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Abstract—The use of permanent magnet synchronous 

generators (PMSGs) with full-scale back-to-back converters is 

rising as a common option in wind power generation systems 

(WPGSs). An efficient grid integration of PMSG-WPGSs is 

obtained through quasi-Z-source inverter (qZSI). 

Simultaneously, power electronic system integration concerns 

related to dynamics have arisen. Power electronics reduce 

damping of grid-connected converters, leading to dynamic 

issues. Several studies focus on qZSI dynamics, but the analysis 

of qZSI based PMSG-WPGS dynamics to evaluate transient 

interactions is not yet well addressed. This paper studies a 

qZSI based PMSG-WPGSs small-signal state-space model for 

Matlab/Simulink implementation in order to study these 

concerns. The model is applied to investigate qZSI based 

PMSG-WPGS dynamic response and it allows the influence of 

components and parameters on system dynamics to be 

assessed. Eigenvalues are obtained from the state-space model 

in order to study qZSI based PMSG-WPGS stability and the 

participation factors are also analyzed to find out the most 

influential circuit component or control on the different 

eigenvalues. PSCAD/EMTDC simulations are made to test the 

model. 1 

Keywords—Wind power systems, quasi-Z-source inverter, 

stability. 

I. INTRODUCTION   

Permanent magnet synchronous generator (PMSG) based 
wind power generation systems (WPGSs) are one of the 
mainstream renewable systems [1] – [4]. The well-known 
two-step DC/DC boost converter with DC/AC voltage source 
inverter (VSI) topology is the usual arrangement in PMSG-
WPGSs [5], [6]. However, this configuration is not cost 
effective and its control is awkward. Single-stage topologies 
with Z-source inverters have recently been reported as a 
straightforward and low-cost technology [2], [5] – [12]. It is 
worth noting the engineering comprehensive review of them 
(main topologies, models, controls) in [10], [11] as well as 
their complete comparison related to their passive 
components and semiconductor stress in [12]. These 
inverters offer several advantages such as fixing buck/boost 
DC voltage in a single step with reliability and efficiency. 
Quasi-Z-source inverters (qZSIs) are increasingly gaining 
importance [2], [13] – [19]. Apart from Z-source inverter 
benefits, qZSIs provide continuous DC input current and 
reduced DC switching ripple and passive component stress, 
hence the increasing importance of qZSI based PMSG-
WPGSs [15] – [17]. A new qZSI topology called as three-
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level neutral-point-clamped qZSI is examined in [18], [19]. It 
provides the benefits of the the qZSI and the three-level 
neutral-point-clamped inverter topologies.  

Power electronic system integration in traditional grids 
such as wind energy conversion system integration usually 
causes dynamic problems (e.g., instabilities) due to the 
damping of grid-connected converters caused by power 
electronics. To prevent these issues, it will be necessary to 
analize the dynamic behavior of wind energy conversion 
systems such as qZSI based PMSG-WPGSs. Several works 
address the dynamic response of PMSG-WPGSs 
implemented with the conventional two-step DC/DC boost-
converter and DC/AC VSI, whereas very few deal with qZSI 
based PMSG-WPGS dynamic assessment. Most of these 
only focus on the qZSI dynamic model [2], [13] – [15]. The 
dynamic response of the complete qZSI based PMSG-WPGS 
is examined in [16] from a proposed block diagram model, 
but the model is not detailed enough. A hardware prototype 
of the system is also developed and tested in the laboratory. 
In [17], a new qZSI based PMSG-WPGS with a battery 
storage system is presented. A comparative work between 
qZSI controls is performed by means of the state-space 
model of qZSIs in [20]. Moreover, different papers study 
stability in qZSI-based PV power systems [21] -  [25]. 

This paper contributes with a qZSI based PMSG-WPGS 
Matlab/Simulink state-space model. This model is obtained 
considering all the main controls and used to study the 
dynamic response of the qZSI based PMSG-WPGS. The 
model and the obtained results are validated with 
PSCAD/EMTDC simulations. 

II. QZSI BASED PMSG-WPGSS 

The PSCAD/EMTDC circuit of qZSI based PMSG-
WPGSs is shown in Fig. 1. It has a PMSG connected to the 
VSI dc-side by means of the qZSI. The classical tracking of 
the maximum power point (MPP), i.e., the classical MPPT, 
allows the maximum power to be harvested from the PMSG, 
and the WPGS controls guarantee that power comes from the 
PMSG and is delivered to the AC network. The DC-link 
voltage is fixed by the duty cycle control. 

III. QZSI BASED PMSG-WPGS SIMULINK MODELING 

The qZSI based PMSG-WPGS small-signal state-space 
model for Matlab/Simulink implementation and transient 
dynamic simulation is presented in Fig. 2. This model also 
makes it possible to determine the state-space matrix A of 
the system, its eigenvalues λi = σi ± j·ωi and their 
participation factors pki = ϕki·ψik obtained from the right ϕki 
and the left ψik eigenvectors of A. 
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A. Wind turbine, PMSG and MPPT control model 

The rotor blades deliver the maximum power Pmpp to the 

PMSG according to the wind speed vw by regulating the 

PMSG rectifier output voltage vsg through the MPPT 

control. This control fixes the PMSG rectifier output voltage, 

vsg, r, by imposing the maximum power Pmpp. 

The PMSG with the front-end rectifier is considered as a 

fixed power station at the MPP to obtain its small-signal 

model, Fig. 3, that is, 

 ,
sg

sg sg pmsg sg sg
sg

P
i I i R v

v
=  ∆ = ∆ − ∆  (1) 

where 

 
2

, ,

,
sg mpp

pmsg sg
sg r sg r

P P
I R

V V

∆
∆ = =  (2) 

where Vsg, r is the steady state value of the PMSG rectifier 

output voltage at the MPP.  

Finally, the model of the PMSG with the front-end 

rectifier, shunt capacitor Cp and cable Rc becomes (see 

Fig. 3) 
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The PMSG speed characterizes the maximum power 

harvested by the blades of the wind turbine and is regulated 

adjusting the PMSG rectifier output voltage vsg, r through the 

MPPT control. This MPPT control is well documented in 

[5], [17], and is not described here for space reasons. 

B. AC-output voltage control and grid-connected VSI 

model  

The AC grid d-reference current id, r is calculated by the 

capacitor-C1 voltage PI control by deriving it from the DC 

PMSG rectifier voltage vsg, r and the DC-link voltage 

reference Vdc, r as vc1, r = (vsg, r + Vdc, r)/2, Fig. 1, [2]. Thus, 

the equation of this control is expressed as 
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(a) 

 
(b) 

 
(c) 

Fig. 2. qZSI based PMSG-WPGS small-signal state-space model 
implementation in Simulink. a) Overall layout. b) Power balance subsystem. 

c) Duty cycle control subsystem.  
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Fig. 1. PSCAD/EMTDC circuit of qZSI based PMSG-WPGSs. 
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where kc1
p and kc1

i are the capacitor-C1 voltage control PI 

gains. The q-reference current iq, r is fixed to zero by 

assuming unity power factor of the VSI.  

The AC grid d-reference voltage ud is obtained from the 

PI control of the dq-frame VSC current, and its small-signal 

state-space model is written as  
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[ ] [ ]

,

,
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,

d r
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d

d rcc cc cc
d i cc p p

d
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q q
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i
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∆ 
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∆ 

∆ 
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 (5) 

where kcc
p and kcc

i are the gains of the PI control. 

Finally, the model of the grid-connected VSI can be 

expressed as 
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where Lf corresponds to the converter filter inductance. 

C. qZSI model 

Deduction of the qZSI model in Fig. 1 is presented in the 

following lines.  

The small-signal state-space averaged model of the qZSI 

power circuit model is well documented in [2], [13], [14], 

[16], [17]. This model relates the state vector xz = [∆iL1 ∆iL2 

∆vC1 ∆vC2]T with the inductor currents and capacitor 

voltages to the input u = [∆vi ∆idc ∆d]T and output y = [∆ii 

∆vdc]T vectors with the qZSI input and output currents idc 

and ii, voltages vi and vdc, and finally the duty cycle d.  

The dc-side qZSI current idc is calculated from the 

DC/AC VSI power balance which, by considering an ideal 

VSI, can be written as 

 .dc dc d d q qv i v i v i= +  (7) 

This equation can be written as the below small-signal 

relation: 
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where md0 = Vd /Vdc is the steady state operating point of the 

modulation function, Gdc = 1/Rdc = –P/V2
dc, P is the power 

from the DC to the AC side (see Fig. 1), Vd is the steady 

state converter voltage and Idc and Vdc are the steady state 

qZSI output current and voltage, respectively. 

The small-signal state-space model of the duty cycle dr in 

Fig. 1 is  
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where kdc
p and kdc

i are the gains of the PI DC-link voltage 

control, kL
p is the gain of the P inductor-L2 current control 

and D is the steady-state duty cycle. 

Finally, the LPF small-signal state-space model can be 

expressed as  

 
[ ] [ ][ ] [ ][ ]

[ ] [ ][ ] [ ][ ]1 0 .

c c r

r

d
d d d

dt

d d d

ω ω∆ = − ∆ + ∆

∆ = ∆ + ∆

 (10) 

D. Model validation  

The qZSI based PMSG-WPGS model with the data in 

Table I is validated in Fig. 4. The wind generator feeds a 

2 MW 1.27 kV DC qZSI based PMSG-WPGS linked to a 

strong AC grid with 690 V line-to-line rms voltage, and 

operates with a wind speed vw = 12 m/s. The qZSI works 

with a duty cycle D = 0.16. 

The grid d-current id and the DC-link voltage vdc dynamic 

response are studied when the grid d-voltage ed is varied 1% 

and 0.5% around the AC grid nominal voltage (see top of 

Fig. 4). The fair accuracy of the qZSI based PMSG-WPGS 

model is validated from the complete system in Fig. 1 by 

comparing its dynamic response to the simulations obtained 

with PSCAD/EMTDC.  

 ∆isg Rc 

Cp 

∆ii 

Rsg 
∆Impsg 

∆vsg ∆vi 

 
Fig. 3. Small-signal circuit of the PMSG with the front-end rectifier, shunt 
capacitor and cable. 
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Fig. 4. qZSI based PMSG-WPGS small-signal state-space model 

PSCAD/EMTDC validation. 
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IV. APPLICATION 

In this Section, PSCAD/EMTDC simulations are used to 

analyze the proposed qZSI based PMSG-WPGS model 

(Fig. 1) to show the contributions of the paper. Three 

different operating points related to wind speed are studied, 

vw = 9.5, 7.75 and 12 m/s (see Fig. 5(a)), with the DC-link 

voltage peak set to Vdc, r = 1500 V by the duty cycle control. 

The application data are in Table I. 

It is observed that the wind turbine output power tracks 

the MPP according to the wind speed variations (see 

Fig. 5(b)). These variations also modify the PMSG rectifier 

output voltage (see vin in Fig. 5(c)), and the duty cycle d is 

accordingly changed by the duty cycle control (see 

Fig. 5(d)) to hold the DC-link voltage at 1500 V. It is also 

worth noting that the qZSI based PMSG-WPGS is stable 

regardless the operation point. 

Small-signal system stability around the above steady 

state operating points is studied from the model in Section II 

(Fig. 2). The eigenvalues λi = σi ± j·ωi are obtained from the 

state-space model, and the variables σi and ωi/(2π) are 

shown in Fig. 6 for the 2 MW operating point. These 

eigenvalues verify system stability because they are not in 

the right-half plane (RHP). In order to analyze qZSI based 

PMSG-WPGS stability, the participation factors pki = φki·ψik 

are calculated from the right φki and left ψik eigenvectors 

where k and i represent the state-space variables and the 

modes, respectively. According to this, Fig. 6 shows the 

participation factors of the eigenvalues associated to the 

seven modes closest to the RHP. The results help to find out 

Table 1 

2 MW 1.5 KV DC QZSI BASED PMSG-WPGS 

DATA 

Parameter Data 

Cable and  
input C 

filter 

Rc, Cp ≈ 0 Ω 10 MF 

qZSI 
L1 = L2 r1 = r2 4 MH  0.005 Ω 

C1 = C2 R1 = R2 1 MF  0.05 Ω 

AC Filter Rf Lf ≈ 0 Ω  10 MH 

Cap-
C1 control 

kc1
p kc1

i 5.3 Ω–1  125 Ω–1/S 

Current 
control 

kcc
p kcc

i 3.2 Ω–1  97 Ω–1/S 

D control 

V *
dc, p  1500 V  

kdc
p kdc

i 10 V–1  125 V–1/S 

kL
p  16.67–4 A–1  
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Fig. 5. PSCAD/EMTDC transient dynamic study. a) Wind speed. B) Wind 

turbine active power. c) DC voltages. d) Duty cycle. 
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the most influential circuit component or control on the 

different eigenvalues. As examples, we have 

• Eigenvalue λ1: the qZSI inductor L2 and capacitor C2 

have the largest participation factors for this mode, 

suggesting that qZSI based PMSG-WPGS stability can be 

enhanced by adapting the above qZSI parameters. 

• Eigenvalue λ5: the state variable qc1 has the largest 

participation factor for this mode, suggesting that qZSI 

based PMSG-WPGS stability can be obtained by 

adjusting the gains of the capacitor-C1 voltage PI control 

(kc1
p and kc1

i). 

• Eigenvalue λ7: the state variable qcc has the largest 

participation factor for this mode, suggesting that qZSI 

based PMSG-WPGS stability can be obtained by 

adjusting the gains of the AC grid d-reference voltage PI 

control (kcc
p and kcc

i). 

V. CONCLUSIONS 

This paper presents a qZSI based PMSG-WPGSs small-

signal state-space model for Matlab/Simulink 

implementation considering all the main components and 

controls. The model allows the influence of components and 

parameters on system dynamics to be assessed. 

PSCAD/EMTDC was used to validate the above 

contributions. The following further studies could be 

performed from the present study: (i) analysis of 

approximations of the proposed small-signal state-space 

model to characterize system dynamics analytically, and (ii) 

development of a frequency-based model of the qZSI based 

PMSG-WPGS for stability studies. 
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