slower motion), filters equal to 16 and with an Adam

optimiser. It can be seen that concatenation was selected as the merge mode, which means that

the forward and backward ConvLSTM units were concatenated before passing information to

the next unit. Each BiConvLSTM layer was followed by Dropout and Batch Normalization lay-

ers, and the model was finalised using a 1x1 convolution layer.

Regarding the baseline models, LSTM-FC had the following structure: 2 LSTM layers with

2048 units followed by Dropout layer and the model was finalised adding a Dense layer;

ConvLSTM had 5x5 kernel size with filters equal to 32, followed by Batch Normalisation and

Dropout layers and it was finalised with 1x1 convolution layer.

4.1.4 Evaluation. After parameter optimisation the finalised model was evaluated in the

testing set in order to answer the questions defined in the Introduction. From Table 1, it can

be seen that RMSE and MAE are the most used evaluation metrics, therefore, these metrics

were chosen as evaluation metrics. RMSE measures the geometric difference between esti-

mated and actual values and it is very sensitive to large errors (Eq (5)), and MAE measures the

average magnitude of the errors (Eq (6)).

RMSE ¼
1

n

Xn

i¼1

ðEi � AiÞ
2

 !1=2

ð5Þ

MAE ¼
1

n

Xn

i¼1

jEi � Aij ð6Þ

Table 3. The dimension of each sets.

Set Dimension (x × y × z1/z2)(�)

Training Set 4344 × 340 × 16/13

Validation Set 2184 × 340 × 16/13

Testing Set 2184 × 340 × 16/13

� x—Number of samples; y—Number of grid cells (340 = 20×17); z1—Number of all features (NO2, wind speed,

temperature, humidity, barometric pressure, solar irradiance, intensity, occupancy time, north, east, south, west,

southwest, northeast, southeast, northwest), z2—Number of selected features (NO2, wind speed, barometric pressure,

intensity, occupancy time, north, east, south, west, southwest, northeast, southeast, northwest). Note that features

include wind directions after the implementation of One Hot Encoder.

https://doi.org/10.1371/journal.pone.0269295.t003

Table 4. Parameter optimisation with GridSearchCV.

Parameters Options

Number of Filters 8, 16, 32

Kernel Size (3,3), (5,5), (7,7), (9, 9)

Optimiser RMSprop, Adam

Merge Mode ‘concat’, ‘mul’, ‘sum’, ‘ave’

Number of Layers 2, 3, 4

https://doi.org/10.1371/journal.pone.0269295.t004
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where n is the number of instances, and Ei and Ai are the estimated and actual values. The

lower the value is, the better the prediction will be. Algorithm 2 provides pseudo code of NO2

prediction procedure.

Algorithm 2 NO2 prediction
Input: CSV files for each hour including NO2, Meteorological and Traf-

fic data
function CALCULATE NEAREST NEIGHBOUR INTERPOLATION(Meteorological data)
2: return zero values of meteorological data impute by Nearest

Neighbour interpolation
end function

4: function HANDLING OUTLIERS (data)
return outliers converted to the average of the previous and the
next non outliers

6: end function
function DATA SPLITTING(data)

8: return independent and dependent data split based on time
resolution

end function
10: Split data on training, validation and testing sets with the fol-

lowing order: January-June 2019—training sets; January-March 2020
—validation sets; April—June 2020—testing set

Normalise input set
12: Reshape data based on selected model architecture
function CREATE MODEL (model parameters by default)

14: return model architecture
end function

16: function GRIDSEARCHCV(parameters to tune)
return best parameters

18: end function
function EVALUATE MODEL (model with best parameters)

20: return error estimated with evaluation metric
end function
Output: RMSE, MAE

4.2 Results and discussion

As mentioned in the Introduction, the analysis was carried out according to two scenarios.

Below are the results for each of them.

4.2.1 First scenario. In this scenario the experiments were performed using 9 features

(NO2, wind speed, wind direction, temperature, relative humidity, barometric pressure, solar

irradiance, intensity, and occupancy time) without the remaining 4 features (UV, precipita-

tion, load and average traffic speed), which, as mentioned above, were excluded immediately

after the data exploration phase, given the obvious reasons for the exclusion. Table 5 presents

the results obtained and the runtime of the models for the next 6-hour lag. Looking at the

results of the RMSE and MAE, it can be seen that BiConvLSTM outperforms ConvLSTM and

LSTM-FC with values of 19.14 and 13.06, respectively. In particular, in terms of RMSE,

Table 5. Prediction errors (RMSE, MAE) and runtime of the models for the next 6 hours prediction implemented

on all features.

Models RMSE (μg/m3) MAE (μg/m3) Time

LSTM-FC 38.89 32.17 4m15s

ConvLSTM 32.95 32.04 33m15s

BiConvLSTM 19.14 13.06 36m57s

https://doi.org/10.1371/journal.pone.0269295.t005
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BiConvLSTM improves results compared to ConvLSTM by 41.9%, and to LSTM-FC by 50.8%.

in terms of MAE, BiConvLSTM improves results compared to ConvLSTM by 59.24%, and to

LSTM-FC by 59.4%. Regarding runtime, due to the complexity of the BiConvLSTM architec-

ture, it takes a comparably longer time for the model to converge.

4.2.2 Second scenario. In this scenario, the analysis was carried out using the datasets

selected after calculating the feature importance scores based on mutual information. Table 6

shows RMSE and MAE values and runtime of the models performed on the selected features.

It can be seen that, as in the first scenario, in this case also BiConvLSTM surpassed other mod-

els. Especially, in terms of RMSE, BiConvLSTM improves results compared to ConvLSTM by

16.28%, and to LSTM-FC by 19.32% in terms of MAE, BiConvLSTM improves results com-

pared to ConvLSTM by 18.32%, and to LSTM-FC by 28.21%. Regarding runtime, in this case

also BiConvLSTM converges comparably slower than ConvLSTM and LSTM-FC.

The difference between the two scenarios, which can be observed, is a significant decrease

of the values in terms of runtime and the error, which is associated with the peculiarities of the

implementation of the feature selection methodology. It is essential to understand why, among

all the features, only some of them (wind speed, wind direction, barometric pressure, intensity,

and occupancy time) were chosen, what is the relationship between NO2 and features with a

higher mutual information index, the inclusion of which as a result improved the performance

of the model. In terms of wind speed and direction, the correlation is because an increase in

wind speed suggests a lower concentration due to increased dilution through advection and

increased mechanical turbulence. In terms of traffic data, the transport sector has been con-

firmed to be one of the largest sources of nitrogen oxides (nitrogen oxide and NO2), for exam-

ple, about 46% of total emissions in 2013 in the European Union were attributed to nitrogen

oxides [71].

It is worth to mention that the units of RMSE and MAE are defined in the same unit as the

target variable; therefore, in the current work, it matches with the unit of NO2 (μg/m3). Hence,

by looking at the results, it can be seen that MAE is 9.72 μg/m3, which can be considered suffi-

cient comparing with mean values of NO2 (36.69 and 26.03 for the period 2019 and 2020,

respectively). It is essential to consider the impact of the Coronavirus Disease 2019 (COVID-

19) during 2020 to combat some measures, such as traffic restrictions and self-isolation, and as

a result, these events have affected the air pollution concentration. In the case of Madrid, due

to COVID-19 restrictions, the concentration of NO2 dropped to 62% [72]. These sudden

changes can also affect the model’s performance, and it would be ideal for future work to com-

pare the results with a different period to identify these effects.

Overall, it can be seen that BiConvLSTM outperforms other reference models in both sce-

narios; however, regarding the execution time, it takes comparable more time. The superiority

of the proposed model over LSTM can be explained by the fact that BiConvLSTM captures

spatial information, while LSTM focuses exclusively on temporal information. Compared to

ConvLSTM, the advantage of existing forward and backward sequences of BiConvLSTM helps

to collect more information and, as a result, outperforms ConvLSTM. On the other hand,

these sequences lengthen the execution time.

Table 6. Prediction errors (RMSE, MAE) and runtime of the models for the next 6 hours prediction implemented

on the selected features.

Models RMSE (μg/m3) MAE (μg/m3) Time

LSTM-FC 15.68 13.54 3m58s

ConvLSTM 15.11 11.9 27m53s

BiConvLSTM 12.65 9.72 34m33s

https://doi.org/10.1371/journal.pone.0269295.t006
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5 Conclusions and future work

Taking into account the impact of NO2 on health and the environment, the management and

control of its value become an essential issue for governments and decision-makers (according

to WHO guidelines, NO2 has the following threshold values: 40 μg/m3 and 200 μg/m3, respec-

tively, for the annual average and for the 1-hour average [6]). Considering that the concentra-

tion of NO2 correlates both temporally and spatially, this work implements BiConvLSTM,

which can perform effectively in temporal and spatial dimensions. The data used for analysis

are NO2, meteorological and traffic data from January to June 2019 and from January to June

2020 in the city of Madrid. Two scenarios were developed based on the subsets of features used

in the analyses. The proposed model was compared to ConvLSTM and LSTM-FC, and the

results showed that BiConvLSTM outperformed the reference models in both scenarios. In

particular, feature selection improved the final results by 33.9% in terms of RMSE and by

25.27% in terms of MAE. Regarding runtime, BiConvLSTM is slower due to the model archi-

tecture, and it takes longer to converge the data. Moreover, the output showed that the feature

selection step is important because it significantly reduces the error. It is worth noting that by

looking at the results of the MAE and comparing them with the average concentration values,

the proposed model can be considered a reliable and robust model.

As regards the limitations, it is worth mentioning that the predictive analysis was per-

formed using Google Colab, and the cloud service itself has restrictions in terms of the amount

of data and the complexity of the model [73]. However, with access to a more powerful

machine learning analysis platform, the scale of optimisation of the parameters of the proposed

model could be expanded, more data could be generated and included in the training set, and

perhaps the performance of the model could be improved. In terms of the proposed model’s

limitations, the requirement of the input data, which is related to the model’s architecture, can

be specified. As it can be seen, the input data must be in grid format. However, grid formatting

can be challenging, since in the case of lack of data, modification of the original data will be

required, which may have an impact on the model performance. Therefore, another machine

learning model, such as a graph neural network, could be developed in the future, with the

results of alternative approaches compared. Other aspects that could be considered as future

work may be the integration of other datasets, such as street networks and buildings, applica-

tion the proposed procedure to a different pollutant (for example, for PM2.5 as it has serious

health effects), as well as to other cities in order to compare performance based on spatial char-

acteristics. Also, as already mentioned, it would be ideal for performing analysis for a different

period and observing the impact of COVID-19 on the model’s execution.
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