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Abstract. In this paper, we propose a method for building alternative training
datasets for lung nodule detection from plain chest X-ray images. Our aim is to im-
prove the classification quality of a state-of-the-art CNN by just selecting appropri-
ate samples from the existing datasets. The hypothesis of this research is that high
quality models need to learn by contrasting very clean images with those contain-
ing nodules, specially those difficult to identify by non-expert clinicians. Current
chest X-ray datasets mostly include images where more than one pathology exist
and/or contain devices like catheters. This is because most samples come from old
people which are the usual patients subject to X-ray examinations. In this paper, we
evaluate several combinations of samples from existing datasets in the literature.
Results show a great gain in performance for some of the evaluated combinations,
confirming our hypothesis. The achieved performance of these models allows a
considerable speed-up in the screening of patients by radiologist.
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Introduction

Radio-diagnosis is a low-cost and universally widespread method based on the analysis
of X-ray images. Its main drawback is that it must be carried out by highly qualified
people (i.e., radiologists) which are scarce in the public health systems. Thus, most X-
ray images are directly delivered to doctors without supervision of radiologists. This
motivates the use of automatic screening tools able to detect and send suspicious cases to
radiologists. More specifically, these screening system must target to diseases like lung
cancer because its early detection is crucial for patients survival.

The initial stage of the neoformative process of lung cancer, before becoming a
lung mass, is represented on the chest X-ray as a pulmonary nodule, in most cases in a
very subtle way. Even trained eyes can miss these findings, and once the pathology is
diagnosed, it is usual that clues become more evident. Lung tumors present different cell
lines, and present in different ways in the lung parenchyma. They may have a central
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arrangement, being located in perihilar or even endobronchial topographies, as well as
a more peripheral distribution. Initially, they will be represented as small pulmonary
nodules, always smaller than 3cm, and once that figure is exceeded, they will become
pulmonary masses. Densotomographically, they can present densities similar to those
of soft tissue tissues. Nodules have poorly defined borders, with a poor definition with
respect to the adjacent structures, adopting a morphology of ”spiculate borders”, which
as the disease progresses, can condition the invasion of organs and structures adjacent
to the tumor. Given its variability in morphologies and locations where the pulmonary
nodule can settle, it is important to recognize its presentation patterns both to identify
them and to differentiate them from other pathologies (metastases, abscesses, interstitial
diseases and much more).

Currently, there are no automatic methods for early detection of lung tumors in X-ray
images, as there are for other neoplasms (breast, prostate, colorectal, etc.) Most methods
for nodule detection and classification are defined for computed tomography (CT) scans,
which offer greater sensitivity and specificity than X-ray. However, CT scans require
high doses of radiation, making the risk/benefit in a large population unfavorable.

1. Related Work

In this section we revise the main approach in dataset generation for automatic radio-
diagnosis for lung nodule detection. Most of these approaches rely on state-of-the-art
Convolutional Neural Networks (CNN).

In the literature we can find some contributions aimed at generating datasets from
existing RIS/PACS systems. Most of them take profit from existing reports attached to the
images to automatically generate labels for findings and diseases. For example, ChestX-
ray8 [1] provides 108,948 frontal view X-ray images of 32,717 unique patients automat-
ically labeled with eight diseases. Recently, this dataset was extended up to 14 diseases
(ChestX-ray14).

ChestX-ray14 was used to train a specialized 121-layers CNN called CheXNet [2].
This model was mainly targeted at detecting pneumonia, but also performed well in the
other diseases. Unfortunately, this dataset does not include lung nodules samples.

PadChest[3] provides an even larger dataset with 160,000 images from 67,000 pa-
tients labeled with a very large number of concepts automatically extracted from the
attached reports. In this case, labels cover 174 findings, 19 differential diagnoses and
104 anatomical locations, which are mapped to the Unified Medical Language System
(UMLS). The extraction process is performed by a recurrent neural network trained with
27% of manually annotated images.

As far as we know, there is no work reporting results of a CNN trained with PadCh-
est. Perhaps, an issue for this is to find a method that allow us to get a proper training
dataset for the target disease. For example, PadChest contains an acceptable number of
samples with lung nodules. However, most samples belong to old people often present-
ing other pathologies, leading to noisy images. Besides, errors in the image labels can
produce further noise in the training datasets.

Compared to ImageNet [6], current chest X-ray datasets do not achieve a critical
mass for training CNN models. Most approaches in the literature train and test on the
same (small) dataset, without validating the model with other different datasets. More-
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CNN model Dataset Samples Classes
ChestX-ray8[1] NCCIH 112,120 8 diseases (nodules ≈ 6,323)

ChestX-ray14[8] NCCIH 112,120 14 diseases (nodules ≈ 6,323)

CheXNet [2] NCCIH 112,120 14 diseases (nodules ≈ 6,323)

Genetic DL[9] PLCO 185,421 Lung cancer

Faster R-CNN[10] LIDC-IDRI 1,018 Lung cancer

DENSENET[11] JSRT 247 Lung nodules

Fastai[12] Chest X-ray Pneumonia 1,341 Pneumonia/Normal
Table 1. Main CNN approaches and training datasets for nodule detection

over, these approaches show very disparate results, which could indicate the lack of a
critical mass in the existing datasets. Thus, current models seem not to generalize well
and are not ready yet for production [4]. Authors in [5] discuss the unintended conse-
quences of these drawbacks.

In this short paper we present some preliminary work showing these issues, and
how the selection of different samples from different datasets can improve notably the
performance of the learned models.

2. Material and Methods

For the screening experiments we mainly use two large datasets of chest X-ray images
associated where lung nodules are present. More specifically, we use Chest-X-ray8[7]
and PadChest[3]. Table 1 describe these datasets, as well others related to X-ray for
extracting samples for the normality class.

Our ultimate goal is the creation of a large and balanced lung cancer dataset that
contains X-ray images with nodules difficult to detect by a non-expert people. In this
case, images must have associated reports where lung cancer is diagnosed with CT. In
addition, X-ray images are requested before the disease is declared, since they will be
used to look for patterns in images where the findings are too subtle to be detected by
the human eye. For this purpose we added X-ray images from the Hospital of Castelln
fulfilling these constraints.

Table 1 shows different CNN approaches along with the datasets with which they
were trained on. As earlier mentioned, the choice of these datasets is critical as quality
results can vary greatly.

The Tensorflow and Pytorch frameworks have links to their standard neural network
zoo models already created along with their precision scores on the Imaginet dataset.
One of the CNNs with the highest accuracy rate is Resnet-152, which has been chosen
for the experiments.

Resnet-152 was used in two different ways: (1) using a pre-trained model with Im-
agenet, and (2) training from scratch. In both cases precision results were very similar.
However, they notably differ when testing with NCCIH images not seen during the train-
ing phase, achieving the models trained from scratch better results. Even so, results were
not good enough for screening.

After analyzing the images by a radiologist, we realized that images representing
normal cases were not so. Therefore, we decided to look for a series of images com-
pletely free from abnormalities. Thus, we selected a Kaggle dataset for pneumonia in
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children [12]. Training from scratch with a combination of images from NCCIH for
nodules and these samples achieved good results for the NCCIH test dataset (100% for
nodules and 50% for normal cases).

We tested the new trained model over the PadChest dataset, obtaining good results
for the nodule detection but some false positives from images tagged as normal. However,
these normal cases belong to old people and contain many noisy elements like electrodes,
catheters and so on, which are not reflected in the reports.

3. Conclusions

In this paper we present a preliminary study about the impact of some decisions when
training a CNN for classifying X-ray images. Current datasets provided in the literature
are either too small or non comprehensive enough to train a deep CNN. Large datasets
are provided with tags inferred from the reports, but they do not reflect well the quality
and discrimination power of the corresponding images. In our preliminary experiments
we show that combining good examples from different datasets can achieve a substantial
improvement. In the next steps we aim at building a very large dataset by combining
existing ones as well high quality data from hospitals directly assessed by radiologists.
The idea is to give the model the necessary elements that allow the model to discern the
target pathology at earlier stages. Future work also regards how to automatically discern
good from bad examples to train these models.
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