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A B S T R A C T

The class imbalance problem occurs when one class far outnumbers the other classes, causing most traditional
classifiers perform poorly on the minority classes. To tackle this problem, a plethora of techniques have
been proposed, especially centered around resampling methods. This paper introduces a two-stage method
that combines the DBSCAN clustering algorithm to filter noisy majority class instances with a graph-based
procedure to overcome the class imbalance. We then experimentally evaluate the behavior of the proposed
method on a collection of two-class imbalanced data sets. The experimental results show an improvement in
the classification performance measured by the geometric mean of the accuracy on each class and also a higher
reduction in the imbalance ratio when compared to several state-of-the-art under-sampling techniques.
1. Introduction

The term ‘class imbalance’ refers to the situation in which the prior
class probabilities are very different, that is, the number of instances
in one class (often the one of prime interest) is much smaller than the
amount of data available in the other classes. This form of imbalance
is known as between-class imbalance or intrinsic imbalance, while the
within-class imbalance or small disjuncts occurs when one class consists
of several sub-clusters of different amount of instances (Ali et al.,
2015; Thabtah et al., 2020). For a two-class problem, the minority and
majority classes are usually referred to as positive (𝐶+) and negative
(𝐶−), respectively (Kang et al., 2017).

Class imbalance is considered as one of the most challenging prob-
lems in data mining, machine learning and knowledge discovery, espe-
cially because standard learning models are strongly biased to favor the
majority class. Since positive instances are under-represented, they are
likely guessed as noise or outliers, or assigned to the majority class re-
gardless the value of their features (García et al., 2019b; Haixiang et al.,
2017). The problem of class imbalance is common to many real-world
application domains such as fraud detection (Hassan & Abraham, 2016;
Zhu et al., 2020b), medical diagnosis (Bach et al., 2017; Wang et al.,
2020), credit risk and bankruptcy prediction (García et al., 2019a; Kim
et al., 2015; Marqués et al., 2013), fault detection (Codetta-Raiteri &

∗ Corresponding author at: Facultad de Ingeniería, Universidad Autónoma del Estado de México, Cerro de Coatepec s/n, Ciudad Universitaria, 50100 Toluca,
Mexico.

E-mail addresses: aguzmanp643@alumno.uaemex.mx (A. Guzmán-Ponce), sanchez@uji.es (J.S. Sánchez), rvaldovinosr@uaemex.mx (R.M. Valdovinos),

Portinale, 2015; Yang et al., 2020) and document categorization (Bruni
& Bianchi, 2020; Jiang et al., 2019), to cite just a few examples.

Most techniques proposed in the literature to face the class im-
balance problem can be categorized into three main groups: data-
level or external, algorithmic-level or internal, and cost-sensitive meth-
ods (Fernández et al., 2018). The data-level approach is based on a
preprocessing step to rebalance the class distribution by either under-
sampling the majority class and/or over-sampling the minority class.
The algorithmic-level approach creates or adapts the learning model for
biasing the discrimination process toward the minority class. Finally,
the cost-sensitive methods combine both data- and algorithmic-level ap-
proaches considers the varying costs of different misclassification types,
and assign higher misclassification costs to the minority class. Apart
from these strategies, ensemble learning appears as another option to
handle the class imbalance problem (Galar et al., 2012; Haixiang et al.,
2017). In general, the data-level solutions are the most popular and the
most widely used because they are independent of the underlying clas-
sifier and can be easily implemented for any problem (Lin et al., 2017).

This paper is motivated by two observations. First, we concentrate
on the under-sampling approach because the ever-increasing amount of
data generated in many scientific and engineering domains makes over-
sampling techniques much more expensive in memory and computa-
tional requirements for further classification tasks. On the other hand,
Please cite this article as: A. Guzmán-Ponce, Expert Systems With Application
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the use of under-sampling techniques has also shown a positive effect
on classifier performance, becoming a de facto strategy to work with
asymmetric distributions (Drummond & Holte, 2003; Pozzolo et al.,
2015). From the various strategies proposed for under-sampling the
class-imbalanced data sets, we have chosen to use a clustering-based
design because several related works have shown better performance
when compared to neighborhood-based developments (Cao & Shen,
2019; Haixiang et al., 2017; Tsai et al., 2019; Yen & Lee, 2009). Accord-
ing to the experiments carried out in those works, the clustering-based
under-sampling strategy can reduce the risk of removing meaningful
data from the majority class (Lin et al., 2017); however, practical
difficulties of this approach relate to the need of setting the number
of clusters for an optimal clustering result, the possibility of changing
the original distribution in the majority class because of the process to
select or define representative samples from each cluster, and also the
limited reduction in the imbalance ratio (Tsai et al., 2019).

Taking into account the pros and cons of the clustering-based under-
sampling techniques, we propose a new method, called DBIG-US, which
is based on the use of the DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) clustering algorithm (Ester et al., 1996) and
a graph-based procedure. Firstly, the DBSCAN depicts a filtering step
to identify and remove noisy negative instances and then, the graph-
based step produces a representative sub-sample of the majority class
with a pre-established maximum imbalance ratio. By exhaustive experi-
mentation, the proposed method is compared with some state-of-the-art
under-sampling techniques on a large pool of two-class imbalanced data
sets.

The main benefits of the DBIG-US algorithm can be summarized as
follows:

• It strengthens the visibility of the minority class.
• It ‘‘cleans’’ the majority class by eliminating noise and removing

borderline instances.
• It allows setting a maximum degree of imbalance.

Henceforward, this paper is organized as follows. Section 2 summa-
izes a collection of related works. The DBIG-US algorithm proposed
ere is introduced in Section 3. Next, Section 4 presents the experi-
ental databases and describes the experimental setup. The results are
iscussed in Section 5. Finally, Section 6 remarks the main conclusions
nd outlines some avenues for further research.

. Related works

Some data preprocessing methods combine under-sampling with an
nsemble through the well-known boosting and bagging techniques
Lin et al., 2017). For instance, the RUSBoost (RBt) algorithm proposed
y Seiffert et al. (2010) combines random under-sampling with a boost-
ng algorithm for building an ensemble of classifiers. Other examples
re EasyEnsemble (EE) and BalanceCascade (BC) (Liu et al., 2009),
hich both follow the idea of under-sampling by splitting the data

nto multiple subsets of the majority class and training an ensemble
uilt on each subset; after this, the resampled data set is obtained
y merging the best instances from each subset. The main difference
etween EE and BC is that the former is an unsupervised strategy
o explore the data set by using random sampling with replacement,
hile the latter explores the data set in a supervised way. On the other
and, Kang et al. (2017) developed a noise-filtered under-sampling
ethod (EE-KF), where the minority class is noise-filtered through

emoving instances whose all neighbors belong to the majority class
nd then, the majority class is under-sampled by the EasyEnsemble
lgorithm.

Solutions for class-imbalanced problems within the data-level ap-
roach focus on changing the class distribution of the data set by either
nder-sampling and/or over-sampling. While the under-sampling algo-
ithms reduce the size of the majority class by removing some negative
2

instances, the over-sampling methods augment the number of minority
class instances. In general, the result of the under-sampling approach
benefits from some computational advantages because it picks up a
subset of the majority class for training, making the learning process
faster and more efficient (Liang & Zhang, 2012).

Under-sampling can be conducted simply just by removing some
majority class instances at random, but it can lead to loss of some
potentially meaningful information. More advanced under-sampling
techniques are based on some intelligent identification of less important
negative instances to be eliminated. These methods can be categorized
into two groups: neighborhood-based and clustering-based.

2.1. Neighborhood-based algorithms

The Hart’s condensing (CNN) algorithm (Hart, 1968) uses the con-
cept of consistent subset to eliminate the majority class instances that
are sufficiently far away from the decision boundary because these are
considered to be irrelevant for learning. Analogously, the Tomek links
(TL) (Tomek, 1976) have also been employed to remove the majority
class instances since, if two instances form a Tomek link, then either
one of these is noise or both instances are borderline.

Kubat and Matwin (1997) proposed the one-sided selection (OSS)
technique, which selectively removes only those negative instances that
either are redundant or border the minority class instances (assuming
that these bordering cases are noise): the borderline instances are de-
tected using the Tomek links, while the redundant ones are eliminated
with Hart’s condensing. A similar method corresponds to the CNN-TL
algorithm (Batista et al., 2004) which firstly finds a consistent subset
and then applies the procedure based on the Tomek links.

Unlike the one-sided selection technique, the neighborhood clean-
ing (NCL) rule (Laurikkala, 2001) concentrates more on data filtering
than on data reduction; to this end, Wilson’s editing (ENN) (Wilson,
1972) is employed to identify and remove noisy negative instances.
According to the authors, NCL performs better than OSS and processes
noisy instances more carefully. However, this method is strongly biased
in favor of the minority class and leads to poor specificity and overall
accuracy.

2.2. Clustering-based algorithms

Yoon and Kwek (2005) proposed the class purity maximization
algorithm, which intends to split the majority class into dense clusters;
the idea is to determine negative instances that are far away from the
decision boundary, that is, to find as many clusters of majority class
instances as possible that do not contain any positive instances or at
most very few minority instances. The under-sampling based on clus-
tering (SBC) proposed by Yen and Lee (2006) clusters all the training
instances into 𝐾 clusters and selects an appropriate number of majority
class samples from each cluster by considering the ratio of the number
of majority class instances to the number of minority class instances
in the derived cluster. Similarly, Longadge (2013) proposed an under-
sampling method that firstly clusters the majority class instances into
𝐾 groups using the 𝐾-means algorithm, and then selects |𝐶+

| ∗ 𝐼𝑅𝑖
ajority class instances from each cluster 𝑖, where 𝐼𝑅𝑖 denotes the

imbalance ratio in the cluster 𝑖.
Rahman and Davis (2013) proposed a method based on clustering

the majority class into 𝐾 clusters. Each cluster is combined with all
the minority class instances to create 𝐾 training sets, which are then
classified with a decision tree and the fuzzy unordered rule induction
algorithm. Finally, the training set with the highest accuracy is desig-
nated as the final under-sampled data set for classification. The aim of
this algorithm is not to obtain a data set with a majority to minority
ratio of 1:1, but to reduce the difference in the size of the majority and
minority classes.

The ClusterOSS technique introduced by Barella et al. (2014) is
a modification of the OSS method. It starts by using the 𝐾-means
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algorithm to cluster the majority class instances. Then, the closest
instances to the center of each cluster are used to start the application of
OSS, removing borderline and noisy negative instances using the Tomek
links. Unlike OSS, this technique does not start the under-sampling
process at random, but defines how many and which instances should
be chosen by applying the 𝐾-means clustering algorithm.

Sobhani et al. (2015) developed the ClusFirstClass algorithm that
employs the 𝐾-means clustering and ensemble learning methods in
order to obtain a balanced data set. First, majority class instances
are clustered into 𝐾 groups and then, at least one instance from
each cluster is selected to combine with all minority class instances,
prior to training. Finally, to reduce information loss due to choosing
small number of majority instances in highly imbalanced data sets, an
ensemble is used to train several base learners with different subsets of
majority class instances.

Chennuru and Timmappareddy (2017) proposed the MahalCUSFil-
ter algorithm, which divides all the majority class instances into 𝐾
subsets based on the distance from their centroid and takes a number
of negative instances from each subset using stratified sampling; this
means that the number of instances to be chosen from each cluster
depends on its size, and the total number of majority class instances to
be chosen from all the groups is equal to the number of minority class
instances in the data set. Thus the set with all minority class instances
and selected the majority class instances form a balanced set. Finally,
the negative instances that are misclassified with the nearest neighbor
classifier are removed.

Lin et al. (2017) introduced two under-sampling strategies in which
the 𝐾-means clustering technique is used. Unlike the proposals de-
scribed previously, the number of clusters with majority class instances
is defined to be equal to the size of the minority class. The first strategy
uses the cluster centers to represent the majority class, whereas the
second strategy uses the nearest neighbors of the centers. In the Fast-
CBUS (fCBUS) method designed by Ofek et al. (2017), the minority
class is clustered into 𝐾 clusters by the 𝐾-means algorithm and for
each cluster, a similar number of majority class instances close to the
minority class instances are sampled.

Tsai et al. (2019) presented the CBIS approach, which is based on
clustering analysis and an instance selection process. Firstly, the affinity
propagation algorithm groups similar majority class instances into a
number 𝐾 of clusters. After this first step, the instance selection process
is applied to filtering out instances in each cluster. Finally, all reduced
𝐾 clusters together with the instances of minority class form a balanced
data set.

3. The DBIG-US algorithm

The under-sampling method proposed here differs from most
cluster-based under-sampling algorithms in at least two questions. First
it does not require to specify the number of clusters, which can be seen
as an important advantage because this number is often unknown in
advance, and second it allows to set the maximum imbalance ratio, say
𝑚𝑎𝑥𝐼𝑅, that the resampled data set can tolerate.

Fig. 1 shows the general workflow of the BIG-US algorithm, which
comprises two stages: the filtering step and the under-sampling step.
It starts by dividing a two-class imbalanced data set of 𝑛 = 𝑛+ +
𝑛− instances (where 𝑛+ ≪ 𝑛− denote the number of positive and
negative instances, respectively) into a subset 𝐶− with the majority
class instances and a subset 𝐶+ containing the minority class instances.
Afterward, it comprises two steps: (i) the filtering step runs the DBSCAN
clustering algorithm on the majority class to produce a noise-free set
of majority class instances (𝐶−

1 ), and (ii) the graph-based step consists
of the ShapeGraph algorithm to obtain an induced subgraph whose
vertices represent a subset of the majority class (𝐶−

2 ) with an imbalance
ratio 𝐼𝑅 ≤ 𝑚𝑎𝑥𝐼𝑅. Finally, 𝐶+ is combined with 𝐶−

2 to produce a
balanced data set.

The proposed DBIG-US method is formally described in Algorithm 1.
The filtering step (lines 3–6) applies DBSCAN until the free parameters
do not change, and then the under-sampling step (see Section 3.2) is
performed (line 7) to finally produce a balanced data set.
3

Fig. 1. General workflow of the proposed DBIG-US method.

Algorithm 1 DBIG-US
Input: 𝐷𝑆 = {𝑝1, 𝑝2,… , 𝑝𝑛}, 𝑚𝑎𝑥𝐼𝑅
Output: 𝐷𝑆𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑
1: Split 𝐷𝑆 into two subsets 𝐶− and 𝐶+

2: 𝐶−
1 ← 𝐶−

3: repeat
4: Compute 𝜖 and 𝑚𝑖𝑛𝑃 𝑡𝑠.
5: 𝐶−

1 ←DBSCAN(𝐶−
1 , 𝜖, 𝑚𝑖𝑛𝑃 𝑡𝑠).

6: until 𝜖 and 𝑚𝑖𝑛𝑃 𝑡𝑠 do not change
7: 𝐶−

2 ← ShapeGraph(𝐶−
1 , 𝑅𝑚𝑎𝑥, 𝐶+)

8: 𝐷𝑆𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 ← 𝐶+ ∪ 𝐶−
2

3.1. Filtering step

DBSCAN is a clustering algorithm, which assumes that the clusters
correspond to dense regions in the space. This algorithm can discover
groups without any prior knowledge about the number of clusters in
the data, and it works well with noisy data sets. DBSCAN in its original
proposal (Kumar & Rangan, 2007) requires two input parameters: 𝜖 de-
fines the radius of the neighborhood region, and 𝑚𝑖𝑛𝑃 𝑡𝑠 establishes the
minimum number of instances that might be part of the 𝜖-neighborhood
to form a cluster.

In our proposal, the input values of DBSCAN were modified accord-
ing to Eqs. (1) and (2) to guarantee that the cluster formed by the
majority class is free of noise and the decision border is cleaned.

𝜖 =

√

∑

|𝐶−
|

𝑖=1 𝑑𝑖𝑠𝑡(𝑚, 𝑝−𝑖 )
|𝐶−

|

(1)

where 𝑚 is the middle vector of the majority class, 𝑝−𝑖 represents
a majority class instance, 𝑑𝑖𝑠𝑡 corresponds to the Euclidean distance
between 𝑝𝑖 and 𝑚 and |𝐶−

| denotes the number of majority class
instances.

𝑚𝑖𝑛𝑃 𝑡𝑠 = 𝜋 × 𝜖2

𝑇 𝑜𝑡𝑎𝑙𝑉 𝑜𝑙𝑢𝑚𝑒
× |𝐶+

| (2)

where 𝑇 𝑜𝑡𝑎𝑙𝑉 𝑜𝑙𝑢𝑚𝑒 = 4
3 × 𝜋 × 𝜖3 and |𝐶+

| is the number of minority
class instances.

Bearing in mind that DBSCAN is here applied only on the majority
class, it takes a negative instance 𝑝−𝑖 at random and looks for all
reachable instances with respect to 𝜖 and 𝑚𝑖𝑛𝑃 𝑡𝑠. If 𝑝−𝑖 does not have
at least 𝑚𝑖𝑛𝑃 𝑡𝑠 neighboring instances at a distance 𝜖, then it is marked
as noisy and removed from the set 𝐶−. This process is repeated until
the values of the input parameters 𝑚𝑖𝑛𝑃 𝑡𝑠 and 𝜖 do not change.

3.2. Under-sampling step

After removing noisy and borderline negative instances with DB-
SCAN, the process is refined using a graph-based technique to reduce
the size of the majority class with the aim of obtaining an imbalance
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ratio lower than or equal to 𝑚𝑎𝑥𝐼𝑅. Appendix A provides the concepts
nd notation on graph theory that are needed in this section. Let 𝐶−

1
e the majority class produced by DBSCAN, then a weighted graph
𝑤 = (𝑉 ,𝐸) can be built as follows:

• 𝑉 (𝐺𝑤) = 𝐶−
1 ,

• 𝐸(𝐺𝑤) = {{𝑣, 𝑢} ∣ 𝑣, 𝑢 ∈ 𝑉 (𝐺𝑤)}, and
• for each 𝑒 = {𝑣, 𝑢} ∈ 𝐸(𝐺𝑤), 𝑤(𝑒) = 𝑑(𝑣, 𝑢) where 𝑑(𝑣, 𝑢) is the

Euclidean distance between 𝑣 and 𝑢.

The rationale behind considering the majority class as the set of
ertices of a weighted graph 𝐺𝑤 is to determine which instances are
urthest away from each other. The ShapeGraph algorithm will be in
harge of under-sampling the majority class by generating an induced
ubgraph of 𝐺𝑤 with a set of vertices whose size will be updated
ccording to Eq. (3) and stored in the variable Sample until reaching
n imbalance ratio equal to 𝑚𝑎𝑥𝐼𝑅 (lines 2–7 in Algorithm 2).

(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|𝐶−
1 | 𝜎2𝑍2

𝑒2(|𝐶−
1 |−1)+𝜎2𝑍2 if 𝑥 = 1

𝑓 (𝑥−1) 𝜎2𝑍2

𝑒2(|𝐶−
1 |−1)+𝜎2𝑍2 otherwise

(3)

where 𝑍 = 1.96, 𝜎 = 0.5 and 𝑒 = 0.05 for a confidence level of 95%.
After obtaining the size of the majority class subset (stored in

ample), the algorithm computes the adjacency matrix of 𝐺𝑤 (line 9)
with the distance between each pair of instances (edges). The function
GetMaximum gives a set of edges (pairs of instances) with a maximum
distance in the adjacency matrix (line 11). For each edge in this set,
the vertices that have not been visited yet will be marked and added
to the majority class subset 𝐶−

2 (lines 12–20).

Algorithm 2 ShapeGraph
Input: 𝐶−

1 , 𝑅𝑚𝑎𝑥, 𝐶+

Output: 𝐶−
2

1: Build 𝐺𝑤 = (𝑉 ,𝐸) a weighted graph with 𝑉 = 𝐶−
1

2: 𝑆𝑎𝑚𝑝𝑙𝑒 ← |𝐶−
1 |

3: 𝐼𝑅 ← 𝑆𝑎𝑚𝑝𝑙𝑒
|𝐶+

|

4: while 𝐼𝑅 > 𝑚𝑎𝑥𝐼𝑅 do
5: 𝑆𝑎𝑚𝑝𝑙𝑒 ← 𝑆𝑎𝑚𝑝𝑙𝑒 𝜎2𝑍2

𝑒2(|𝐶−
1 |−1)+𝜎

2𝑍2

6: 𝐼𝑅 ← 𝑆𝑎𝑚𝑝𝑙𝑒
|𝐶+

|

7: end while
8: 𝐶−

2 ← []
9: 𝑀𝐺 ← adjacencyMatrix(𝐺𝑤)

10: while |𝐶−
2 | < 𝑆𝑎𝑚𝑝𝑙𝑒 do

11: Maximum ← GetMaximum(𝑀𝐺)
12: for all {𝑣, 𝑢} in Maximum do
3: if 𝑣 has not been visited then
4: Mark 𝑣 as visit
5: 𝐶−

2 ← 𝐶−
2 ∪ {𝑣}

16: end if
17: if 𝑢 has not been visited then
8: Mark 𝑢 as visit
9: 𝐶−

2 ← 𝐶−
2 ∪ {𝑢}

0: end if
1: Remove {𝑣, 𝑢} from 𝑀𝐺
2: end for
3: end while
4: return 𝐶−

2

In general, the graph-based process discards instances that are not
lose enough to the decision border. Note that Eq. (3) determines the
ize of the majority class, and it is applied iteratively until the ratio
etween the computed value and the cardinality of the minority class
s close to that given by the user.
4

Table 1
Main characteristics of the data sets.

# Data set #Features Class distribution #Instances IR

1 yeast05679v4 8 51–477 528 9.35
2 vowel0 13 90–898 988 9.98
3 glass016v2 9 17–175 192 10.29
4 glass2 9 17–197 214 11.59
5 shuttle0v4 9 123–1706 1829 13.87
6 yeast1v7 7 30–429 459 14.30
7 glass4 9 13–201 214 15.47
8 ecoli4 7 20–316 336 15.80
9 pagBks13v4 10 28–444 472 15.86
10 glass016v5 9 9–175 184 19.44
11 shuttle2vs4 9 6–123 129 20.50
12 yeast1458vs7 8 30–663 693 22.10
13 glass5 9 9–205 214 22.78
14 yeast2vs8 8 20–462 482 23.10
15 flareF 11 43–1023 1066 23.79
16 yeast4 8 51–1433 1484 28.10
17 yeast1289v7 8 30–917 947 30.57
18 yeast5 8 44–1440 1484 32.73
19 ecoli0137v26 7 7–274 281 39.14
20 abalone17v78910 8 58–2280 2338 39.31
21 yeast6 8 35–1449 1484 41.40
22 shuttle2v5 9 49–3267 3316 66.67
23 kddBfOfw-b 41 30–2203 2233 73.43
24 poker89v5 10 25–2050 2075 82.00

3.3. Time complexity

As can be seen in Algorithm 1, DBIG-US consists of two steps.
The time complexity of the first step is given by the run time com-
plexity of the DBSCAN clustering algorithm, which is (𝑛2) in the
worst-case (Suthar et al., 2013).

The second step of DBIG-US corresponds to ShapeGraph (Algorithm
2) whose time complexity is also (𝑛2). In this case, the complexity is
mostly governed by the following set of instruction:

• Updating Sample and 𝐼𝑅 (lines 4–7) has a complexity of 𝑛.
• Computing the adjacency matrix (line 9) has a complexity of 𝑛2.
• Generating a majority class subset of size Sample (lines 10–23) has

a complexity of 𝑛2, which comes from 𝑛 iterations to compute the
set 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 with a complexity of 𝑛.

Taking into account that DBIG-US depends on DBSCAN and Shape-
Graph, the time complexity of the proposed algorithm becomes (𝑛2)
in the worst-case.

4. Experimental study

A set of experiments were designed to evaluate the performance of
the under-sampling algorithm proposed here. The experiments consist
of comparing DBIG-US with various well-known under-sampling meth-
ods on 24 two-class data sets taken from the KEEL Data Set Repository
(https://sci2s.ugr.es/keel/imbalanced.php#subA). The number of in-
stances varies from 129 to 3.316, the number of features ranges from 7
to 41, and the imbalance ratio (IR, the ratio of the majority class size to
the minority class size) is between 9.35 and 82. Table 1 summarizes the
main characteristics for these data sets, which are sorted in ascending
order of the imbalance ratio.

Apart from DBIG-US, we also implemented the random under-
sampling (RUS) approach, 4 neighborhood-based algorithms, 3
ensemble-based methods and 4 clustering-based algorithms to validate
the performance of the proposal.

• Random under-sampling (RUS).
• Neighborhood-based: NCL, TL, ENN, OSS.
• Ensemble-based: BC, RUSBoost (RBt), EE-KF (EEKF).
• Clustering-based: SBC, CBU, Fast-CBUS (fCBUS), CBIS, DBIG-US.

https://sci2s.ugr.es/keel/imbalanced.php#subA
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Table 2
Confusion matrix.

Classified as positive Classified as negative

Actual positive True Positive (TP) False Negative (FN)
Actual negative False Positive (FP) True Negative (TN)

The base classifiers of all tested algorithms were the nearest neigh-
or rule (1-NN) and the C4.5 decision tree in order to obtain fair
omparisons between the under-sampling approaches. The parameters
f C4.5 were adopted as default values of the WEKA framework (Hall
t al., 2009). For all data sets, the maximum imbalance ratio (𝑅𝑚𝑎𝑥)

allowed in the proposed DBIG-US algorithm was set to 1.
The experiments were carried out using the 10-fold cross-validation

method. Each original data set is randomly divided into ten stratified
parts of size 𝑛∕10, where 𝑛 denotes the total number of instances in the
data set; for each fold, nine blocks are used as a training set, and the
remaining portion comprises the test set.

4.1. Assessment metrics

To assess the classification performance on two-class imbalanced
data sets, it is commonly used a 2 × 2 confusion matrix as that given in
Table 2, where each entry (𝑖, 𝑗) contains the number of correct/incorrect
classifications (Kang et al., 2017). From this, four counts can be easily
derived: the number of true positives (actually positive, and classified
as positive), true negatives (actually negative, and classified as nega-
tive), false positives (actually negative, but classified as positive), and
false negatives (actually positive, but classified as negative).

Apart from the overall accuracy, other metrics can be calculated
based on these counts, including the balanced correction rate or ge-
ometric mean of the accuracy on each class, the area under the ROC
curve and the F-measure. All these reflect a trade-off between TPR and
TNR without regard to class distribution or misclassification costs and
therefore, these metrics are more suitable for class-imbalanced prob-
lems (García et al., 2014). In the experiments of this paper, the classi-
fication performance of algorithms was evaluated with the geometric
mean of the accuracies:

𝑔 =
√

𝑇𝑃𝑅 ⋅ 𝑇𝑁𝑅

where 𝑇𝑃𝑅 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁) is the sensitivity or true-positive rate
i.e., the accuracy on the minority class) and 𝑇𝑁𝑅 = 𝑇𝑁∕(𝑇𝑁 + 𝐹𝑃 )
s the specificity or true-negative rate (i.e., the accuracy on the majority
lass).

. Results and discussion

To investigate the performance of the DBIG-US algorithm, this
ection is divided into four blocks. First, the effect of DBSCAN and
he induced subgraph procedure has been analyzed separately to de-
ermine the synergy between both methods in DBIG-US. Second, the
eometric mean will evaluate the effectiveness of the proposed method
s compared with 14 state-of-the-art under-sampling techniques. Third,
he imbalance ratio and its reduction percentage that result from the
pplication of the under-sampling approaches will be analyzed. Finally,
oth performance measures will be put together to better understand
he behavior of each under-sampling algorithm.

.1. DBIG-US vs its components

Results in Table 3 show the performance of the two algorithms
nvolved in DBIG-US separately: the DBSCAN clustering algorithm and
he induced subgraph (ShapeGraph). Results obtained over the data
ets with no preprocessing have also been included for comparison pur-
oses. Values reported in bold type represent the best result obtained
n each data set.
5

d

As expected, the DBSCAN algorithm by itself improved the results
btained with the non-preprocessed data sets, which is likely due to
he noise filtering process of this algorithm. However, DBSCAN did not
chieve the best performance results.

Analyzing the results of the induced subgraph and the DBIG-US
ethod, it can be observed that both outperformed the results ob-

ained over the data sets with no preprocessing and also those pro-
essed by DBSCAN. Although ShapeGraph achieved the highest average
eometric mean, differences with DBIG-US were mostly small.

Taking these results into account, it is important to highlight the
dvantages of the DBIG-US. First, remember that the induced subgraph
s constructed by considering only the farthest samples from the center
nd those closest to the border between classes. In some cases, this
ituation could hinder the behavior of the classifier, mainly when the
lasses are strongly overlapped.

On the other hand, even though DBIG-US also employs the induced
ubgraph, it firstly cleans the decision boundary by applying the DB-
CAN algorithm, thus moving away the intra-class boundaries. In this
ay, it is possible to have the benefits of both algorithms: to obtain a

epresentative subset from the majority class, clean the decision border
nd reduce the class imbalance. Hence, results in Table 3 suggest that
ur proposal (the two-stage method) can be a better solution rather
han its components when the data set suffers not only from class
mbalance but also from other intrinsic data complexities such as noise.

.2. DBIG-US performance vs other methods

In Appendix B, Tables B.11 and B.12 respectively report the geo-
etric mean (averaged across the 10 runs) of each method using the
-NN and C4.5 classifiers on all 24 data sets. We also included the
lassification results on the original (baseline) data sets, which can be
eemed as a baseline (reference). Besides, the last rows in these tables
how the average geometric mean and the Friedman’s average rank for
ach under-sampling algorithm. Values in boldface highlight the best
erforming method in each data set.

Fig. 2 displays the Friedman’s average rank of each algorithm (last
ow in Tables B.11 and B.12). From these bar graphs, we can observe
hat DBIG-US achieved the lowest average ranks, which means that the
ethod proposed here can be deemed as the best performing algorithm.

We also conducted pair-wise comparisons between DBIG-US and
he state-of-the-art algorithms to further validate the performance of
BIG-US. Tables 4 and 5 summarize the comparisons for the 1-NN
nd C4.5 classifiers respectively, where the symbol ‘‘+’’ denotes that
BIG-US outperformed the algorithm to be compared, ‘‘=’’ indicates

hat both achieved the same performance, and ‘‘–’’ means that DBIG-
S performed worse than the method in comparison. The last column

hows how many times the performance of DBIG-US was superior
o that of the other algorithms on each data set, while the last row
eports the total number of times that DBIG-US was better/same/worse
W/T/L) than the method of the column.

Table 4 shows that DBIG-US was better than RUSBoost (RBt) and
BU on 19 out of the 24 data sets, but it was worse on the remaining
and 3 data sets, respectively. DBIG-US also outperformed the non-

reprocessed option, TL and OSS on 17 and 16 databases respectively,
nd it was better than RUS on 16 data sets. The performance of DBIG-
S was still superior than ENN and NCL on 15 and 13 databases,

espectively. From these results, it is possible to observe that DBIG-
S yielded better classification performance than the state-of-the-art
lgorithms on most databases using the 1-NN classifier.

Similar reseults were obtained when the C4.5 classifier was used
Table 5). Firstly, DBIG-US was better than NCL on 19 data sets. It
lso outperformed the SBC method on 18 data sets and ENN on 17
ata sets. Regarding the clustering-based methods, DBIG-US was better
han Fast-CBUS and CBIS on 17 data sets respectively. Thus, the overall
erformance of DBIG-US was higher than the other methods on most

atabases.
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Table 3
Classification results of DBIG-US and its components.

1NN C4.5

Baseline DBSCAN ShapeGraph DBIG-US Baseline DBSCAN ShapeGraph DBIG-US

yeast05679v4 61.2 62.9 93.7 81.9 65.1 60.7 87.9 76.1
vowel0 100 99.9 100 99.9 96.9 97.2 96.0 96.7
glass016v2 47.0 67.7 91.1 88.4 52.3 63.04 94.1 77.5
glass2 40.7 64.8 93.9 90.5 53.1 64.0 97.0 84.3
shuttle0v4 99.6 99.6 99.6 99.6 100 99.6 100 100
yeast1v7 62.3 57.9 94.9 79.3 54.3 50.8 84.9 63.3
glass4 86.6 89.4 88.4 96.1 82.2 92.3 80.7 91.9
ecoli4 86.3 86.3 94.9 94.9 82.9 80.1 81.4 81.5
pagBks13v4 98.2 98.2 98.1 98.1 96.2 96.2 94.3 94.3
glass016v5 81.0 94.3 88.9 94.3 99.4 99.7 83.1 100
shuttle2vs4 91.3 91.3 91.3 91.3 90.9 91.3 100 100
yeast1458vs7 44.1 37.3 90.6 89.2 0.0 0.0 91.3 94.0
glass5 81.1 94.3 94.3 94.3 98.8 99.4 83.1 100
yeast2vs8 77.0 78.3 92.2 87.7 22.4 21.0 79.1 81.6
flareF 30.1 77.9 76.6 94.2 15.2 73.5 78.9 91.8
yeast4 58.8 55.4 88.4 91.5 53.9 56.0 82.3 88.6
yeast1289v7 47.6 52.8 94.9 91.5 48.2 45.2 96.5 84.3
yeast5 82.1 82.8 86.3 88.3 86.3 87.3 87.7 83.0
ecoli0137v26 83.7 83.7 65.5 65.5 84.4 84.4 57.1 57.1
abalone17v78910 50.6 44.7 97.2 97.8 34.7 33.3 92.7 92.7
yeast6 71.1 70.9 93.5 85.7 73.4 70.4 90.8 85.4
shuttle2v5 100 100 100 100 100 100 100 100
kddBfOfw 100 100 98.4 98.4 98.3 98.3 95.0 95.0
poker89v5 19.9 80.5 87.7 90.0 0.0 73.0 56.6 70.0

Avg. Gmean 70.9 77.9 91.7 91.2 66.2 72.4 87.1 87.0
Fig. 2. Friedman’s average ranks.
As a further confirmation of the findings using the ranks and pair-
wise comparisons, we also ran a Holm’s post hoc test to find out
statistically significant differences between our proposal and the rest of
the algorithms. Holm’s test is a step-down procedure that sequentially
checks the hypothesis ordered by their significance (García et al.,
2010).

Tables 6 and 7 report the 𝑝-values obtained by applying the Holm’s
post hoc test over the results of Friedman procedure. Holm’s test rejects
those hypotheses that have an unadjusted 𝑝-value ≤ 0.00625 for both
classifiers. The first column indicates the number of hypotheses, the
order is according to their significance from the most to the lowest.
DBIG-US and CBU were the control methods for the 1NN and C4.5
classifiers, respectively. The control method was chosen according to
the best Friedman ranks: 4.58 (1NN) and 4.94 (C4.5).

Values in Table 6 indicate that DBIG-US was significantly better
than the original (Baseline), TL, CBU, OSS, and SBC methods using the
6

1NN classifier. However, when using the C4.5 classifier (Table 7), the
Holm’s post hoc test found that there did not exist statistical differences
between DBIG-US and CBU.

According to the results of Holm’s post hoc test when the C4.5
classifier was used, the DBIG-US algorithm was not selected as the
control method for comparison. Thus, the Wilcoxon’s paired signed-
rank test was also run to find out statistically significant differences
between each pair of algorithms for two levels of significance (𝛼 = 0.90
and 𝛼 = 0.95). This statistic ranks the differences in performances of
two algorithms for each data set, ignoring the signs, and compares the
ranks for the positive and the negative differences (Demšar, 2006).

The upper diagonal half of Table 8 (1-NN classifier) and Table 9
(C4.5 decision tree) corresponds to 𝛼 = 0.90 (10% or less chance),
whereas the lower diagonal half is for a significance level of 0.95. The
symbol ‘‘∙’’ indicates that the method of the row was significantly better
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Table 4
Comparison between DBIG-US and the other algorithms using 1-NN.

Data set Baseline RUS NCL TL ENN OSS BC RBt EEKF SBC CBU fCBUS CBIS sum

yeast05679v4 + + – + + + + + + + + – + 11
vowel0 – + – – – – + + + + + – – 6
glass016v2 + + + + + + + + + + + + + 13
glass2 + + + + + + + + + + + + + 13
shuttle0v4 = = = = = – = = – = = + = 1
yeast1v7 + + + + + + + + + + + + + 13
glass4 + + + + + + + + + + + + + 13
ecoli4 + – + + + + – + + + + – + 10
pagBks13v4 – – – – – – + + + – + – – 4
glass016v5 + + – + – + = + + + + – – 8
shuttle2vs4 = = = = = – – – – = + – – 1
yeast1458vs7 + + + + + + + + + + + + + 13
glass5 + = + + + + + + – + + – + 10
yeast2vs8 + + + + + + + + + + + + + 13
flareF + + + + + + + + + + + + + 13
yeast4 + + + + + + + + + + + + + 13
yeast1289v7 + + + + + + + + + + + + + 13
yeast5 + – – + – – – – – + – – + 4
ecoli0137v26 – – – – – – – – – – – – – 0
abalone17v78910 + + + + + + + + + + + + + 13
yeast6 + + – + + + + + – + + + + 11
shuttle2v5 = + = = = = = + + = = = = 3
kddBfOfw – – – – – – – – – – – – – 0
poker89v5 + + + + + + + + + + + + + 13

W/T/L 17/3/4 16/3/5 13/3/8 17/3/4 15/3/6 16/1/7 16/3/5 19/1/4 17/0/7 18/3/3 19/2/3 13/1/10 16/2/6
Table 5
Comparison between DBIG-US and the other algorithms using C4.5.

Data set Baseline RUS NCL TL ENN OSS BC RBt EEKF SBC CBU fCBUS CBIS sum

yeast05679v4 + + + + + + + – + + – – + 9
vowel0 – + + – – – + + + + + + + 9
glass016v2 + + + + + + + + + + – + + 12
glass2 + – + + + + + + + + – + + 11
shuttle0v4 = = + = = = = + = + + + = 5
yeast1v7 + – + – + + – – + + – – + 7
glass4 + + + + + + – + + + + + + 12
ecoli4 – – + – + – – – – + – – – 3
pagBks13v4 – – – – – – – – + – – – – 1
glass016v5 + + + + + + + + + + = + + 12
shuttle2vs4 + = + + + = = + = + = + + 8
yeast1458vs7 + + + + + + + + + + + + + 13
glass5 + = + + + + + + = = = + + 9
yeast2vs8 + + + + + + + + + + – + + 12
flareF + + + + + + + + – + + + + 12
yeast4 + + + + + + + + + + + + + 13
yeast1289v7 + + + + + + + + + + + + + 13
yeast5 – – – – – – – – – – – – – 0
ecoli0137v26 – – – – – – – – – – – – – 0
abalone17v78910 + + + + + + + + + + + + + 13
yeast6 + + + + + + – + – + – + + 10
shuttle2v5 = = = = = = = = = = + + = 2
kddBfOfw – = – – – – = – – – + – – 1
poker89v5 + + + + + + + + + + + + + 13

W/T/L 16/2/6 13/5/6 19/1/4 15/2/7 17/2/5 15/3/6 13/4/7 16/1/7 14/4/6 18/2/4 11/3/10 17/0/7 17/2/5
than the method of the column, and the symbol ‘‘◦’’ means that the
method of the column performed significantly better than the method
of the row. The two bottom rows show how many times the algorithm
of the column was significantly better than the remaining techniques.

Results in Tables 8 and 9 show that DBIG-US was statistically better
than the other methods for both levels of significance when the 1-NN
classifier was used. However, when the C4.5 tree was applied, CBU was
the best method for 𝛼 = 0.95 and, statistically equal than DBIG-US for
𝛼 = 0.90. Finally, analyzing both methods (DBIG-US and CBU) we can
see that there are not statistical differences in both levels of significance
(see Table 9). These results indicate that DBIG-US is a competitive
proposal to face the class imbalance problem. On the other hand,
the ensemble-based methods were among the top-5 under-sampling
algorithms with the C4.5 classifier, which suggests that splitting the
majority class into several subsets and training an ensemble may give
7

rise to significantly better performance than the neighborhood-based
under-sampling algorithms (NCL, TL, ENN, and OSS).

5.3. Rebalancing performance

A second question of interest to the present study is the rebalancing
performance of the resampling algorithms, that is, their capability
to produce an equal or similar number of instances in both classes.
This will allow to gain further understanding of how the removal of
majority class instances affects the classification performance. Here the
rebalancing performance was evaluated using the imbalance ratio of
the sets produced by the application of the under-sampling methods.

Table 10 provides the imbalance ratio of each under-sampled data
set. Initially, the imbalance ratio of the 24 data sets was between 9.35
and 82 (see Table 1). After running the under-sampling algorithms
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Table 6
Holm’s post hoc test (𝛼 = 0.05) for the 1NN classifier.

Algorithm 𝑧 = (𝑅0 − 𝑅𝑖)∕𝑆𝐸 𝑝 Holm

13 Baseline 5.05473 0 0.003846
12 TL 4.192148 0.000028 0.004167
11 CBU 3.829864 0.000128 0.004545
10 OSS 3.502083 0.000462 0.005
9 SBC 3.15705 0.001594 0.005556
8 CBIS 2.622249 0.008735 0.00625
7 RUS 2.449733 0.014296 0.007143
6 BC 2.415229 0.015725 0.008333
5 RBt 1.966687 0.049219 0.01
4 ENN 1.587151 0.112478 0.0125
3 EEKF 1.345628 0.178423 0.016667
2 NCL 0.897085 0.369673 0.025
1 fCBUS 0.793575 0.427443 0.05

Table 7
Holm’s post hoc test (𝛼 = 0.05) for the C4.5 classifier.

Algorithm 𝑧 = (𝑅0 − 𝑅𝑖)∕𝑆𝐸 𝑝 Holm

13 OSS 4.123142 0.000037 0.003846
12 Baseline 3.864367 0.000111 0.004167
11 SBC 3.674599 0.000238 0.004545
10 TL 3.622844 0.000291 0.005
9 NCL 2.932779 0.003359 0.005556
8 ENN 2.363475 0.018104 0.00625
7 fCBUS 2.225461 0.02605 0.007143
6 BC 1.673409 0.094247 0.008333
5 CBIS 1.587151 0.112478 0.01
4 RUS 1.569899 0.116439 0.0125
3 RBt 1.500893 0.133383 0.016667
2 EEKF 0.534801 0.592788 0.025
1 DBIG-US 0.034503 0.972476 0.05

enumerated in Section 4, the imbalance ratio decreased considerably (it
was equal or close to 1.0) when RUS, BC, EE-KF, Fast-CBUS, CBIS and
DBIG-US were used. Conversely, most data sets that were resampled
by NCL, TL, ENN and OSS were still heavily class-imbalanced, thus
leading to low rebalancing performance. For instance, taking a look
at the results over the poker89v5 database, RUS and DBIG-US yielded
an imbalance ratio equal to 1.00, while the imbalance ratios produced
by the use of NCL, TL, ENN and OSS (79.4, 81.7, 80.5 and 80.6,
respectively) were very similar to that of the original data set.

Another way to assess the rebalancing performance is to calculate
the reduction percentage in the imbalance ratio. Results reveal that the
top-2 under-sampling methods were RUS with an average reduction of
95.1% and the proposed DBIG-US algorithm with an average reduction
of 94.2%. On the other hand, the average reductions achieved with
NCL, TL, ENN and OSS were extremely low (7.5%, 2.6%, 6.8% and
35.1%, respectively), which corroborates the previous discussion of the
results given in Table 10.
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5.4. Classification performance vs rebalancing performance

As already remarked in Section 1, the behavior of standard learning
models has shown a significant loss of performance when the class
imbalance is presented. In fact, various studies (López et al., 2013;
Thabtah et al., 2020; Zhu et al., 2020a) reveal that the relation-
ship between the imbalance ratio and the classifier performance is
tight, suggesting that a skewed class distribution could degrade the
performance of standard learners. In general, when there is no class
imbalance in a data set, the performance of the classifier is uniform,
stable and acceptable, but this is not the case when the imbalance
ratio is moderate or severe. This is the reason why we analyzed the
imbalance ratio in conjunction with the geometric mean, with the aim
of investigating the effect of the final imbalance ratio on the classifier
performance.

To gain a better understanding of the behavior of each under-
sampling, Fig. 3 displays all the algorithms in the space spanned by
the average geometric mean on the 𝑥-axis and the reduction in the
imbalance ratio on the 𝑦-axis. A method with perfect performance will
be located on the upper right corner (100% geometric mean, 100%
reduction in IR) of the plot. The closer the method is to the upper right
corner, the better its behavior.

In summary, the following conclusions can be drawn from the
combined analysis of classification performance and rebalancing per-
formance:

• The proposed DBIG-US, CBU, Fast-CBUS and the three ensemble-
based methods are the techniques located closest to the upper
right corner of the plots, which means that these yielded the best
classification and rebalancing performances.

• Taking into account both classifiers, DBIG-US obtained the best
classification performance in terms of geometric mean and reduc-
tion in imbalance ratio.

• The neighborhood-based algorithms together with SBC and CBIS
showed low performance in both classification and rebalancing
the classes.

6. Conclusions and future research

This paper presents a novel under-sampling method (called DBIG-
US) that combines the DBSCAN clustering algorithm for filtering the
data set and a strategy based on a weighted graph to reduce the size
of the majority class. This proposal takes advantage of the capability of
DBSCAN for detecting and removing noisy instances, thus increasing
the quality of the training set and obtaining a representative data set
in which the classes were balanced. Another substantial issue is that
the complexity of the proposed algorithm in the worst-case is (𝑛2).

The behavior of the under-sampling techniques used in the experi-

ments has been analyzed with the geometric mean of the accuracy on
Table 8
Summary of the Wilcoxon’s test when using the 1-NN classifier.

Baseline RUS NCL TL ENN OSS BC RBt EEKF SBC CBU fCBUS CBIS DBIG-US

Base line – ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
RUS ∙ – ∙ ◦
NCL ∙ – ∙ ∙ ∙ ∙ ∙ ◦
TL ∙ ◦ ◦ – ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
ENN ∙ ∙ – ∙ ∙ ∙ ◦ ◦
OSS ∙ ◦ ◦ – ◦ ◦ ◦ ◦ ◦
BC ∙ ∙ ∙ – ◦
RBt ∙ ∙ ∙ – ∙ ∙ ◦
EEKF ∙ ∙ ∙ – ∙ ∙ ∙ ◦
SBC ∙ ◦ ∙ ◦ ◦ – ◦ ◦
CBU ◦ ◦ ◦ – ◦ ◦
fCBUS ∙ ∙ ∙ ∙ ∙ – ∙
CBIS ∙ ∙ ◦ – ◦
DBIG-US ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ –

𝛼 = 0.90 0 2 6 1 5 1 3 5 6 2 0 7 2 12
𝛼 = 0.95 0 2 5 1 4 1 3 4 5 2 0 6 2 12
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Table 9
Summary of the Wilcoxon’s test when using the C4.5 classifier.

Baseline RUS NCL TL ENN OSS BC RBt EEKF SBC CBU fCBUS CBIS DBIG-US

Baseline – ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
RUS ∙ – ∙ ∙ ∙ ∙ ∙ ◦ ◦
NCL ∙ – ∙ ∙ ◦ ◦ ◦ ◦ ◦ ◦
TL ◦ ◦ – ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
ENN ∙ ◦ ∙ – ∙ ◦ ◦ ◦ ◦ ◦
OSS ◦ ◦ ◦ – ◦ ◦ ◦ ◦ ◦ ◦
BC ∙ ∙ ∙ ∙ ∙ – ∙ ◦ ◦
RBt ∙ ∙ ∙ ∙ ∙ – ∙ ◦ ◦
EEKF ∙ ∙ ∙ ∙ ∙ – ∙ ◦ ◦
SBC ◦ ◦ ◦ ◦ – ◦ ◦ ◦
CBU ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ – ∙ ∙
fCBUS ◦ – ◦
CBIS ∙ ∙ ∙ ∙ ◦ – ◦
DBIG-US ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ –

𝛼 = 0.90 0 6 3 0 3 0 6 6 6 0 12 1 5 12
𝛼 = 0.95 0 5 3 0 3 0 6 6 6 0 11 0 4 9
Table 10
Imbalance ratio of the resampled sets.

Data set RUS NCL TL ENN OSS BC RBt EEKF SBC CBU fCBUS CBIS DBIG-US

yeast05679v4 1.0 8.0 9.1 8.2 7.3 1.0 1.6 1.0 7.5 1.0 1.0 3.9 1.3
vowel0 1.0 9.9 9.9 9.9 8.3 1.0 1.5 1.0 8.9 1.0 1.0 9.0 1.2
glass016v2 1.0 8.7 10.1 8.4 9.6 1.0 1.5 1.0 8.9 1.0 1.0 6.4 1.0
glass2 1.0 10.1 11.4 9.8 10.5 1.0 1.5 1.0 9.9 1.0 1.0 7.7 1.0
shuttle0v4 1.0 13.8 13.8 13.8 0.3 1.0 1.5 1.0 13.8 1.0 1.0 8.9 1.1
yeast1v7 1.0 12.1 14.0 12.5 12.1 1.0 1.5 1.0 11.4 1.0 1.0 5.6 1.0
glass4 1.0 14.5 15.4 14.9 4.2 1.0 1.5 1.0 15.5 1.0 1.0 10.2 1.0
ecoli4 1.0 15.2 15.8 15.4 10.3 1.0 1.5 1.0 14.9 1.0 1.0 8.0 1.5
pagBks13v4 1.0 15.3 15.8 15.2 4.5 1.0 1.5 1.0 14.7 1.0 1.0 12.7 1.5
glass016v5 1.0 18.3 19.3 18.7 5.9 1.0 1.4 1.0 18.7 1.0 1.0 12.0 1.0
shuttle2vs4 1.0 19.8 20.5 20.5 8.7 1.0 1.5 1.0 20.5 1.0 1.0 18.5 1.0
yeast1458vs7 1.0 19.6 21.8 19.8 21.8 1.0 1.5 1.0 16.9 1.0 1.0 8.2 1.4
glass5 1.0 21.6 22.7 22.0 7.6 1.0 1.4 1.0 21.9 1.0 1.0 15.0 1.0
yeast2vs8 1.0 21.9 22.9 22.0 21.2 1.0 1.5 1.0 21.0 1.0 1.0 10.9 1.5
flareF 1.0 22.0 23.7 21.8 23.7 1.0 1.5 1.0 23.2 1.0 1.0 6.0 1.1
yeast4 1.0 26.4 27.8 26.6 24.7 1.0 1.5 1.0 22.1 1.0 1.0 10.5 1.4
yeast1289v7 1.0 28.3 30.2 28.4 30.1 1.0 1.5 1.0 29.6 1.0 1.0 11.5 1.3
yeast5 1.0 32.0 32.6 32.0 25.0 1.0 1.5 1.0 32.0 1.0 1.0 12.6 1.4
ecoli0137v26 1.0 38.1 38.9 38.0 17.3 1.0 1.4 1.0 37.6 1.0 1.0 24.1 1.0
abalone17v78910 1.0 37.5 39.1 38.2 37.3 1.0 1.5 1.0 31.0 1.0 1.0 25.6 1.3
yeast6 1.0 40.0 41.1 39.9 35.5 1.0 1.5 1.0 40.2 1.0 1.0 15.0 1.3
shuttle2v5 1.0 66.6 66.6 66.6 44.2 1.0 1.5 1.0 62.7 1.0 1.0 56.6 1.3
kddBfOfw 1.0 73.4 73.4 73.4 0.5 1.0 1.5 1.0 71.0 1.0 1.0 66.1 1.3
poker89v5 1.0 79.4 81.7 80.5 80.6 1.0 1.5 1.0 69.2 1.0 1.0 26.3 1.0
Fig. 3. Geometric mean versus reduction in imbalance ratio.
each class to assess the classification performance and also the reduc-
tion in the imbalance ratio to evaluate the rebalancing performance.

Experimental results on 24 two-class imbalanced data sets have
allowed to validate the superior performance of the DBIG-US method
as compared with some state-of-the-art under-sampling algorithms.
9

The results have revealed that the proposed under-sampling algorithm
yields a considerable reduction in size without decreasing the classifier
performance.

Despite the encouraging performance obtained with the proposed
algorithm, there is still space for further research. An interesting issue
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Table B.11
Geometric mean results obtained by 1-NN.

Data set Baseline RUS NCL TL ENN OSS BC RBt EEKF SBC CBU fCBUS CBIS DBIG-US

yeast05679v4 61.2 73.5 83.0 69.0 78.9 72.2 73.5 76.7 74.3 77.1 74.5 82.1 73.5 81.9
vowel0 100 97.2 100 100 100 100 96.6 98.7 97.8 99.8 97.8 100 100 99.9
glass016v2 47.0 74.4 67.0 52.7 67.9 52.9 73.5 64.1 85.2 53.1 69.6 47.1 51.7 88.4
glass2 40.7 76.2 53.1 41.0 67.1 47.4 67.6 68.7 75.6 53.1 78.9 66.1 51.9 90.5
shuttle0v4 99.6 99.6 99.6 99.6 99.6 100 99.6 99.6 100 99.6 99.6 98.7 99.6 99.6
yeast1v7 62.3 74.8 76.8 67.6 70.4 69.9 58.1 65.9 57.2 67.2 64.5 62.3 68.4 79.3
glass4 86.6 79.9 91.3 86.6 87.7 83.6 84.3 87.4 81.7 86.6 80.7 81.7 87.4 96.1
ecoli4 86.3 95.0 89.4 86.3 92.2 86.2 100 92.2 92.5 91.9 82.2 100 83.4 94.9
pagBks13v4 98.2 98.2 98.2 98.2 98.2 98.2 96.4 96.6 87.9 99.9 94.6 100 100 98.1
glass016v5 81.0 77.0 100 80.9 100 79.3 94.3 91.0 92.6 94.0 81.7 100 99.5 94.3
shuttle2vs4 91.3 91.3 91.3 91.3 91.3 100 100 98.2 100 91.3 74.54 100 100 91.3
yeast1458vs7 44.1 64.5 62.7 47.9 48.0 54.2 60.0 65.1 72.1 57.0 63.0 61.2 59.8 89.2
glass5 81.1 94.3 93.8 81.3 94.0 79.8 72.0 91.2 100 93.3 77.0 100 93.9 94.3
yeast2vs8 77.0 59.8 80.6 77.3 80.5 77.4 72.5 75.1 77.5 80.2 64.2 52.9 73.0 87.7
flareF 30.1 81.4 65.9 33.8 72.6 26.1 68.5 77.3 85.5 26.1 77.8 81.7 74.9 94.2
yeast4 58.8 83.3 80.1 62.3 71.3 58.9 82.4 77.1 73.6 78.6 69.1 81.4 72.0 91.5
yeast1289v7 47.6 56.6 65.4 54.2 60.4 60.0 69.9 65.0 61.5 47.6 51.4 61.2 69.6 91.5
yeast5 82.1 100 96.3 87.6 94.1 88.7 96.5 94.6 93.1 82.1 89.6 98.3 84.4 88.3
ecoli0137v26 83.7 78.3 84.4 84.1 84.4 84.2 71.4 81.9 100 84.2 78.3 100 83.0 65.5
abalone17v78910 50.6 77.6 66.7 45.3 61.4 50.7 73.2 78.6 77.3 58.3 63.4 92.9 48.7 97.8
yeast6 71.1 69.9 86.1 79.0 82.7 80.6 81.4 83.7 87.1 71.2 75.9 85.5 76.6 85.7
shuttle2v5 100 99.0 100 100 100 100 100 99.9 99.0 100 100 100 100 100
kddBfOfw 100 100 100 100 100 100 100 100 100 100 100 100 100 98.4
poker89v5 19.9 53.1 20.0 20.0 20.0 20.0 63.5 65.1 43.3 34.5 64.5 66.1 39.8 90.0

Avg. Gmean 70.9 81.5 81.3 72.7 80.1 73.8 81.5 83.0 83.9 76.1 78.0 84.1 78.8 91.2
Avg. Rank 10.69 7.54 5.67 9.65 6.5 8.81 7.5 6.96 6.21 8.4 9.21 5.54 7.75 4.58
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open for future investigation relates to the generalization of DBIG-US
for tackling the multi-class imbalance problem, which emerges as a
more realistic situation in many practical applications; for instance, the
goal for a cancer diagnosis problem expects to categorize the multiple
types of tumor rather than only to distinguish between cancerous and
normal tissues. Another subject that deserves further research is the
multi-label classification of imbalanced data where the classes are not
mutually exclusive, which represents a much more complex problem
because an instance may belong to more than one class; for example,
in the scene classification domain, images may belong to multiple
semantic classes (e.g., beach scene, urban scene, nature scene).

Another open line is focused on analyzing the behavior of the
two stages of the DBIG-US method separately, which will be further
investigated in a future work with synthetic data. On the other hand,
since our proposal is very dependent on the distance metric (Euclidean
distance), the effect of this can be an interesting point to be studied in
the future, especially over data sets with a very high number of fea-
tures. Furthermore, the heuristic metric to dynamically computing the
DBSCAN free parameters, which depends on the data set characteristics,
could let further research to check whether or not our heuristic metric
is optimal and compare it against other empirical approaches.
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Appendix A. Concepts and notation on graph theory

Fundamental concepts and notations regarding graphs (Bondy &
Murty, 1976) that are necessary for a full understanding of the second
step in the DBIG-US algorithm are introduced in this appendix. Let
𝐺 = (𝑉 ,𝐸) be an undirected simple graph (i.e., finite, loop-less and
without parallel edges) with a set of vertices or nodes 𝑉 (𝐺) and a set
of edges 𝐸(𝐺), where each edge is a set of two vertices {𝑣, 𝑢} (order
oes not matter). The two vertices forming an edge are said to be
he endpoints of this edge, and the edge is said to be incident to the
ertices.

efinition 1 (Subgraph). 𝐻 is a subgraph of 𝐺 if 𝑉 (𝐻) ⊆ 𝑉 (𝐺) and
(𝐻) ⊆ 𝐸(𝐺).

efinition 2 (Induced Subgraph). An induced subgraph of a graph is
nother graph, formed from a subset of the vertices of the graph and
ll of the edges connecting pairs of vertices in that subset. Let 𝑋 ∈ 𝑉 (𝐺)
e a set of vertices deleted, then the induced subgraph is denoted by
−𝑋; if 𝑌 = 𝑉 ⧵𝑋 represents the set of vertices that remain undeleted,

he induced subgraph is denoted by 𝐺[𝑌 ] and referred to as subgraph
f 𝐺 induced by 𝑌 , where 𝑌 is the set of vertices of 𝐺 and whose set
f edges consists of all edges of 𝐺 that have both ends in 𝑌 .

efinition 3 (Adjacency). A vertex 𝑣 ∈ 𝑉 (𝐺) is said to be adjacent to
nother vertex 𝑢 ∈ 𝑉 (𝐺) if there is an edge {𝑣, 𝑢} ∈ 𝐸(𝐺). A complete
raph is a simple graph in which any two vertices are adjacent.

efinition 4 (Neighborhood). The neighborhood of a vertex 𝑣 ∈ 𝑉 (𝐺)
s a subgraph induced by all vertices that are adjacent to 𝑣. It can be
enoted by 𝑁[𝑣] = {𝑢 ∈ 𝑉 (𝐺)|{𝑣, 𝑢} ∈ 𝐸(𝐺)}.

efinition 5 (Path). A path from a vertex 𝑣 ∈ 𝑉 (𝐺) to a vertex 𝑢 ∈ 𝑉 (𝐺)
n a graph 𝐺 is a sequence of vertices (𝑣1, 𝑣2,… , 𝑣𝑛) such that 𝑣 = 𝑣1,
𝑛 = 𝑢 and each consecutive pair {𝑣𝑖, 𝑣𝑖+1} is an edge in 𝐺. The path is
imple if all the vertices are distinct. A cycle is just a non-empty path
here the first vertex 𝑣1 is the same as the end vertex 𝑣𝑛. A simple cycle

s a cycle in which all vertices are distinct, except the first and last
ertices.
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Table B.12
Geometric mean results obtained by C4.5.

Data set Baseline RUS NCL TL ENN OSS BC RBt EEKF SBC CBU fCBUS CBIS DBIG-US

yeast05679v4 65.1 70.6 70.6 65.8 74.5 64.3 68.6 77.0 70.5 74.3 85.2 85.6 72.9 76.1
vowel0 96.9 92.8 94.4 96.9 97.5 97.4 95.0 95.9 96.1 94.5 95.5 94.7 95.8 96.7
glass016v2 52.3 60.0 66.7 53.1 53.3 58.3 45.6 63.5 57.64 52.0 81.5 33.3 66.1 77.5
glass2 53.1 90.8 57.7 33.2 58.0 52.4 61.1 65.2 79.4 58.2 94.1 52.7 66.7 84.3
shuttle0v4 100 100 99.9 100 100 100 100 99.9 100 99.9 99.6 97.5 100 100
yeast1v7 54.3 64.5 57.2 65.2 62.6 54.2 81.5 67.4 58.3 62.8 78.3 69.8 56.5 63.3
glass4 82.2 73.0 82.1 82.2 86.6 79.3 92.3 89.1 91.7 72.4 80.7 66.7 82.3 91.9
ecoli4 82.9 87.5 80.1 82.9 80.1 86.0 92.5 86.3 95.0 77.1 87.5 91.3 85.8 81.5
pagBks13v4 96.2 100 99.8 99.8 96.1 97.4 94.5 97.5 92.0 97.1 94.6 95.7 97.5 94.3
glass016v5 99.4 88.2 99.7 93.7 99.7 97.1 94.3 92.5 92.6 99.7 100 81.7 99.5 100
shuttle2vs4 90.9 100 91.3 90.9 91.3 100 100 99.4 100 90.9 100 66.7 91.3 100
yeast1458vs7 0.0 59.6 0.0 0.0 0.0 0.0 44.7 53.1 60.6 25.8 74.5 61.2 77.1 94.0
glass5 98.8 100 99.7 99.5 99.8 98.5 94.3 93.9 100 100 100 81.7 99.3 100
yeast2vs8 22.4 61.2 22.3 0.0 31.6 22.4 76.5 72.1 74.3 31.6 84.4 4.0 79.4 81.6
flareF 15.2 85.9 62.4 0.0 56.8 0.0 79.5 84.2 91.9 0.0 83.7 89.0 74.5 91.8
yeast4 53.9 78.3 60.7 57.4 65.4 53.9 84.1 78.2 82.9 68.4 88.2 82.9 87.3 88.6
yeast1289v7 48.2 53.8 44.6 44.6 44.6 44.6 69.7 67.3 54.3 40.8 79.7 61.2 51.2 84.3
yeast5 86.3 96.6 96.4 89.0 93.9 88.9 89.8 94.2 90.9 88.9 92.0 96.5 88.4 83.0
ecoli0137v26 84.4 71.4 84.5 84.4 84.5 83.5 78.2 74.5 100 84.4 85.7 100 84.3 57.1
abalone17v78910 34.7 75.0 43.3 34.6 39.3 32.1 74.0 75.5 74.1 57.0 75.7 91.4 32.1 92.7
yeast6 73.4 72.9 77.2 73.3 73.5 67.3 88.6 81.9 85.7 71.4 91.3 82.2 84.4 85.4
shuttle2v5 100 100 100 100 100 100 100 100 100 100 99.0 97.5 100 100
kddBfOfw 98.3 95.0 98.3 98.3 98.3 96.6 95.0 97.7 98.3 98.3 93.1 100 98.3 95.0
poker89v5 0.0 47.8 0.0 0.0 0.0 0.0 42.3 44.6 56.5 0.0 68.6 69.7 44.7 70.0

Avg. Gmean 66.2 80.2 70.4 64.4 70.3 65.6 80.9 81.3 83.4 68.6 88.0 78.7 79.8 87.0
Avg. Rank 9.60 6.83 8.48 9.31 7.79 9.92 6.96 6.75 5.58 9.38 4.94 7.63 6.85 4.98
Definition 6 (Connected Graph). A graph 𝐺 = (𝑉 ,𝐸) is connected if
every pair of nodes in 𝐺 has a path between them. If the graph is not
connected, each maximal connected piece is called a component.

Definition 7 (Weighted Graph). A weighted graph 𝐺𝑤 = (𝑉 ,𝐸) is a
graph where each edge 𝑒 ∈ 𝐸(𝐺) has been assigned a real number 𝑤(𝑒).

Definition 8 (Adjacency Matrix). The adjacency matrix of a weighted
graph 𝐺𝑤 = (𝑉 ,𝐸) is a 𝑉 × 𝑉 matrix 𝑀𝐺 = (𝑤𝑣𝑢) where each element
𝑣𝑖, 𝑣𝑗 ) contains the weight 𝑤(𝑒) assigned to the edge 𝑒 = {𝑣𝑖, 𝑣𝑗} or 0

according to whether the vertices 𝑣𝑖 and 𝑣𝑗 are adjacent or not in the
graph.

Appendix B. Classification results

This appendix provides the classification performance of the 1-
NN classifier and the C4.5 decision tree when using the training sets
produced by each under-sampling algorithm.
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