
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/344447751

Computing the matrix sine and cosine simultaneously with a reduced number

of products

Preprint · October 2020

CITATIONS

0
READS

38

4 authors, including:

Muaz Seydaoğlu

Mus Alparslan University

13 PUBLICATIONS 73 CITATIONS

SEE PROFILE

Fernando Casas

Universitat Jaume I

111 PUBLICATIONS 2,330 CITATIONS

SEE PROFILE

All content following this page was uploaded by Muaz Seydaoğlu on 02 October 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/344447751_Computing_the_matrix_sine_and_cosine_simultaneously_with_a_reduced_number_of_products?enrichId=rgreq-772984ce6e9566bc2c7930a536f21732-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0Nzc1MTtBUzo5NDIwNjcyMTU3Njk2MDBAMTYwMTYxNzczNTYzOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/344447751_Computing_the_matrix_sine_and_cosine_simultaneously_with_a_reduced_number_of_products?enrichId=rgreq-772984ce6e9566bc2c7930a536f21732-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0Nzc1MTtBUzo5NDIwNjcyMTU3Njk2MDBAMTYwMTYxNzczNTYzOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-772984ce6e9566bc2c7930a536f21732-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0Nzc1MTtBUzo5NDIwNjcyMTU3Njk2MDBAMTYwMTYxNzczNTYzOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muaz-Seydaoglu?enrichId=rgreq-772984ce6e9566bc2c7930a536f21732-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0Nzc1MTtBUzo5NDIwNjcyMTU3Njk2MDBAMTYwMTYxNzczNTYzOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muaz-Seydaoglu?enrichId=rgreq-772984ce6e9566bc2c7930a536f21732-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0Nzc1MTtBUzo5NDIwNjcyMTU3Njk2MDBAMTYwMTYxNzczNTYzOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Mus_Alparslan_University?enrichId=rgreq-772984ce6e9566bc2c7930a536f21732-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0Nzc1MTtBUzo5NDIwNjcyMTU3Njk2MDBAMTYwMTYxNzczNTYzOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muaz-Seydaoglu?enrichId=rgreq-772984ce6e9566bc2c7930a536f21732-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0Nzc1MTtBUzo5NDIwNjcyMTU3Njk2MDBAMTYwMTYxNzczNTYzOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fernando-Casas-2?enrichId=rgreq-772984ce6e9566bc2c7930a536f21732-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0Nzc1MTtBUzo5NDIwNjcyMTU3Njk2MDBAMTYwMTYxNzczNTYzOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fernando-Casas-2?enrichId=rgreq-772984ce6e9566bc2c7930a536f21732-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0Nzc1MTtBUzo5NDIwNjcyMTU3Njk2MDBAMTYwMTYxNzczNTYzOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitat-Jaume-I?enrichId=rgreq-772984ce6e9566bc2c7930a536f21732-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0Nzc1MTtBUzo5NDIwNjcyMTU3Njk2MDBAMTYwMTYxNzczNTYzOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fernando-Casas-2?enrichId=rgreq-772984ce6e9566bc2c7930a536f21732-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0Nzc1MTtBUzo5NDIwNjcyMTU3Njk2MDBAMTYwMTYxNzczNTYzOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muaz-Seydaoglu?enrichId=rgreq-772984ce6e9566bc2c7930a536f21732-XXX&enrichSource=Y292ZXJQYWdlOzM0NDQ0Nzc1MTtBUzo5NDIwNjcyMTU3Njk2MDBAMTYwMTYxNzczNTYzOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Computing the matrix sine and cosine

simultaneously with a reduced number of products

Muaz Seydaoğlu1,3 ∗, Philipp Bader2†, Sergio Blanes3 ‡Fernando Casas4§

1Faculty of Art and Science, Department of Mathematics 49100 Mus, Turkey.
2Departament de Matemàtiques, Universitat Jaume I, 12071 Castellón, Spain.

3Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, E-46022 Valencia.
4IMAC and Departament de Matemàtiques, Universitat Jaume I, 12071 Castellón.

Abstract

A new procedure is presented for computing the matrix cosine and sine
simultaneously by means of Taylor polynomial approximations. These are fac-
torized so as to reduce the number of matrix products involved. Two versions
are developed to be used in single and double precision arithmetic. The result-
ing algorithms are more efficient than schemes based on Padé approximations
for a wide range of norm matrices.

Keywords— Matrix sine, Matrix cosine, Taylor series, Padé approximation, Matrix
polynomials

1 Introduction

Many dynamical systems are modeled by differential equations in which finding closed
solutions is not possible and so one has to compute approximating solutions. These differ-
ential equations usually preserve some underlying geometric structure which reflects the
qualitative nature of the phenomena they describe. It is then relevant that the approxima-
tions share with the exact solution of the differential equation these qualitative properties
to render a description. The design and analysis of numerical integrators preserving some
of these geometric structures constitutes the realm of Geometric Numerical Integration
(GNI), an active and interdisciplinary research area and the subject of intensive develop-
ment during the last decades [6, 10, 15, 18, 20, 23].

Exponential integrators can be considered as a class of GNIs tailored to stiff and
oscillatory equations [7, 8, 13, 14, 16]. For large systems of equations these schemes
usually require to compute the action of the exponential of a matrix on a vector [13, 14].
However, for problems of moderate size it may be more appropriate to compute directly
the exponential of the matrices involved.

When the problem is oscillatory, very often the formal solution involves both the sine
and cosine of a matrix. Thus, for example, consider the Schrödinger equation in quantum
mechanics,

i
dψ

dt
= H(t)ψ, ψ(t0) = ψ0,

where H(t) is a Hermitian operator and ψ is a complex wave function. A usual procedure
to get numerical approximations involves first a spatial discretisation or working on a

∗E-mail: m.seydaoglu@alparslan.edu.tr
†bader@uji.es
‡serblaza@imm.upv.es
§casas@uji.es

1

ar
X

iv
:2

01
0.

00
46

5v
1

 [
m

at
h.

N
A

]
 1

 O
ct

 2
02

0

finite dimensional representation. In any event, one ends up with a matrix equation with
a similar structure,

i
du

dt
= Au, u(t0) = u0 ∈ CN .

If A is a real and constant matrix, the unitary evolution operator is given by

U(t) = e−itA = cos(tA)− i sin(tA). (1)

There are different techniques to compute efficiently the exponential of a matrix
[2, 3, 5, 12, 21, 25, 26, 27]. However, using any of these general algorithms to approx-
imate the unitary matrix e−itA in (1) involves products of complex matrices making them
computationally expensive. Alternatively, we propose an efficient procedure to compute
the matrix sine and cosine that only involves a small number of products of real matrices.
The algorithm is used in combination with the squaring as

cos(2A) = 2 cos2(A)− I = I − 2 sin2(A), sin(2A) = 2 sin(A) cos(A).

In this way, it only requires two products per squaring (instead of four products when
considering the square of complex matrices), thus making the overall procedure more
efficient.

There are other examples where the computation of the sine and cosine of a matrix can
be of interest. For example, for wave equations given by the generic second order system

y′′ +Ay = f(y, t),

with y ∈ RN , exponential integrators frequently require to solve separately the linear
homogeneous problem

y′′ +Ay = 0, y(0) = y0, y′(0) = y′0. (2)

Writing (2) as a first order system, the solution is given by(
y(t)
y′(t)

)
= etM

(
y0
y′0

)
, with M =

(
0 I
−A 0

)
(3)

and

etM =

(
cos(t

√
A) (

√
A)−1 sin(t

√
A)

−
√
A sin(t

√
A) cos(t

√
A)

)
≡
(

c(t2A) s(t, A)
−As(t, A) c(t2A)

)
. (4)

Notice that the dimension of M is twice the dimension of A and so the cost of matrix-
matrix multiplications grows, in general, by a factor of eight.

On the other hand, a closer look to the functions to be approximated clearly indicates
that the same algorithm used to evaluate the matrix sine and cosine for the unitary matrix
(1) should not be used directly since it requires computing first the square root of the
matrix, B =

√
A, in addition to a multiplication and an inversion of this matrix. As a

matter of fact, an efficient approximation to the exponential (4) was already presented
in [4]. We propose in this case an improved algorithm based on a modification of the
methods to compute the matrix sine and cosine with the goal of computing simultaneously
the functions c(t2A) ≡ cos(

√
t2A) and s(t, A) ≡ (

√
A)−1 sin(

√
t2A). For the double angle

we will take into account that

c(4t2A) = 2c2(t2A)− I, s(2t, A) = 2s(t, A)c(t2A),

thus requiring only two products per squaring. Notice that we do not use the property
cos(2A) = I − 2 sin2(A) since the function sin(A) is not computed in this case.

In summary, the purpose of this paper consists in developing algorithms that allow
one to compute cos(A) and sin(A) or c(t2A) and s(t, A) simultaneously and providing full
accuracy up to single or double precision with a reduced computational cost. Thus, in
particular, we propose an algorithm that, with only four products, approximates cos(A)
with an error of order O(A17), and with two extra products it also approximates sin(A)
with an error of order O(A18). The same procedure allows one, with one extra product

2

(seven products in total), to approximate cos(A) and sin(A) with errors of order O(A25)
and O(A24), respectively.

Although one can find in the literature several algorithms to compute cos(A) (see [25]
and references therein), only few of them are designed to do so in a simultaneous way (see
[1] and references therein). As our analysis shows and several numerical examples confirm,
the technique we propose here outperform all of them.

2 The algorithms

The search of fast algorithms for evaluating matrix polynomials has received considerable
interest in the recent literature [2, 3, 17, 19, 22, 24, 28, 29]. We next briefly summarize
how to approximate the matrix sine and cosine functions by means of certain polynomials
involving a reduced number of matrix products. This reduction essentially follows the same
approach used in [9] to minimise the number of commutators appearing in different Lie-
group integrators and was successfully adapted to the Taylor expansion of the exponential
matrix in [2] and especially in [3].

Generally speaking, the strategy consists first in elaborating a recursive procedure
to compute the polynomial approximating the matrix cosine with the minimum number
of products and then these same products are used to approximate the matrix sine as
accurately as possible in the cheapest possible way.

Clearly, the most economic way to construct polynomials of degree 2k is by applying
the following sequence, which requires the evaluation of only k products. First we form
the intermediate matrices

A0 = I, A1 = A,

A2 = z2,0I + z2,1A1 + (x1I + x2A1)(x3I + x4A1),

A4 = z4,0I + z4,1A1 + z4,2A2 + (x5I + x6A1 + x7A2)(x8I + x9A1 + x10A2),

A8 =

3∑
k=0

z8,2k−1A2k−1 + (x11I + · · ·+ x14A4)(x15I + · · ·+ x18A4), (5)

...

and finally we take
P2k = A2k .

Here the indices in A, A2k , are chosen to indicate the highest attainable power, i.e.,

A2k = O(A2k). Of course, there are many redundancies in the coefficients since some of
them can be absorbed by others.

It is a simple exercise to check that any polynomial of degree up to four can be com-
puted with two products, whereas polynomials up to degree eight can be computed with
only three products. This does not mean, however, that all such polynomials can be writ-
ten with just three products. This is the case, in particular, of P7(A) = A7, as can be
readily seen. When a given polynomial cannot be reproduced by following the previous
approach, new terms can be incorporated. Thus, in particular

A0 = I, A1 = A, A2 = A2, A3 = AA2

A6 = B3,1 +B3,2B3,3, B3,i =

3∑
k=0

xi,kAk (6)

...

and this generalises the procedure.
We use this technique in the sequel to approximate first cos(A) and sin(A) simultane-

ously with the minimum number of products, and then we apply the same procedure to
c(t2A) and s(t, A).

3

2.1 Computing cos(A) and sin(A) simultaneously

Let us denote by

T c
2m =

m∑
k=0

(−1)k(A2)k

(2k)!
, T s

2m+1 = A

m∑
k=0

(−1)k(A2)k

(2k + 1)!

the Taylor polynomial approximations of cos(A) and sin(A) up to order 2m and 2m + 1
in A, respectively, and by T s

2m+1,` with ` > 2m+ 1, any polynomial of degree ` such that

T s
2m+1,` = T s

2m+1 +O(A2m+2).

k = 3 products. This constitutes a trivial problem, but it nevertheless illustrates the
general procedure. With two products we can compute T c

4 :

A2 = A2,

A4 = A4,

T c
4 (A) = I − 1

2!
A2 +

1

4!
A4,

(7)

and with one extra product we can get

T s
5 (A) = A(I − 1

3!
A2 +

1

5!
A4). (8)

k = 4 products. With three products we can compute T c
8 :

A2 = A2,

A4 = A2
2,

A8 = A4

(
− 1

6!
A2 +

1

8!
A4

)
,

T c
8 (A) = I − 1

2!
A2 +

1

4!
A4 +A8.

(9)

With one extra product we can approximate the matrix sine, but only up to order seven
as follows

T s
7,9(A) = A

(
I − 1

3!
A2 +

1

5!
A4 +

6!

7!
A8

)
. (10)

According with the previous notation, T s
7,9(A) = T s

7 (A) +O(A8).
The order of approximation of the matrix sine can be increase up to order nine by

incorporating one extra product as follows:

A8 = A4

(
− 1

7!
A2 +

1

9!
A4

)
,

T s
9 (A) = A

(
I − 1

3!
A2 +

1

5!
A4 +A8

)
.

(11)

k = 6 products. The following scheme allows one to express T c
16(A) with only four

products:
A2 = A2,

A4 = A2
2,

A8 = A4(x1A2 + x2A4),

A16 = (x3A4 +A8)(x4I + x5A2 + x6A4 + x7A8),

T c
16(A) = I − 1

2
A2 + x8A4 +A16.

(12)

In fact, we get two families of solutions depending on a free parameter, x1, which is chosen
to (approximately) minimize the 1-norm of the vector of parameters (x1, . . . , x8). This
results in

4

x1 =
7

500
, x2 = − 7

60000
, x3 =

1

2500
(−1533 + 7

√
36681),

x4 = −5(124581 + 391
√

36681)

10594584
, x5 =

9775

10594584
, x6 = −5(1001 +

√
36681)

508540032
,

x7 =
3125

889945056
, x8 =

1549211 + 3246
√

36681

63063000
.

(13)
Some of the coefficients are irrational numbers because they correspond to solutions of a
nonlinear system of equations.

With two extra products we can approximate the matrix sine up to order O(A18) as
follows:

C24 = (z5I + z5A2 + z6A4 + z7A8 + z8T
c
16(A))A8,

T s
17,25(A) = A (z0I + z1A2 + z2A4 + z3A8 + z4T

c
16(A) + C24)

(14)

with

z0 =
8887

4794
, z1 = −1897

3196
, z2 =

25259

575280
,

z3 = − 965093875

9674368704
, z4 = −4093

4794
, z5 =

25698275

29023106112
,

z6 = − 3907675

348277273344
, z7 =

11865625

3656911370112
, z8 =

25

308756448
,

(15)

i.e. it approximates the matrix sine up to a higher order than the matrix cosine.

k = 7 products. With five products we can compute T c
24:

A2 = A2,

A4 = A2
2,

A6 = A4A2,

C1 = a0,1I + a1,1A2 + a2,1A4 + a3,1A6,

C2 = a0,2I + a1,2A2 + a2,2A4 + a3,2A6,

C3 = a0,3I + a1,3A2 + a2,3A4 + a3,3A6,

C4 = a0,4I + a1,4A2 + a2,4A4 + a3,4A6,

A12 = C3 + C2
4

A24 = (C2 +A12)A12

T c
24(A) = C1 +A24.

(16)

The best solution we have obtained is:

a0,1 = 0, a1,1 = 0,
a2,1 = 0.02264979811206039519, a3,1 = −0.00013110924142135755,
a0,2 = 0.55751443809990408029, a1,2 = −0.61577924683458386455,
a2,2 = 0.00747198841446687051, a3,2 = −0.00003362444420476012,
a0,3 = 0.75936877868464999248, a1,3 = −0.01560333979813817129,
a2,3 = 0.00010936989591908396, a3,3 = −1.03893360877457159499 · 10−6,
a0,4 = 0, a1,4 = −0.039649968743474473091,
a2,4 = 0.000155490073503821463, a3,4 = −1.126739663071170022488 · 10−6.

(17)

Although we report here 20 digits for the coefficients, they can be in fact determined with
arbitrary accuracy.

With two extra products we can approximate the matrix sine up to order O(A23) as
follows:

C48 = (z6I + z7A2 + z8A4 + z9A6 + z10A12 + z11T
c
24(A))T c

24(A),

T s
23,49(B) = A (z0I + z1A2 + z2A4 + z3A6 + z4A12 + z5T

c
24(A) + C48) ,

(18)

5

with

z0 = 0.10090808375109885598, z1 = −0.07668753546445299316,
z2 = 0.00084924846993243257, z3 = −0.00001220406904464391,
z4 = 0.98499703159318860027, z5 = −0.84925233648155398756,
z6 = 1, z7 = 0.00095544138280925799,
z8 = 4.56337109377154270633 · 10−6, z9 = 2.73461259403000427141 · 10−8,
z10 = 0.00048550288474842477 z11 = −4.15891109384923342531 · 10−7.

(19)

2.2 Computing c(t2A) and s(t, A) simultaneously

Let us denote by

P c
m(t2A) =

m∑
k=0

(−1)k(t2A)k

(2k)!
, P s

m(t, A) = t

m∑
k=0

(−1)k(t2A)k

(2k + 1)!

the Taylor expansions of the functions

c(t2A) = cos(
√
t2A), and s(t, A) = (

√
A)−1 sin(

√
t2A)

up to order m in A, respectively, with A a real matrix. Notice that they are approximations
up to order 2m and 2m + 1 in t to the respective functions. Analogously, we will denote
by P s

m,`, ` > m, any polynomial of degree ` such that P s
m,` = P s

m +O(Am+1).
Next we show how the previous algorithms to approximate the sine and cosine functions

can be adjusted to approximate c(t2A) and s(t, A). As before, we proceed according with
the number of products involved.

k = 3 products. With two products we can compute P c
4 (t2A):

B = t2A,

B2 = B2,

B4 = B2(− 1

6!
B +

1

8!
B2),

P c
4 (B) = I − 1

2!
B +

1

4!
B2 +B4.

(20)

With the same number of products we can also evaluate P s
3,4(t, A),

P s
3,4(t, A) = t

(
I − 1

3!
B +

1

5!
B2 −

6!

7!
B4

)
, (21)

whereas with one extra product we get

P s
4 (t, A) = t

(
I − 1

3!
B +

1

5!
B2 +B2

(
− 1

7!
B +

1

9!
B2

))
. (22)

k = 4 products. With three products we can compute P c
8 (t2A):

B = t2A,

B2 = B2,

B4 = B2(x1B + x2B2),

B8 = (x3B2 +B4)(x4I + x5B + x6B2 + x7B4),

P c
8 (B) = y0I + y1B + y2B2 +B8,

(23)

whose coefficients are the same as those given in (13).
With one extra product we can approximate the matrix sine up to order eight as

C12 = (z5I + z5B + z6B2 + z7B4 + z8P
c
8 (B))B4,

P s
8,12(t, A) = t (z0I + z1B + z2B2 + z3B4 + z4P

c
8 (B) + C12) ,

(24)

with the same values for the coefficients zi as before.

6

k = 5 products. With four products we can compute P c
12(t2A):

B = t2A,

B2 = B2,

B3 = B2B,

D1 = a0,1I + a1,1B + a2,1B2 + a3,1B3,

D2 = a0,2I + a1,2B + a2,2B2 + a3,2B3,

D3 = a0,3I + a1,3B + a2,3B2 + a3,3B3,

D4 = a0,4I + a1,4B + a2,4B2 + a3,4B3,

B6 = D3 +D2
4

P c
12(B) = D1 + (D2 +B6)B6,

(25)

with solution for the coefficients ai,j given in (17), whereas with one extra product we can
approximate P s

11(t, A) as

C24 = (z6I + z7B + z8B2 + z9B3 + z10B6 + z11P
c
12(A))P c

12(B),

P s
11,24(t, A) = t (z0I + z1B + z2B2 + z3B3 + z4B6 + z5P

c
12(B) + C24) ,

(26)

with the same coefficients as in (19).

2.3 Padé approximations

At this point it is useful to briefly review the schemes presented in [1] to compute the
matrix sine and cosine simultaneously, since they will be compared in section 4 with our
own procedure.

The methods presented in [1] are based on the identities

cos(A) =
eiA + e−iA

2
, sin(A) =

eiA − e−iA

2i
,

and the use of Padé approximations of the exponentials eiA. For instance, taking a diagonal
Padé of order eight for approximating eiA, i.e. r4(iA) = [p4(−iA)]−1p4(iA) = eiA +O(A9)
one gets

s4 =
A
(
I − 11

8
A2 + 37

1176
A4 − 1

70560
A6
)

I + 1
28
A2 + 3

3920
A4 + 1

8
A6 + 1

2822400
A8

, (27)

c4 =
I − 13

28
A2 + 289

11760
A4 − 19

70560
A6 + 19

2822400
A8

I + 1
28
A2 + 3

3920
A4 + 1

8
A6 + 1

2822400
A8

, (28)

where
s4 = sin(A) +O(A9), c4 = cos(A) +O(A10).

It is clear that s4, c4 can be computed simultaneously with 5 products (A2, A4, A6, A8, and
the extra product for the numerator in s4) and the computation of two inverse matrices.
Since both denominators are the same, only one LU factorization is necessary. The totals
cost is (7 + 1

3
) products. Notice that the same order (with very similar accuracy as we

will see) is obtained with our novel approach at the cost of only 4 products (and a smaller
number of matrices need to be stored).

3 Error analysis

Next we analyse how to bound the truncation errors of the previously considered Tay-
lor polynomial approximations of order 2m and 2m̃ + 1 for cosine and sine functions,
respectively. They have the form

cos(A)− T c
2m =

∞∑
k=m+1

α2kA
2k, 2m ∈ {4, 8, 16, 24}

sin(A)− T s
2m̃+1,` =

∞∑
k=m̃+1

α̃2k+1A
2k+1, 2m̃+ 1 ∈ {5, 7, 17, 23} .

(29)

7

On the other hand, the truncation errors of the approximations of the cosine and sine
functions obtained by using Padé approximants for eiA [1] can be written as

cos(A)− cm =

∞∑
k=m+1

γ2kA
2k, sin(A)− sm =

∞∑
k=m

γ̂2k+1A
2k+1. (30)

Clearly, the series (29) and (30) can be bounded in terms of ‖A‖ as

‖cos(A)− T c
2m‖ ≤

∞∑
k=m+1

|α2k| θ2k,
∥∥sin(A)− T s

2m̃+1,`

∥∥ ≤ ∞∑
k=m̃+1

|α̃2k+1| θ2k+1,

(31)
and

‖cos(A)− cm‖ ≤
∞∑

k=m+1

|γ2k| θ2k, ‖sin(A)− sm‖ ≤
∞∑

k=m

|γ̂2k+1| θ2k+1, (32)

where
θ = θ(A) = ‖A‖ .

We denote by θM2m the largest value of θ such that the bounds (31), (32) do not exceed
a prescribed accuracy, u, for each method M ≡ T c

2m, T
s
2m̃+1, cm, sm. To achieve maximum

accuracy, we bound the previous forward absolute errors with the unit round off u = 2−53,
u = 2−24 in double and single precision floating-point arithmetic, respectively. We have
truncated the series of the corresponding functions after 150 terms to find θM2m. The
corresponding values for the new Taylor approximations of the cosine and sine functions
are collected in Tables 1 and 2. For completeness, we also include the values of θM2m
for the Padé approximations, as given in [1], and the total number of matrix products
corresponding to each procedure Π2m. In the case of Padé approximants, we have added
the cost of evaluating two inverse matrices sharing the same LU factorization, i.e (2 + 1

3
)

products, to the total πm.
The comparison of the theoretical performance of the new Taylor polynomial approxi-

mations T c
2m, T

s
2m̃+1 (with orders {4, 8, 16, 24} and {5, 7, 17, 23} respectively) and the Padé

approximations cm, sm [1] (with orders {4, 8, 16, 24}) has been illustrated in Figure 1: here
we plot ‖A‖ versus the number of matrix products required for each approximation of
cos(A) and sin(A) simultaneously, both in double (left) and single (right) precision. From
the figure the improvement achieved by the proposed Taylor polynomial approximations
is apparent.

Table 1: Number of matrix multiplications Π2m and forward absolute error bounds θ2m in
double precision floating-point arithmetic, u ≤ 2−53, for the new Taylor algorithms T c

2m,
T s
2m̃+1 and Padé approximations cm, sm [1]. The cost of the computation of two inverse

matrices sharing the same LU factorization, i.e (2 + 1
3
), has been included in the cost πm

for the Padé approximations.

2m̃ 4 6 16 22
2m 4 8 16 24
θcm2m 6.5633e-3 1.3959e-1 1.3879 3.7288
θsm2m 2.4019e-3 1.1213e-1 1.3784 3.7287
πm [1] 5 + 1

3 7 + 1
3 10 + 1

3 12 + 1
3

θ
T c
2m

2m 6.5633e-3 1.1495e-1 9.8108e-1 2.5675

θ
T s
2m̃+1

2m 1.777e-2 8.0438e-2 1.1184 1.97
Π2m 3 4 6 7

4 Numerical experiments

We measure the performance of new Taylor polynomials (denoted as ‘cosmsinmT’) and
the Padé approximations (denoted as ‘cosmsinmP’) [1] to compute matrix cosine and sine

8

Table 2: Same as Table 3, but now in single precision floating-point arithmetic.

2m̃ 4 6 16 22
2m 4 8 16 24
θcm2m 1.8687e-1 1.0218 3.8571 7.1575
θsm2m 1.3355e-1 9.9511e-1 3.8569 7.1575
πm [1] 5 + 1

3 7 + 1
3 10 + 1

3 12 + 1
3

θ
T c
2m

2m 1.8709e-1 8.5756e-1 2.9935 5.5555

θ
T s
2m̃+1

2m 3.1386e-1 7.492e-1 3.2152 4.3819
Π2m 3 4 6 7

−3 −2 −1 0 1
2

3

4

5

6

7

8

9

10

11

12

13

4

8

16

24

5

7

17

23

4

8

16

24

4

8

16

24

log10(‖A‖)

#
p
ro
d
u
ct
s

Double precision

Tc
2m

Ts
2m̃+1

cm

sm

−1 −0.5 0 0.5 1
2

3

4

5

6

7

8

9

10

11

12

13

4

8

16

24

5

7

17

23

4

8

16

24

4

8

16

24

log10(‖A‖)

Single precision

Figure 1: Orders and corresponding number of products of each method versus ‖A‖ in
double and single precision floating-point arithmetic.

functions simultaneously. The platform of all numerical experiments is MATLAB R2013a
and the matrix 1-norm has been used in implementing the algorithms. The experiments
have been carried out for 2500 matrices (adjusted in order to have different norms) of the
following cases:

• 52 test matrices have been chosen from the MATLAB gallery function [11] (blue).
690 sampled matrices with different norms were tested.

• Using rand() and randn() functions in MATLAB to randomly generate matrices
with entries drawn from different distributions. 400 matrices normally distributed,
500 matrices uniformly distributed in the interval (0, 1) and 501 matrices in the
interval (−0.5, 0.5).

• Using spdiags() and rand() functions in MATLAB to construct 400 triangular
nilpotent matrices with random rank (red).

• 9 matrices of the form

A =

(
1 λ
0 −1

)
, (33)

where λ = 1, 10, . . . , 108 (green), possibly leading to overscaling (utilization of large
value of scaling parameter s).

The same test matrices have been generated as in Remark 5 of [3] and all matrices are
adjusted to have 1-norms over (10−4, 104.1) in all numerical experiments. The condition
numbers of each matrix function are computed by executing the function funm−condest1

9

−4 −2 0 2 4
-20

-18

-16

-14

-12

-10

-8

log10(cosine condition number)

lo
g
1
0
‖r
el
a
ti
v
e
er
ro
r‖

cosmsinmP

cosmsinmT

−4 −2 0 2 4
0

2

4

6

8

10

12

14

log10(cosine condition number)

S
ca

li
n
g
s

−4 −2 0 2 4
−2

−1

0

1

2

log10(cosine condition number)

lo
g
1
0
re
l.

er
ro
r:

co
sm

si
n
m
T
/
co

sm
si
n
m
P

−4 −2 0 2 4

0.6

0.8

1

1.2

1.4

log10(cosine condition number)

re
la
ti
v
e
co

st
:
co

sm
si
n
m
T
/
co

sm
si
n
m
P

Figure 2: Comparison of the results for the matrices of dimension ≤ 16 × 16 for cosine
function.

from the Matrix Function Toolbox [11]. The reference solutions of the matrix cosine
and sine have been calculated with Mathematica with 100 digits of precision. We have
computed the relative error

‖F − f(A)‖2
‖f(A)‖2

,

where F is an approximated value of f(A). In the following we show the results for
double precision (similar results are obtained for single precision). We have simulated
the results for the 2500 matrices of dimension ≤ 16 × 16 in Figs. 2, 3. From the top
left of the Figs. 2, 3, in general, the relative errors of both cosmsinmP and cosmsinmT
methods produced in approximating the matrix cosine and sine functions change between
1.0e − 12 and 1.0e − 15 and they drop below the machine accuracy for few matrices. It
can be observed from the top right of the Figs. 2, 3, the cosmsinmT method involves
more scalings, particularly the cosmsinmP and cosmsinmT methods have leaded to the
scaling for 741 and 1180 matrices respectively. Regarding to the bottom left of the Figs. 2,
3, the ratios of the cost cosmsinmT/cosmsinmP are in general below 1, it also has been
concluded from Tables 1, 2 and Fig.1, the new method cosmsinmT requires less number of
matrix products. As can be seen from the bottom right of the Figs. 2, 3, the accuracy of
both methods is in good agreement with the theoretical results we have obtained. In these
cases, some of the values of the relative errors have been replaced by machine accuracy
(if these are lower) in the results of both methods. Furthermore, we plot performance

10

0 2 4
-20

-18

-16

-14

-12

-10

-8

log10(sine condition number)

lo
g
1
0
‖r
el
a
ti
v
e
er
ro
r‖

cosmsinmP

cosmsinmT

0 2 4
0

2

4

6

8

10

12

14

log10(sine condition number)

S
ca

li
n
g
s

0 2 4
−2

−1

0

1

2

log10(sine condition number)

lo
g
1
0
re
l.

er
ro
r:

co
sm

si
n
m
T
/
co

sm
si
n
m
P

0 2 4

0.6

0.8

1

1.2

1.4

log10(sine condition number)

re
la
ti
v
e
co

st
:
co

sm
si
n
m
T
/
co

sm
si
n
m
P

Figure 3: Comparison of the results for the matrices of dimension ≤ 16 × 16 for sine
function.

profiles of the algorithms on a set of the test matrices exemplified for Figs. 2, 3 in terms of
the relative errors, number of products and computational times. The performance plot
shows the percentage of problems (y-axis) that are within a given factor (x-axis) of the
best method [30]. In the experiments illustrated by the performance profiles in Fig. 4,
the 2500 matrices of dimension ≤ 64 × 64 have been tested. We have observed that the
cosmsinmT method has a lower relative error for 877 and 1257 of the 2500 matrices than
the cosmsinmP method for computing the approximate values of the matrix cosine and
sine functions respectively (358 and 348 results are equal). These results are evident from
the Fig. 4 on the top. It is seen clearly from the bottom of Fig. 4 that the cosmsinmT
method is less expensive than cosmsinmP.

The performance profiles in Fig. 5 resulted from demonstrating the returns from the
2500 matrices of dimension ≤ 1024 × 1024 confirm the superiority of the cosmsinmT
method in the sense of computational cost.

5 Conclusions

We have presented a new algorithm to compute the matrix cosine and sine. The algorithm
contains several methods that are optimised for different values of the norm of the matrix
and the desired accuracy, and can be combined with the scaling and squaring technique.
Each of these methods is obtained by following a sequence in which each stage uses the

11

−16 −15 −14 −13
0

0.2

0.4

0.6

0.8

digits

p
ro
b
a
b
il
it
y

relative error-cosine

cosmsinmP

cosmsinmT

−16 −15 −14 −13
0

0.2

0.4

0.6

0.8

digits

relative error-sine

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

factor

comp. times

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

factor

p
ro
b
a
b
il
it
y

products

Figure 4: Performance profiles for the matrices of dimension ≤ 64× 64.

results from all previous ones. An error analysis is also carried out and we have shown both
theoretically as well as in the numerical experiments that the new algorithm is superior to
other procedures from the literature that are based on Padé approximations to the matrix
cosine and sine.

The new algorithm only involves matrix-matrix products and does not require to com-
pute the inverse of matrices as it the the case of the Padé approximations. The cost to
compute the inverse of a dense matrix can be taken as 4/3 the cost of the product of
two dense matrices. However, for sparse matrices, the computational cost of the proposed
algorithms grow nearly linearly while the cost of Padé approximations grows much faster
because, in general, the inverse of a sparse matrix is a dense matrix.

Acknowledgments

The work of MS has been funded by The Scientific and Technological Research Council
of Turkey (TUBITAK) with Grand Number 1059B191802292. PB, SB and FC acknowl-
edge financial support from Ministerio de Economı́a, Industria y Competitividad (Spain)
through projects MTM2016-77660-P and PID2019-104927GB-C21 (AEI/FEDER, UE).

12

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

factor

p
ro
b
a
b
il
it
y

products

cosmsinmP

cosmsinmT

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

factor

comp. times

Figure 5: Performance profiles for the matrices of dimension ≤ 1024× 1024.

References

[1] A.H. Al-Mohy, N.J. Higham and S.D. Relton, New algorithms for computing the
matrix sine and cosine separately or simultaneously, SIAM J. Sci. Compu. 37 (2015)
A456 - A487.

[2] P. Bader, S. Blanes, and F. Casas, An improved algorithm to compute the exponential
of a matrix, arXiv:1710.10989 [math.NA] (2017) preprint.

[3] P. Bader, S. Blanes, and F. Casas, Computing the matrix exponential with
an optimized Taylor polynomial approximation, Mathematics 7 (2019) 1174
doi:10.3390/math7121174.

[4] P. Bader, S. Blanes, E. Ponsoda, and M Seydaoğlu, Symplectic integrators for the
matrix Hill’s equation and its applications to engineering models, J. Comput. Appl.
Math. 316 (2017) 47 - 59.

[5] P. Bader, S. Blanes, and M. Seydaoğlu, The scaling, splitting and squaring method
for the exponential of perturbed matrices, SIAM J. Matrix Anal. Appl. 36 (2015) 594
- 614.

[6] S. Blanes, and F. Casas, A Concise Introduction to Geometric Numerical Integration,
CRC Press: Boca Raton, FL, USA, 2016.

[7] S. Blanes, F. Casas, and A. Murua, An efficient algorithm based on splitting for the
time integration of the Schrödinger equation, J. Comput. Phys. 303 (2015) 396 - 412.

[8] S. Blanes, F. Casas, J.A. Oteo, and J. Ros, The Magnus expansion and some of its
applications, Phys. Rep. 470 (2009) 151 - 238.

[9] S. Blanes, F. Casas and J. Ros, High order optimized geometric integrators for linear
differential equations, BIT, 42 (2002) 262 - 284.

[10] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. Structure-
Preserving Algorithms for Ordinary Differential Equations, 2nd Ed., Springer, Berlin,
2006.

[11] N.J. Higham, Functions of Matrices: Theory and Computation, Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2008.

[12] N.J. Higham, and A.H. Al-Mohy, Computing matrix functions, Acta Numerica 19
(2010) 159 - 208.

[13] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix
exponential operator, SIAM J. Numer. Anal. 34 (1997) 1911 – 1925.

13

http://arxiv.org/abs/1710.10989

[14] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numerica 19 (2010)
209 - 286.

[15] A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cam-
bridge University Press, 2nd ed., 2008

[16] A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett, and A. Zanna, Lie group methods, Acta
Numerica 9 (2000)215 - 365.

[17] L. Lei, and T. Nakamura, A fast algorithm for evaluating the matrix polynomial
I +A+ · · ·+AN−1, IEEE Trans. Circuits Sys.-I: Fund. Theory Appl. 39 (1992) 299
- 300.

[18] B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, Cambridge Univer-
sity Press, 2004.

[19] W. Liang, R. Baer, C. Saravanan, Y. Shao, A.T. Bell, M. Head-Gordon, Fast methods
for resumming matrix polynomials and Chebyshev matrix polynomials, J. Comput.
Phys. 194 (2004) 575 - 587.

[20] C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and
Numerical Analysis, European Mathematical Society, 2008.

[21] C.B. Moler, and C.F. Van Loan, Nineteen dubious ways to compute the exponential
of a matrix, twenty-five years later, SIAM Review 45 (2003) 3 - 49.

[22] M.S. Paterson, and L.J. Stockmeyer, On the number of nonscalar multiplications
necessary to evaluate polynomials, SIAM J. Comput. 2 (1973) 60 - 66.

[23] J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian Problems, Chapman &
Hall, London, 1994.

[24] J. Sastre, Efficient evaluation of matrix polynomials, Linear Algebra Appl.539 (2018)
229 - 250.

[25] J. Sastre, J. Ibáñez, P. Alonso-Jordá, J. Peinado, E. Defez, Fast Taylor polynomial
evaluation for the computation of the matrix cosine, J. Comput. Appl. Math. 354
(2019) 641 - 650.

[26] J. Sastre, J. Ibáñez, and E. Defez, Boosting the computation of the matrix exponen-
tial, Appl. Math. Comput. 340 (1019) 206 - 220.

[27] R.B. Sidje, Expokit: a software package for computing matrix exponentials, ACM
Trans. Math. Software 24 (1998) 130 - 156.

[28] Van Loan, C. A note on the evaluation of matrix polynomials, IEEE Transactions on
Automatic Control 24 (1979) 320 - 321.

[29] Westreich, D. Evaluating the matrix polynomial I + A + · · · + AN−1, IEEE Trans.
Circuits Sys. 36 (1989) 162 - 164.

[30] E. D. Dolan and J. J. More, Benchmarking optimization software with performance
profiles, Math. Programming 91 (2002) 201 - 213.

14

View publication statsView publication stats

https://www.researchgate.net/publication/344447751

	1 Introduction
	2 The algorithms
	2.1 Computing cos(A) and sin(A) simultaneously
	2.2 Computing c(t2A) and s(t,A) simultaneously
	2.3 Padé approximations

	3 Error analysis
	4 Numerical experiments
	5 Conclusions

