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ABSTRACT
We present a multiple scattering analysis of robust interface states for flexural waves in thin elastic plates. We show that finite clusters of linear
arrays of scatterers built on a quasi-periodic arrangement support bounded modes in the two-dimensional space of the plate. The spectrum
of these modes plotted against the modulation defining the quasi-periodicity has the shape of a Hofstadter butterfly, which as suggested by
previous works might support topologically protected modes. Some interface states appear inside the gaps of the butterfly, which are enhanced
when one linear cluster is merged with its mirror reflected version. The robustness of these modes is verified by numerical experiments in
which different degrees of disorder are introduced in the scatterers, showing that neither the frequency nor the shape of the modes is altered.
Since the modes are at the interface between two one-dimensional arrays of scatterers deposited on a two-dimensional space, these modes are
not fully surrounded by bulk gaped materials so that they are more suitable for their excitation by propagating waves. The generality of these
results goes beyond flexural waves since similar results are expected for acoustic or electromagnetic waves.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0059097

I. INTRODUCTION

The control and localization of mechanical waves is one of
the most fundamental problems in phononics since managing the
energy carried out by these waves is important for a plethora of
applications, such as cloaking, focusing, imaging, or energy har-
vesting. The limitations of natural materials to achieve this control
were overcome by the so-called phononic crystals and metamate-
rials, conceived as artificially structured materials whose properties
can be easily tailored.1,2

More recently, with the advent of topological materials in
condensed matter physics,3,4 new and exciting phases of matter
have been discovered with remarkable properties. Among oth-
ers, the existence of edge states robust against disorder is one of
the most interesting from the point of view of wave propagation;
therefore, classical analogs of these states have received increasing
attention.5–10

In acoustics and elasticity, topologically protected edge states
have been studied in a wide variety of periodic and quasi-periodic
materials.11–22 When the interface state occurs in a two- or three-
dimensional space, we have a one- or two-dimensional interface,

respectively, where the field can propagate without suffering back-
scattering, while if it happens in a one-dimensional space, the
interface state is a topologically protected zero-dimensional bound
mode, although recently protected states have been found in two-
dimensional domains by means of the classical analog to the Majo-
rana fermion.23–25 However, all these states are surrounded by the
bulk material so that their excitation might require propagation
outside the domain of interest or penetration through a gaped
material.

In this work, we give a step forward toward the design of local-
ized interface modes in mechanical systems. We have considered
a quasi-periodic line of scatterers embedded in a two-dimensional
elastic plate. We have applied multiple scattering theory to the study
of these structures, which is a reliable tool for the analysis of finite
structures26–28 against common methods based on super-cells, since
these introduce some artifacts due to periodicity that are not obvious
on some occasions. We have shown that bound modes appear in the
line of scatterers when these are rigid enough and that the spectrum
of these modes follows the well-known Hofstadter butterfly in the
appropriate space. We have found that edge states appear in the gaps
of the butterfly for finite clusters and that when a cluster is placed
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together with its mirror reflected version, the existence of these states
is enhanced, in the sense that their quality factor is higher. We have
shown as well that these modes are robust against positional dis-
ordering of the scatterers, robustness being verified with multiple
scattering simulations. The advantage of these modes is that they
are zero-dimensional modes, trapped between two one-dimensional
“bulk” materials in a two-dimensional space, which is a great advan-
tage from the practical point of view, since the bound state is not
fully surrounded by gaped bulk structures.

II. BOUNDED MODES IN LINEAR CLUSTERS
OF SCATTERERS

Let us assume that we have a cluster of N point scatterers
attached to a thin elastic plate (see Fig. 1, upper panel, for a schematic
view) in positions Rα for α = 1, 2, . . . , N. In this work, we will
assume that these scatterers are arranged in a linear quasi-periodic
distribution such that the position of the α scatterer is14

Rα = aα + ρm sin(αθ), (1)

where a is the lattice constant, ρm is the radius of the modulation cir-
cle, and θ is the angle rotated in the circle (as defined in Ref. 14). An
infinite cluster (N =∞) is periodic whenever θ/2π ∈ Q. The number
of scatterers that form a period is P and can be found by applying the
condition Pθ/2π ∈ Z.

The propagation and scattering of time-harmonic flexural
waves of frequency ω in the plate are described by their vertical
displacement W = ψe−iωt that satisfies a multiple scattering wave
equation29

(∇4 − ω2ρh/D)ψ =∑
α

tαδ(r − Rα)ψ, (2)

FIG. 1. Schematic diagram of the two geometries explored in the text. The upper
panel shows a quasi-periodic line of scatterers in a thin elastic plate, while the
lower panel shows a quasi-periodic line merged with its mirror symmetric version.

where D is the bending stiffness, ρ is the mass density, and h is
the thickness of the plate. The characteristic impedance tα of the
scatterers is defined as

tα = γα
Ω2Ω2

α

Ω2
α −Ω2 , (3)

with

γα =
mα

ρa2h
, (4)

where mα is the mass of the scatterers and Ω and Ωα are the operat-
ing frequency and their resonant frequency, respectively, in reduced
units, which are defined as

Ω2 = ω2 ρa2h
D

. (5)

In the above two equations, a is an arbitrary unit of length, defined
for its suitability when studying periodic materials, but, as can be
easily seen, the impedance tα is actually independent of a. If Eq. (2)
is multiplied by the parameter a4, we obtain

(a4∇4 −Ω2a2)ψ =∑
α

a4tαδ(r − Rα)ψ, (6)

where it is easy to see that lengths are normalized with respect to a
and the frequency is given in units of Ωa. On the right-hand side,
the two-dimensional delta function absorbs a2 and the remaining a2

is introduced in tα, which now is given in terms of Ωa and Ωαa,

tα = γα
Ω2a2Ω2

αa2

Ω2
αa2 −Ω2a2 . (7)

Consequently, to perform numerical experiments, the only required
parameters are a, Ωa, and the set of tα. These normalized units
simplify the understanding of the underlying physics of the problem.

The solution to the multiple scattering problem when some
external field ψ0(r) impinges on the cluster consists of this incident
field plus a scattered field so that the total field is29

ψ(r) = ψ0(r) +
N

∑
α=1

BαG(r − Rα). (8)

The Bα coefficients are obtained self-consistently from the
familiar multiple scattering system of equations,

N

∑
β=1

MαβBβ = ψ0(Rα), (9)

where the matrix elements Mαβ are given by

Mαβ = t−1
α δαβ −G(Rα − Rβ), (10)

with G(r) being the Green’s function of the flexural wave equation,

G(r) = i
8k2

b
[H0(kbr) + 2i

π
K0(kbr)], (11)
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where H0(⋅) is the zero-order Hankel function, K0(⋅) is the zero-
order modified Bessel function of the second kind, and kb is the
wavenumber of the incident field, related with the frequency as

k4
ba4 = Ω2a2. (12)

The eigenfrequencies of the cluster are found as the non-trivial
solutions of the system of Eq. (9) when there is no incident field,
which is equivalent to finding those frequencies for which the deter-
minant of the M matrix is zero or finding an eigenvalue of the
matrix equal to zero, which is a more suitable method from the
numerical point of view. This happens only for complex frequen-
cies if the cluster is finite, but a good approximation can be found
by analyzing the minimum eigenvalue λmin of M, as was previously
done in Ref. 27. This parameter will never be zero for real fre-
quencies; however, it can be assumed that if a strongly localized
mode appears in the cluster, the difference between an open and
a closed system will be very small, which, in turn, means that a
local minimum of λmin is expected near the real part of the reso-
nant frequency. The role of the imaginary part of the frequency will

FIG. 2. Evolution of the minimum eigenvalue of the multiple scattering matrix as a
function of both the modulation parameter θ and the frequency. The fractal diagram
that appears in the map is the well-known Hofstadter’s butterfly.

be to completely cancel this eigenvalue; thus, we can assume that
the smaller the λmin for a real frequency, the smaller the imaginary
part of the resonance and, therefore, the better the quality of the
mode.

Figure 2 shows a map of the minimum eigenvalue of M for
a cluster of N = 128, assuming a = 1, γα = 100, Ωαa = 0.25, and
ρm = 0.5. The plot shows function f = f (Ω, θ) defined as

f = log10∣λmin(Ω, θ)∣ (13)

so that high negative values (blue points) show the existence of
an eigenmode. As we see, the diagram forms the well-known
Hofstadter’s butterfly. This structure is characterized by the open-
ing of several gaps without modes all over the spectrum, defin-
ing the contour of the butterfly (yellow regions in Fig. 2). As
was expected, the system is symmetric to θ/2π = 0.5. Moreover,
tuning the ρm parameter, these gaps can be broadened or nar-
rowed. At the resolution shown in Fig. 2, it is not possible
to distinguish the existence of modes inside the gaps, but a
zoomed version of this plot shows them, as will be discussed in
Sec. III.

FIG. 3. Upper panel: Zoomed-in version of Fig. 2 showing interface states inside
the gaps of the butterfly. Lower panel: Same figure but for two faced clusters with
different modulation parameters θ. The x axis states the modulation parameter for
the first cluster, while the second one can be obtained as 2π − θ. We see how the
interface states are clearly more visible what is indicative of a better localization.
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III. INTERFACE STATES IN QUASI-PERIODIC CLUSTERS
OF SCATTERERS

Interface states appear at the edges of finite structures, which
present bandgaps in their spectrum. In the case of quasi-periodic
structures, recent works suggest that the gaps shown in Hofstadter’s
butterfly could be topological14 so that robust edge states are
expected at the interface.

Figure 3, upper panel, shows a zoomed region of Fig. 2, where
we can see some week blue modes inside the gaps of the butterfly,
interpreted as edge states of the finite cluster. The lower panel shows
Eq. (13), but this time the structure is formed by two different mod-
ulated clusters, whose modulation pattern begins at the edge of the
structure, forming an interface at the center of the cluster. Both clus-
ters are quasi-periodic with N = 64, but the left cluster is built with
a given θ parameter, while the right cluster is its specular reflection
(see the lower panel of Fig. 1). As we can see, the structure of the but-
terfly is identical to the upper panel, but now the interface states have
been enhanced since the blue regions defining the modes are more
defined and, as discussed before, this is indicative of a higher quality
of the mode. The reason is that, in the single cluster configuration,
the state is located at the edge of the cluster and it is surrounded by
the plate’s free space so that it will be more leaky than in the second
case where the interface is sandwiched between two linear clusters,
what will improve the quality factor of the mode.

FIG. 4. Spatial distribution of the pointed modes shown in Fig. 3. Only the central
scatterers of the cluster are shown. a is the minimum eigenvalue for the whole
range of frequencies of the periodic cluster with θ/2π = 0.5. As it can be seen,
this mode propagates all along the cluster. b is a cluster mode located inside of
the bandgap. Its scattering field is localized at the center of the cluster, where the
change in the modulation parameter is found.

An example of the different modes found in the previous anal-
ysis is depicted in Fig. 4 (modes labeled by “a” and “b” in the
lower panel of Fig. 3). Panel (a) shows a mode corresponding to
the periodic configuration θ/2π = 0.5; we see how the field is not
localized at any specific point, but it is distributed all along the clus-
ter. The hotspots correspond to the classical profile of a standing
wave trapped in a finite waveguide, in this case the periodic array
of scatterers. However, panel (b) corresponds to a configuration
with θ/2π = 0.4525, the aperiodic cluster is merged with its specu-
lar reflection at x = 0, and we see how a localized mode appears at
the interface between the two clusters.

We see therefore that the periodic finite line of scatterers sup-
ports bound states, as it is indeed a closed waveguide and, therefore,
defines a resonant cavity. However, introducing quasi-periodicity
increases the number of modes, and the spectrum maps Hofstadter’s
butterfly as a function of modulation defining the quasi-periodicity.
When these clusters are merged with their mirror version, the
quality of the interface states is enhanced and they can be easily
observed.

IV. ROBUSTNESS AGAINST POSITIONAL DISORDER
The most interesting feature of edge states is their topologi-

cal protection, i.e., their robustness against small perturbations. In
order to check the robustness of the edge modes found in Sec. III,
we have performed several numerical experiments with multiple
scattering theory. In our experiments, we add “positional disorder”

FIG. 5. Minimum eigenvalue for a faced cluster with θ1/2π = 0.4525 and θ2/2π
= 0.5475. Each line corresponds to a cluster with a different degree of disorder,
characterized by σ. At both sides of Ωa = 0.21, we have two localized modes.
The effect of disorder in this system makes a shift in the localized mode frequency;
however, the mode is still present in the cluster. Thus, it can be stated that these
edge states are robust.
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to the clusters so that, for every scatterer α in the cluster, we perform
a perturbation to its position such that now

Rσ
α = Rα + σaZ, (14)

with Z being a normal random variable of unitary variance and zero
mean. The parameter σ characterizes the amount of disorder since
it ensures that all the scatterers are deviated from its initial posi-
tion by a quantity that is normally distributed between −3σa and
3σa. Figure 5 shows the eigenvalue function defined in Eq. (13) for
the two-cluster configuration for θ1/2π = 0.4525 and for different
amounts of disorder characterized by σ. We can see how the edge
modes found are robust since they remain only slightly shifted in
frequency when we increase the disorder parameter σ.

Figure 6 shows the edge state located around Ωa = 0.19
for some of the disordered configurations. The robustness and

FIG. 6. Spatial distribution of the localized mode found aroundΩa = 0.19 for some
clusters with different disorders applied over them. All the modes have been nor-
malized to the maximum field scattered by the non-disordered mode. The shape of
the mode does not change with the disorder applied to the structure. When the dis-
order magnitude approaches the amplitude of the modulation applied, the spatial
distribution of the mode changes and it is no longer an edge mode.

localization of this mode are clear from these plots since the change
in the shape of the field distribution is imperceptible.

V. SUMMARY
In summary, we have shown that quasi-periodic lines of scat-

terers are capable of trapping flexural waves in two dimensions. We
have employed multiple scattering theory for the analysis of these
structures, avoiding in this way the use of super-cell methods that
artificially introduce periodicity in the clusters. Mapping the spec-
trum of these clusters as a function of quasi-periodic modulation
generates Hofstadter’s butterfly.

We have also shown that finite clusters built on a quasi-periodic
pattern support interface states, which are enhanced when the clus-
ters are merged with their chiral versions. Moreover, we have ana-
lyzed the bound states in clusters where a positional disorder has
been introduced, and we have found that the modes are robust in the
sense that their frequency remains unaltered as well as their spatial
distribution.

The advantage of this geometry is that the bound state is not
surrounded by the bulk material since it is a zero-dimensional mode,
induced by a one-dimensional material in a two-dimensional space,
which makes this geometry more suitable for applications where
propagating waves are expected to excite these modes, such as those
related to surface acoustic wave sensors. Since the methods devel-
oped in this work are general and not unique for flexural waves,
we expect similar results for other mechanical waves as well as for
electromagnetic waves.
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