
Computational Mathematics Degree

Final Degree Project

An introduction to Quantum
algorithms

Author:
Vicente López Oliva

Academic tutor:
José Manuel Badia

Contelles
Ximo Gual Arnau

Reading date: 08 of November of 2020
Academic year 2019/2020

Abstract

Nowadays, we have powerful computers capable of performing very com-
plex operations in seconds. However, there are problems that cannot be
addressed at reasonable execution times, such as NP-Complete problems.
For these problems no polynomial solution is known, having all of them
exponential cost, which makes them unfeasible for classical computers.

Quantum properties have impressed equally to computer scientists, physicist
and all kinds of scientists since they were discovered, since they are very un-
intuitive. However, these properties, such as entanglement or superposition,
lead us to have quantum computers and quantum algorithms that are able to
solve in polynomial time some of the NP-Complete problems. This would be
a breakthrough in fields with high computational demands such as machine
learning, medicine, chemistry, etc.

In this work, we will focus on knowing the computing mathematical basis
that will allow us to study the complex quantum world, which includes,
among other things, complex vector spaces and complex algebra. We will
study the properties offered by the quantum computing world, such as the
superposition of states or entanglement. We will also see quantum gates
that will allow us to build quantum circuits to be able to create algorithms
that we can execute on our quantum computers. We will finish the work by
studying some well knows algorithms which will allow us to see how to take
advantage of the quantum properties to accelerate our computing capacity.

Keywords

Complex vector space, Hilbert space, complex algebra, quantum computing,
quantum algorithms, quantum teleportation, Deutch’s algorithm.

4

Contents

1 Introduction to Complex Space 1

1.1 Basic Definitions . 1

1.2 Geometric Interpretation . 6

1.3 Definition of Complex Vector Space 12

1.4 Other Operators in Complex Vector Spaces 16

1.5 Hilbert Spaces and Hermitian Matrices 27

2 Introduction to Quantum Theory 33

2.1 Classical Systems vs Quantum Systems 33

2.2 Basic Quantum Theory . 41

2.3 Quantum Architecture . 48

2.4 Quantum Gates . 50

2.5 Simulating Quantum Computer 56

3 Algorithms 59

3.1 Quantum Teleportation . 59

3.2 Deutsch’s Algorithm . 65

5

6 CONTENTS

3.3 Deutsch-Jozsa Algorithm . 69

4 Conclusion and Future Work 75

List of Figures

1.1 Representation in R2 of complex number. 7

1.2 Adding two complex with parallelogram rule. 7

1.3 Complex numbers with same modulus. 8

1.4 Geometric meaning of multiplication. 8

2.1 Classical Non-Probabilistic System Graph. 34

2.2 Probabilistic System Graph. 35

2.3 CNOT Gate Diagram. 51

2.4 Toffoli Gate Diagram. 55

2.5 Quirk Interface. 57

2.6 Quirk Basic Circuit. 57

2.7 Basic Program in ProjectQ. 58

3.1 Quantum Teleportation in Quirk. 60

3.2 Quantum Teleportation in ProjectQ. 64

3.3 Classical Version of f . 65

3.4 Quantum Computing of a Function f 66

7

8 LIST OF FIGURES

3.5 Application of the Circuit to Compute f 66

3.6 Deutch’s Algorithm in Quirk. 66

3.7 Deutsch’s Algorithm in ProjectQ. 68

3.8 Quantum Computing of a n-qubit Function 69

3.9 Application of the Circuit to Compute f 69

3.10 Deutch-Jozsa Algorithm in Quirk. 69

3.11 Deutsch-Jozsa Algorithm in ProjectQ. 73

1

Introduction to Complex
Space

In order to learn quantum computing and quantum algorithms, it is first
necessary to become familiar with the complex space. In this chapter we
introduce some basics about complex space, in order to give the necessary
concepts to have a basis understanding of the basics of quantum mechanics.
This introduction is based on [1]

1.1 Basic Definitions

The original motivation for defining the complex numbers was the fact that
there are cases in which an algebraic equation has no solution, like in this
example:

x2 + 1 = 0 (1.1)
Indeed, any x2 of R would be positive or zero, so there is no possible solution
for this equation. Let’s supose that there is a number that can solve this
equation, then, this number is in fact:

x =
√
−1 (1.2)

This number does not exists in the real space and it is not defined. To have
a solution to equation (1), we need to have defined this number in a new
space, so let’s define it.

Definition 1.1.1: The solution of the equation (1.2) is known as imaginary
number and it is denote by i.

1

2 1. INTRODUCTION TO COMPLEX SPACE

Definition 1.1.2: A number which is formed by a real part and an imagi-
nary part is known as complex number and it has the form c = a+ bi where
a is the real part and b is the imaginary part with a, b ∈ R. The set of all
complex numbers is denoted by C.

Complex numbers can be added and multiplied. Let c1, c2 ∈ C such that
c1 = a1 + b1i and c2 = a2 + b2i, so we can compute addition and multipli-
cation of this two arbitrary complex numbers as

c1 + c2 = a1 + b1i+ a2 + b2i = (a1 + a2) + (b1 + b2)i (1.3)
c1 × c2 = (a1 + b1i)× (a2 + b2i)

= (a1a2 − b1b2) + (a1b2 + a2b1)i (1.4)

From now on, let us denote c1 × c2 as c1c2. Definition 1.1.2 tell us that a
complex number is formed by a real part plus an imaginary part, so we can
imagine that we can identified any complex number as a pair (a, b) ∈ R2.
With this notation of vectors, we can redifine (1.3) and (1.4) as follows. Let
c1 = (a1, b1) and c2 = (a2, b2).

c1 + c2 = (a1, b1) + (a2, b2) = (a1 + a2, b1 + b2) (1.5)
c1c2 = (a1, b1)× (a2, b2) = (a1a2 − b1b2, a1b2 + a2b1) (1.6)

It is trivial to see that both aperations, multiplication and addition, are
commutative and associative, that means:

c1 + c2 = c2 + c1 (1.7)
(c1 + c2) + c3 = c1 + (c2 + c3) (1.8)

c1c2 = c2c1 (1.9)
(c1c2)c3 = c1(c2c3) (1.10)

Moreover, we can see that multiplication distributes over addition.

c1 × (c2 + c3) = c1 × c2 + c1 × c3 (1.11)

Let us verify this property. Let c1 = (a1, b1), c2 = (a2, b2) and c3 = (a3, b3)
then

c1(c2 + c3) = (a1, b1)× ((a2, b2) + (a3, b3))
= (a1(a2 + a3)− b1(b2 + b3),

a1(b2 + b3) + b1(a2 + a3))
= (a1a2 + a1a3 − b1b2 − b1b3,

a1b2 + a1b3 + b1a2 + b1a3). (1.12)

1.1. BASIC DEFINITIONS 3

Now we will calculate the right side of equation (1.11)

c1c2 = (a1a2 − b1b2, a1b2 + a2b1) (1.13)
c1c3 = (a1a3 − b1b3, a1b3 + a3b1) (1.14)

if we sum them up, we have

c1c2 + c1c3 = (a1a2 + a1a3 − b1b2 − b1b3,

a1b2 + a1b3 + b1a2 + b1a3). (1.15)

And that is exactly what we get in the left side of the same equation (equa-
tion 1.12). For both operations, we can define their identity. For the additive
operation, we have that (0, 0) is the aditive operation, because ∀c ∈ C such
that c = (a, b)

c+ (0, 0) = (a, b) + (0, 0) = (a+ 0, b+ 0) = (a, b) = c (1.16)

So we have that
c+ (0, 0) = (0, 0) + c = c (1.17)

And for the multiplicative operation, we have that (1,0) is the identity, that
is

c× (1, 0) = (a, b)× (1, 0)
= (a1− b0, b1 + a0)
= (a, b) = c (1.18)

So we have that
c× (1, 0) = (1, 0)× c = c (1.19)

Now that we have defined the multiplication and addition operations, there-
fore we need their complementary. Let start with the complementary oper-
ation of the addition. Complementary operation of addition is substraction
and it is defined as follow:

c1 − c2 = (a1, b1)− (a2, b2) = (a1 − a2, b1 − b2) (1.20)

It is turn to think about the complementary operation of multiplication:
division. Our intuition for division of two complex numbers c1 and c2 is
another complex (x, y) such that

(x, y) = (a1, b1)
(a2, b2) (1.21)

4 1. INTRODUCTION TO COMPLEX SPACE

So, by definition of division we have

(a1, b1) = (x, y)× (a2, b2) (1.22)
= (a2x− b2y, xb2 + a2y) (1.23)

So we end up with

a1 = a2x− b2y (1.24)
b1 = a2y + b2x (1.25)

Solving the equation for x and y give us

x = a1a2 + b1b2

a22 + b2
2 (1.26)

y = a2b1 − a1b2

a22 + b2
2 (1.27)

Or in more compact notation

(a1, b1)
(a2, b2) = (a1a2 + b1b2

a22 + b2
2 ,

a2b1 − a1b2

a22 + b2
2) (1.28)

In the real world, we have an unitary operation called absolute value, given
by

|a| = +
√
a2 (1.29)

We can define a generalization of this operation for the complex space, called
the modulus of a complex number, by letting

|c| = |a+ bi| = +
√
a2 + b2 (1.30)

Supose that we have two complex numbers, c1, c2 ∈ C, such that c1 = (a1, b1)
and c2 = (a2, b2). Let’s calculate the multiplication of the modulus:

|c1|2|c2|2 =
√
a12 + b1

2
2√

a22 + b2
2

2
(1.31)

= (a1
2 + b1

2)(a2
2 + b2

2) (1.32)
= a1

2a2
2 + a1

2b2
2 + b1

2a2
2 + b1

2b2
2 (1.33)

= a1
2a2

2 + b1
2b2

2 − 2a1a2b1b2 + (1.34)
+a1

2b2
2 + b1

2a2
2 + 2a1a2b1b2

= (a1a2 − b1b2)2 + (a1b2 + a2b1)2 (1.35)
= |c1c2|2 (1.36)

1.1. BASIC DEFINITIONS 5

Now, for the same complex numbers, we have another important property
for addition

|c1 + c2| ≤ |c1|+ |c2| (1.37)

To prove this property, let’s square the left side of the equation

|c1 + c2|2 = |(a1 + a2, b1 + b2)|2 (1.38)
= (a1 + a2)2 + (b1 + b2)2 (1.39)
= a1

2 + a2
2 + b1

2 + b2
2 + 2(a1a2 + b1b2) (1.40)

On the other hand, in the other side of the equation we have

|c1|2 + |c2|2 =
(√

a12 + b1
2
)2

+
(√

a22 + b2
2
)2

(1.41)

= a1
2 + a2

2 + b1
2 + b2

2 (1.42)

= +2
√

(a12 + b1
2)(a22 + b2

2) (1.43)

Replacing this equalities in Eq 1.37

((((
(((

((((
a1

2 + a2
2 + b1

2 + b2
2 + A2(a1a2 + b1b2) ≤

((((
((((

(((
a1

2 + a2
2 + b1

2 + b2
2 + A2

√
(a12 + b1

2)(a22 + b2
2) → (1.44)

a1a2 + b1b2 ≤
√

(a12 + b1
2)(a22 + b2

2) (1.45)

Squaring both sides of the inequality again

(a1a2 + b1b2)2 ≤
√

(a12 + b1
2)(a22 + b2

2)
2

(((
((((

(
a1

2a2
2 + b1

2b2
2 + 2a1a2b1b2 ≤ (((

((((
(

a1
2a2

2 + b1
2b2

2 + a1
2b2

2 + a2
2b1

2

2a1a2b1b2 ≤ a1
2b2

2 + a2
2b1

2

a1
2b2

2 + a2
2b1

2 − 2a1a2b1b2 ≥ 0
(a1b2 − a2b1)2 ≥ 0

So, we have proved that the modulus have two important properties, that
are (for c1, c2 ∈ C):

1. |c1c2| = |c1||c2|

2. |c1 + c2| ≤ |c1|+ |c2|

6 1. INTRODUCTION TO COMPLEX SPACE

In order to define all the interesting basic operators over C, we need to
introduce one last operator: conjugation. Conjugation operator is a function
c 7→ c such that, if c = (a, b) then c = (a,−b).

Now, as for previous operators, let’s check the properties with respect to
addition and multiplicative operators. Let’s have c1, c2 ∈ C, such that c1 =
(a1, b1) and c2 = (a2, b2). That means c1 = (a1,−b1) and c2 = (a2,−b2)

c1 + c2 = (a1 + a2, b1 + b2) (1.46)
= (a1 + a2,−(b1 + b2) (1.47)
= (a1 + a2,−b1 + (−b2)) (1.48)
= c1 + c2 (1.49)

And, in other hand

c1c2 = (a1a2 − b1b2, a1b2 + a2b1) (1.50)
= (a1a2 − b1b2,−(a1b2 + a2b1)) (1.51)
= (a1a2 − b1b2,−a1b2 − a2b1)) (1.52)
= (a1a2 − (−b1)(−b2),−a1b2 − a2b1) (1.53)
= c1 c2 (1.54)

So we have that the conjugation operators respects addition and multipli-
cation.

1.2 Geometric Interpretation

As we have seen in the previous section, complex numbers can be represented
as a pair of real numbers. This suggest a natural means of representations:
pairs of real values correspond to points on the plain (or vectors starting at
the origin and ending in that point). As far as a complex number c ∈ C
can be represented as a pair (a, b) with a, b ∈ R, complex numbers can be
represented as vectors in R2, in wich Y -axis correspond to the imaginary
part of the complex number and X-axis correspond to the real part (as it
shown in Figure 1.1).

Through this representation, we can give another view of the algebraic prop-
erties of the complex numbers. For example, if we think about a sum of the
complex numbers as a vector of R2, we see that the vectors can be added
using the so-called parallelogram rule (as it show in Figure 1.2).

1.2. GEOMETRIC INTERPRETATION 7

R

=

c = (a, b)
b

a

Figure 1.1: Representation in R2 of complex number.

R

=

c1

c2

c1 + c2

Figure 1.2: Adding two complex with parallelogram rule.

To give a geometrical meaning of multiplication, we need to develop another
characterization. As for vectors in real world, we can define the polar repre-
sentation, in which we have a radius r (for complex numbers, radius is the
modulus) and an angulus θ, and they satisfy the next equalities (respect her
vector form c = (a, b)):

r = |c| = +
√
a2 + b2 (1.55)

θ = arctan b

a
(1.56)

And with these two parameters, we can represent any c ∈ C as

c = reiθ (1.57)

Polar representation yields us an interesting question: How many complex
numbers share the same modulus? As you can see in Figure 1.3, there is an
entire circle centered at origin formed by complex numbers with the same
modulus.

Working with polar coordinates we obtain another definitions for the Mul-
tiplication operator. Given two complex numbers c1 = (r1, θ1) and c2 =
(r2, θ2), multiplication is defined in polar coordinates as follow

c1c2 = r1e
iθ1r2e

iθ2 = r1r2e
i(θ1+θ2) = (r1r2, θ1 + θ2) (1.58)

8 1. INTRODUCTION TO COMPLEX SPACE

θ

Figure 1.3: Complex numbers with same modulus.

kc

c c

c2

c3

Figure 1.4: Geometric meaning of multiplication.

Multiplication have a geometric interpretation. The interpretation is differ-
ent if we multiply by a real or complex number as it is shown in Figure 1.4.
If we multiply a complex number c by a real number k, then the angulus
of the vector does not change, only modulus changes (in order to k). But
if we multiply our complex vector by another complex number c0, then the
modulus will be multiplied (so modulus of c will change by modulus of c0
as in real values) also will change the angulus (in the figure, we use powers
of one complex number for better understanding).

If we have defined multiplication, we can also define division. Division is
not more than the inverse operation of multiplication. So, assume that we
have two complex numbers c1 = (r1, θ1) and c2 = (r2, θ2) such that

c1
c2

= c := (r, θ) (1.59)

As well as division is the inverse operation of multiplication, we have

(r1, θ1) = c1 = c2c = (r2, θ2)× (r, θ) (1.60)
= (r2r, θ2 + θ) (1.61)

A deep look into the equality, tell us that

r1 = r2r → r = r1
r2

(1.62)

θ1 = θ2 + θ → θ = θ1 − θ2 (1.63)

1.2. GEOMETRIC INTERPRETATION 9

So, for two complex number c1 and c2, division in polar coordinates is defines
as follow

c1
c2

= (r1
r2
, θ1 − θ2) (1.64)

Power operation also can be deduced. It is not hard to see that, for a given
complex number c = (r, θ) and a natural number n, the power operation
has the form

cn = (reθ)n = rnenθ = (rn, nθ) (1.65)

Let us move to the inverse operation of powers: roots. As you already know,
root can be defined as a fraction power, that means, for a given complex
number c = (r, θ) and a natural number n

n
√
c = c

1
n = (reθ)

1
n = r

1
n e

1
n
θ =

(
r

1
n ,

1
n
θ

)
(1.66)

But remember, θ is only defined for multiples of 2π. Therefore, we must
rewrite the equation (with k ∈ N) as

n
√
c =

(
r

1
n ,

1
n

(θ + 2kπ)
)

(1.67)

That means that there are several roots of the same complex number. In
other words, the solution is not unique. In fact, there are precisely n roots
for a complex number, and we can yield every root varying the k between 0
and n− 1 (both includes).

The reason because we have n roots for a given complex number is the
following: suppose that we have a complex number define as in Eq 1.67, so
if we varying k, we have the solutions given in Table 1.1

k = 0 1
nθ

k = 1 1
nθ + 1

n2π
...

...
k = n− 1 1

nθ + n−1
n 2π

k = n 1
nθ + n

n2π = 1
nθ + 2π

Table 1.1: Solutions of complex roots

If we think about the solution shown in Table 1.1, the solution when k = n
is 1

nθ + 2π but, as we said before, solution is between 0 and 2π so we need
to set the solution in our domain, by letting the solution congruent with 2π,
and that means (1

n
θ + 2π

)
% 2π = 1

n
θ (1.68)

10 1. INTRODUCTION TO COMPLEX SPACE

And equation 1.68 is precisely the solution when k = 0, and that means that
it is the same solution and there is no more distinc solutions.

When we work with polar coordinates, we have a formula that will prove
very handy in many situations. That is the Euler formula and say that

eiθ = cos θ + i sin θ (1.69)

One of the utilities of this formula is given by De Moivre’s formula. This
formula can be deduced thanks to the Euler formula, and says that

(eθi)n = cosnθ + i sinnθ (1.70)

This formula can be proved by induction. Let’s prove the formula for n = 2

(eθi)2 = (cos θ + i sin θ)2 (1.71)
= cosθcosθ − sin θ sin θ + i(cosθ sin θ + sin θcosθ) (1.72)
= cosθ + θ + i sin θ + θ (1.73)
= cos2θ + i sin 2θ (1.74)

Suppose that the formula works until term n − 1, then for the term n, we
have that

(eθi)n = (eθi)n−1
eθi (1.75)

= [cos ([n− 1]θ) + i sin ([n− 1]θ)][cos θ + i sin θ] (1.76)
= cos([n− 1]θ)cosθ − sin ([n− 1]θ) sin θ (1.77)

+i[cosθ sin ([n− 1]θ) + sin θcos([n− 1]θ)]
= cos([n− 1]θ + θ) + i sin ([n− 1]θ + θ) (1.78)
= cosnθ + i sinnθ (1.79)

So the formula is proved.

The last thing we are going to introduce to characterize geometrically any
function on complex numbers comes with the polynomials. An arbitrary
polynomial function with complex coefficients (ci ∈ C) looks like

P (x) = c0 + c1x+ · · ·+ cnx
n (1.80)

From polynomials, we can define the rational functions, which are generated
by division of polynomial functions:

R(x) = P (x)
Q(x) = c0 + c1x+ · · ·+ cnx

n

d0 + d1m+ · · ·+ dmxm
(1.81)

1.2. GEOMETRIC INTERPRETATION 11

Where P (x) = c0 + c1x + · · · + cnx
n and Q(x) = d0 + d1m + · · · + dmx

m

are polynomials with Q(x) 6= 0. This is a generalization of all types of
transformations than we can have. The simplest case of these functions are
Möbius transformations, that have the form:

Ra,b,c,d(x) = ax+ b

cx+ d
(1.82)

where a, b, c, d ∈ C and ad − bc 6= 0. This transformation is an important
one. It also have important properties. One of them is that the composition
of Möbius transformations is also a Möbius transformation. Let have two
Möbius transformations Ra,b,c,d(x) and Ra′ ,b′ ,c′ ,d′ (x), then

Ra′
,b

′
,c

′
,d

′ (Ra,b,c,d(x)) = Ra′
,b

′
,c

′
,d

′

(
ax+ b

cx+ d

)
=
a

′ ax+b
cx+d + b

′

c′ ax+b
cx+d + d′ (1.83)

= a
′
ax+ ba

′ + (cx+ d)b′

c′ax+ c′b+ (cx+ d)d′ (1.84)

= a
′
ax+ ba

′ + cb
′
x+ b

′
d

c′ax+ c′b+ d′cx+ dd′ (1.85)

= (aa′ + b
′
c)x+ (ba′ + b

′
d)

(c′a+ d′c)x+ (bc′ + dd′) (1.86)

This can be rewrited as

Ra′′ ,b′′ ,c′′ ,d′′ = a
′′
x+ b

′′

c′′x+ d′′ (1.87)

with a′′ = aa
′ + b

′
c, b′′ = ba

′ + b
′
d, c′′ = c

′
a+ d

′
c and d′′ = bc

′ + dd
′ . To be

a Möbius transformation, it must verify that a′′
d

′′ − b′′
c

′′ 6= 0

a
′′
d

′′ − b′′
c

′′ = (aa′ + b
′
c)(bc′ + dd

′)− (ba′ + b
′
d)(c′

a+ d
′
c) (1.88)

= aa
′
bc

′ + aa
′
dd

′ + bb
′
cc

′ + b
′
cdd

′ (1.89)
−aa′

bc
′ − a′

bcd
′ − ab′

c
′
d− b′

cdd
′

= aa
′
dd

′ + bb
′
cc

′ − a′
bcd

′ − ab′
c

′
d (1.90)

= ad(a′
d

′ − b′
c

′)− bc(a′
d

′ − b′
c

′) (1.91)
= (ad− bc)(a′

d
′ − b′

c
′) (1.92)

But ad−bc 6= 0 and a′
d

′−b′
c

′ 6= 0 from hypothesis, so (ad−bc)(a′
d

′−b′
c

′) 6= 0
and Ra′ ,b′ ,c′ ,d′ (Ra,b,c,d(x)) is a Möbius transformation.

Another important property of Möbius transformations is that they have an
inverse operation which it is also a Möbius transformation. Identity Möbius
transformation is R1,0,0,1. Let calculate the inverse of Ra,b,c,d(x), that means

R1,0,0,1 = Ra′
,b

′
,c

′
,d

′ (Ra,b,c,d(x)) (1.93)

12 1. INTRODUCTION TO COMPLEX SPACE

where Ra′ ,b′ ,c′ ,d′ is the inverse of Ra,b,c,d. To prove the last property of
Möbius transformation, we also prove that

1 = aa
′ + b

′
c (1.94)

0 = a
′
b+ b

′
d (1.95)

0 = ac
′ + cd

′ (1.96)
1 = bc

′ + dd
′ (1.97)

From equations 1.95 and 1.96 we can deduce that

b
′ = a

′
b

d
(1.98)

c
′ = −cd′

a
(1.99)

Using equation 1.98 in 1.94 and using equation 1.99 in 1.97 we have that

a
′ = d

ad− bc
(1.100)

d
′ = a

ad− bc
(1.101)

Now, if we use 1.100 in 1.98 and using equation 1.101 in 1.99 we have that

b
′ = −b

ad− bc
(1.102)

c
′ = −c

ad− bc
(1.103)

So we have calculated the coefficients of the inverse of Ra,b,c,d, but we need
to be sure that it is, in fact, a Möbius transformation.

a
′
d

′ − b′
c

′ = d

ad− bc
a

ad− bc
− −b
ad− bc

−c
ad− bc

(1.104)

= ad− bc
(ad− bc)2 = 1

ad− bc
(1.105)

And from hypothesis, ad − bc 6= 0 so 1
ad−bc 6= 0 and for so the inverse of

Ra,b,c,d is also a Möbius transformation.

1.3 Definition of Complex Vector Space

In order to define the complex vector space, due to the fact that complex
vector space is an extension of real vector space, let start defining the real
vector space.

1.3. DEFINITION OF COMPLEX VECTOR SPACE 13

Definition 1.3.1: A real vector space is a nonempty set W along with an
addition operation, negation operation and a scalar multiplication which
satisfy the next properties (∀v, w, y ∈W and ∀x, x1, x2 ∈ R):

v + w = w + v (1.106)
(v + w) + y = v + (w + y) (1.107)

v + 0 = v = 0 + v (1.108)
v + (−v) = 0 = −v + v (1.109)

1v = v (1.110)
x1(x2v) = (x1x2)v (1.111)
x(v + w) = xv + xw (1.112)

(x1 + x2)v = x1v + x2v (1.113)

Definition 1.3.2: A complex vector space is a nonempty set V along with
an addition operation, negation operation and a scalar multiplication which
satisfy the analogous properties of the real vector space but with the coef-
ficients in the complex space (that means that the complex space satisfyies
the last 8 equations but ∀v, w, y ∈ V and ∀x, x1, x2 ∈ C).

As in the real vector space, a usuall example of a complex vector space is
the set of matrices. The set of all m-by-n matrices with complex coefficients
is denoted by Cm×n. Given two matrices X,Y ∈ Cm×n, i = 0, · · · ,m − 1;
j = 0, · · · , n − 1 and for k ∈ C, the operations of this set are defined as
follows

(X + Y)[i, j] = X[i, j] + Y [i, j] (1.114)
(−X)[i, j] = −(X[i, j]) (1.115)
(kX)[i, j] = kX[i, j] (1.116)

where X[i, j] denotes the complex entry in the i-th rowand j-th column.
Let us prove that this set is, in fact, a complex vector space. The first 5
properties are trivial, so let prove the last three properties. Let k, k1, k2 ∈ C
and X,Y ∈ Cm×n. Let start proving that the scalar multiplication respects
complex multiplication, that means

k1(k2X) → (k1(k2X))[i, j] (1.117)
= k1((k2X)[i, j]) (1.118)
= k1(k2X[i, j]) (1.119)
= (k1k2)X[i, j] (1.120)
→ (k1k2)X (1.121)

14 1. INTRODUCTION TO COMPLEX SPACE

So that means that k1(k2X) = (k1k2)X and the property is proved. Now let
move into the next property: scalar multiplication distributes over addition

k(X + Y) → k(X + Y)[i, j] (1.122)
= k((X + Y)[i, j]) (1.123)
= k(X[i, j] + Y [i, j]) (1.124)
= kX[i, j] + kY [i, j] (1.125)
→ kX + kY (1.126)

It is time to prove the last of the properties: scalar multilication distributes
over complex addition,

(k1 + k2)X → ((k1 + k2)X)[i, j] (1.127)
= (k1 + k2)X[i, j] (1.128)
= k1X[i, j] + k2X[i, j] (1.129)
→ k1X + k2X (1.130)

So, because of Cm×n verifies all the properties to become a complex vector
space for an arbitrary two matrices and 3 complex scalars, Cm×n is a complex
vector space.

So we have proved that Cm×n with three operations: inverse, addition and
scalar multiplication is a complex vector space. However, these are not the
only ways to operate two elements of this vector space, in fact, there exists
more complicated and useful operators for this set. An example of this
new operators is the transpose operator. For X ∈ Cm×n, the transpose is
denoted by XT and is defined as follows

XT [i, j] = X[j, i] (1.131)

This operation is interesting because of the next three properties. ForX,Y ∈
Cm×n and k ∈ C, we have the following properties

(XT)T = X (1.132)
(X + Y)T = XT + Y T (1.133)

(kX)T = kXT (1.134)

Complex numbers have an special operator to switch the sign of the imag-
inary part: the conjugate. So with this operation in mind, we can define
the conjugate of a complex matrix as the conjugate of every element of the
matrice.

X[i, j] = X[i, j] (1.135)

1.3. DEFINITION OF COMPLEX VECTOR SPACE 15

And this operator has analogous properties to the last one, that means

X = X (1.136)
X + Y = X + Y (1.137)

kX = k ·X (1.138)

We can also combine the two operations defined and as a result we have the
adjoint operator. The adjoint operator (or dagger operation) is denoted by
A† and is defined as

X† = XT = X
T (1.139)

And its properties can be deduced from the properties of the conjugation
and transpose operations

(X†)† = (XT)
†

= (XT)
T

= X = X (1.140)
(X + Y)† = (X + Y)T = (X + Y)T = X

T + Y
T = X† + Y †(1.141)

(kX)† = (kX)T = (kX)T = kX
T = kX† (1.142)

The last basic operator of Cm×n is the multiplication. The multiplication
is given between two matrices, X ∈ Cm×n and Y ∈ Cn×p, which their
multiplication is the matrice X × Y ∈ Cm×p and is defined as follows (with
i = 0, · · · ,m− 1 and j = 0, · · · , p− 1):

(X ? Y)[i, j] =
n−1∑
h=0

X[i, h]Y [h, j] (1.143)

Multiplication of matrices is a very important operation in the quantum
theory, so we need to know the properties of the operator, that are the
following. Let X,Y, Z ∈ Cn×n

1. Associative: (X ? Y) ? Z = X ? (Y ? Z)

2. Let In ∈ Cn×n the identity matrice, In ? A = A = A ? In

3. Distributes over addition

X ? (Y + Z) = (X ? Y) + (X ? Z) (1.144)
(X + Y) ? Z = (X ? Z) + (Y ? Z) (1.145)

4. Respects scalar multiplication. Let c ∈ C

c(X ? Y) = (cX) ? Y = X ? (cY) (1.146)

16 1. INTRODUCTION TO COMPLEX SPACE

In addition, we have three more properties with respect the transpose, con-
jugate and adjoint operators

(X ? Y)T = Y T ? XT (1.147)
X ? Y = X ? Y (1.148)

(X ? Y)† = Y † ? X† (1.149)

The last property is easy to prove from the other two

(X ? Y)† = (X ? Y)T = (X ? Y)T = Y
T
? X

T = Y † ? X† (1.150)

1.4 Other Operators in Complex Vector Spaces

We have defined a set of basic operators over vectors and matrices, but
there are other important operators that we can define over this spaces. For
example, over a complex vector space Cn, we can define a function

〈−,−〉 : Cn × Cn → C (1.151)

This function is called inner product if it satisfies the following properties:
Let V1, V2, V3 ∈ Cn and c ∈ C,

1. Nondegenerate:

〈V1, V1〉 ≥ 0 (1.152)
〈V1, V1〉 = 0 ↔ V1 = 0 (1.153)

2. Respects addition

〈V1 + V2, V3〉 = 〈V1, V3〉+ 〈V2, V3〉 (1.154)
〈V1, V2 + V3〉 = 〈V1, V2〉+ 〈V1, V3〉 (1.155)

3. Respects scalar multiplication

〈cV1, V2〉 = c〈V1, V2〉 (1.156)
〈V1, cV2〉 = c〈V1, V2〉 (1.157)

4. Skew symmetric
〈V1, V2〉 = 〈V2, V1〉 (1.158)

1.4. OTHER OPERATORS IN COMPLEX VECTOR SPACES 17

Let V = (v1, · · · , vn),W = (w1, · · · , wn) ∈ Cn. In this space, we can define
the inner product as

〈V,W 〉 = W † ? V =
n∑
i=1

wivi (1.159)

To be an inner product, it must satisfies the defined properties, so let’s check
them. Let V = (v1, · · · , vn),W = (w1, · · · , wn), U = (u1, · · · , un) ∈ Cn and
c ∈ C

1. Nondegenerate:

〈V, V 〉 =
n∑
i=1

vivi =
n∑
i=1

vivi =
n∑
i=1
|vi|2 (1.160)

but |vi|2 ≥ 0 So
n∑
i=1
|vi|2 = 0→ ∀vi ∈ V : vi = 0→ V = 0 (1.161)

2. Respects addition

〈V +W,U〉 = 〈(v1 + w1, · · · , vn + wn), U〉 (1.162)

=
n∑
i=1

ui(vi + wi) (1.163)

=
n∑
i=1

uivi + uiwi (1.164)

=
n∑
i=1

uivi +
n∑
i=1

uiwi (1.165)

= 〈V,U〉+ 〈W,U〉 (1.166)

Alternativelly, we have

〈V,W + U〉 = 〈V, (w1 + u1, · · · , wn + un)〉 (1.167)

=
n∑
i=1

(wi + ui)vi (1.168)

=
n∑
i=1

wivi + uivi (1.169)

=
n∑
i=1

wivi +
n∑
i=1

uivi (1.170)

= 〈V,W 〉+ 〈V,U〉 (1.171)

18 1. INTRODUCTION TO COMPLEX SPACE

3. Respects scalar multiplication

〈cV,W 〉 =
n∑
i=1

wicvi = c
n∑
i=1

wivi = c〈V,W 〉 (1.172)

Alternativelly, we have

〈V, cW 〉 =
n∑
i=1

cwivi =
n∑
i=1

c wivi = c
n∑
i=1

wivi = c〈V,W 〉 (1.173)

4. Skew symmetric

〈V,W 〉 =
n∑
i=1

wivi =
n∑
i=1

wivi =
n∑
i=1

wivi =
n∑
i=1

viwi = 〈W,V 〉 (1.174)

So it is proved that the operator defined in Equation 1.161 is an inner
product. With them, we canmake the following definition

Definition 1.4.1: Let 〈−,−〉 be an inner product and V be a complex
vector space. Then we denote as a complex inner product space to the tuple
(V, 〈−,−〉).

Let’s define new operators inside the complex inner product space

Definition 1.4.2: Let (V, 〈−,−〉) be a complex inner product space, then
we can define a norm or length which is a function |.| : V → R defined as
|V | :=

√
〈V, V 〉 with V ∈ V

Norm was defined using the inner product so, is it possible that the norm
has the same properties as the inner product? let answer this question. Let
V,W ∈ V and c ∈ C, then

Supose that |V |2 = 0→ 〈V, V 〉 = 0→ V = 0 (1.175)

So norm is nondegenerate.

|V +W | =
√
〈V +W,V +W 〉 (1.176)

=
√
〈V, V +W 〉+ 〈W,V +W 〉 (1.177)

=
√
〈V, V 〉+ 〈V,W 〉+ 〈W,V 〉+ 〈W,W 〉 (1.178)

≤
√
〈V, V 〉+ 〈W,W 〉 =

√
|V |2 + |W |2 (1.179)

≤ |V |+ |W | (1.180)

1.4. OTHER OPERATORS IN COMPLEX VECTOR SPACES 19

So norm respects the triangle inequality.

|cV | =
√
〈cV, cV 〉 =

√
cc〈V, V 〉 =

√
cc
√
〈V, V 〉 (1.181)

=
√
〈c, c〉

√
〈V, V 〉 = |c||V | (1.182)

So norm respects scalar multiplication. In resume, the norm has the fol-
lowing properties

1. Nondegenerate:

|V | ≥ 0 and |V | = 0→ V = 0 (1.183)

2. Satisfies the triengle inequality

|V +W | ≤ |V |+ |W | (1.184)

3. Respects scalar multiplication

|cV | = |c||V | (1.185)

Given a norm, we can proceed and define a distance function

Definition 1.4.3: For all complex inner product space (V, 〈−,−〉), we can
define a distance function has d : V× V→ R such that

∀V1, V2 ∈ V, d(V1, V2) := |V1 − V2| =
√
〈V1 − V2, V1 − V2〉 (1.186)

This distance function have the same properties that the norm function,
that means, ∀V1, V2, V3 ∈ V, distance satisfies the next properties

1. Nondegenerate: d(V1, V2) = 0 if and only if V1 = V2
Proof:

d(V1, V2) = 0→ |V1 − V2| = 0→ V1 − V2 = 0→ V1 = V2 (1.187)

2. Satisfies the triengle inequality: d(V1, V3) ≤ d(V1, V2) + d(V2, V3)
Proof:

d(V1, V3) = |V1 − V3| = |V1 − V2 + V2 − V3| (1.188)
≤ |V1 − V2|+ |V2 − V3| (1.189)
= d(V1, V2) + d(V2, V3) (1.190)

20 1. INTRODUCTION TO COMPLEX SPACE

3. Distance is symmetric: d(V1, V2) = d(V2, V1)
Proof:

d(V1, V2) = 〈V1 − V2, V1 − V2〉 (1.191)
= 〈V1, V1 − V2〉 − 〈V2, V1 − V2〉 (1.192)
= −〈V1, V2 − V1〉+ 〈V2, V2 − V1〉 (1.193)
= 〈V2 − V1, V2 − V1〉 = d(V2, V1) (1.194)

Cartesian product is not the only operator to combine vector spaces. Tensor
product is an important operator because, if we have two spaces, A and B,
that describes two quantum systems, then their tensor product describes
both quantum systems as one.

Definition 1.4.4: Given two vector spaces V and W , the tensor product
is defined as V ⊗W := {v ⊗ w \ v ∈ V, w ∈ W}. The elements of V ⊗W
looks like c0(v0⊗w0)+ · · ·+ cp−1(vp−1⊗wp−1) with vi ∈ V , wi ∈W , ci ∈ C,
where ⊗ is just a symbol.

Another usefull notation for tensor product is

V ⊗W =
p−1∑
i=0

ci(vi ⊗ wi) (1.195)

With this alternative notation, we can define easily the addition of tensor
products and the scalar multiplication as follows

(V ⊗W) + (X ⊗ Y) =
p−1∑
i=0

ci(vi ⊗ wi) +
q−1∑
j=0

kj(xj ⊗ yj) (1.196)

k(V ⊗W) = k
p−1∑
i=0

ci(vi ⊗ wi) =
p−1∑
i=0

(kci)(vi ⊗ wi) (1.197)

The tensor product is given as follows: suppose that we have matrices A
and B with A in the form

A =

a1,1 · · · a1,n
...

am,1 · · · am,n

 (1.198)

B =

b1,1 · · · b1,t
...
bp,1 · · · bp,t

 (1.199)

1.4. OTHER OPERATORS IN COMPLEX VECTOR SPACES 21

Then, we can write the tensor product of A and B as

A⊗B =

a1,1 ·B · · · a1,n ·B

...
am,1 ·B · · · am,n ·B

 =

a1,1b1,1 · · · a1,1b1,t a1,2b1,1 · · · a1,nb1,t
...

...
...

...
a1,1bp,1 · · · a1,1bp,t a1,2bp,1 · · · a1,nbp,t
a2,1b1,1 · · · a2,1b1,t a2,2b1,1 · · · a2,nb1,t

...
...

...
...

am,1b1,1 · · · am,1bp,t am,2bp,1 · · · am,nbp,t

(1.200)

Tensor product must respect addition in both spaces and scalar multiplica-
tion, that means (for v1, v2 ∈ V , w1, w2 ∈W and c ∈ C).

(v1 + v2)⊗ w1 = (v1 ⊗ w1) + (v2 ⊗ w1) (1.201)
v1 ⊗ (w1 + w2) = (v1 ⊗ w1) + (v1 ⊗ w2) (1.202)
c(v1 ⊗ w1) = (cv1)⊗ w1 = v1 ⊗ (cw1) (1.203)

Let see an example of tensor product. Let

A =
[
1 2
0 −1

]
(1.204)

B =
[
0 1 2
2 1 0

]
(1.205)

22 1. INTRODUCTION TO COMPLEX SPACE

Then

A⊗B =

1 · 0 1 · 1 1 · 2 2 · 0 2 · 1 2 · 2
1 · 2 1 · 1 1 · 0 2 · 2 2 · 1 2 · 0
0 · 0 0 · 1 0 · 2 −1 · 0 −1 · 1 −1 · 2
0 · 2 0 · 1 0 · 0 −1 · 2 −1 · 1 −1 · 0

 (1.206)

=

0 1 2 0 1 4
2 1 0 4 2 0
0 0 0 0 −1 −2
0 0 0 −2 −1 0

 (1.207)

B ⊗A =

0 ·
[
1 2
0 −1

]
1 ·
[
1 2
0 −1

]
2 ·
[
1 2
0 −1

]

2 ·
[
1 2
0 −1

]
1 ·
[
1 2
0 −1

]
0 ·
[
1 2
0 −1

]
 (1.208)

=

0 0 1 2 2 4
0 0 0 −1 0 −2
2 4 1 2 0 0
2 −2 0 −1 0 0

 (1.209)

Properties of the tensor product:

1. Associative. Given arbitrary matrices A, B and C, then

A⊗ (B ⊗ C) = (A⊗B)⊗ C (1.210)

Proof :
Let matrices A, B and C with the form

A =

a1,1 · · · a1,n
...

am,1 · · · am,n

 (1.211)

B =

b1,1 · · · b1,p
...
bq,1 · · · bq,p

 (1.212)

1.4. OTHER OPERATORS IN COMPLEX VECTOR SPACES 23

So, we have that

(A⊗B)⊗ C =

a1,1b1,1 · · · a1,1b1,p · · · a1,nb1,1 · · · a1,nb1,p
...

...
a1,1bq,1 · · · a1,1bq,p · · · a1,nbq,1 · · · a1,nbq,p

...
...

...
...

am,1b1,1 · · · am,1b1,p · · · am,nb1,1 · · · am,nb1,p
...

...
am,1bq,1 · · · am,1bq,p · · · am,nbq,1 · · · am,nbq,p

⊗ C

=

a1,1b1,1 · C · · · a1,1b1,p · C · · · a1,nb1,1 · C · · · a1,nb1,p · C
...

...
a1,1bq,1 · C · · · a1,1bq,p · C · · · a1,nbq,1 · C · · · a1,nbq,p · C

...
...

...
...

am,1b1,1 · C · · · am,1b1,p · C · · · am,nb1,1 · C · · · am,nb1,p · C
...

...
am,1bq,1 · C · · · am,1bq,p · C · · · am,nbq,1 · C · · · am,nbq,p · C

= A⊗

b1,1 · C · · · b1,p · C

...
bq,1 · C · · · bq,p · C

 = A⊗ (B ⊗ C) (1.213)

2. Adjoint of a tensor product of matrices

(A⊗B)† = A† ⊗B† (1.214)

Proof :
Let matrices A and B with the form

A =

a1,1 · · · a1,n
...

am,1 · · · am,n

 (1.215)

B =

b1,1 · · · b1,p
...
bq,1 · · · bq,p

 (1.216)

Then, we have that

A† =

a1,1 · · · am,1
...

a1,n · · · am,n

 (1.217)

B† =

b1,1 · · · bq,1
...
b1,p · · · bq,p

 (1.218)

24 1. INTRODUCTION TO COMPLEX SPACE

So

A† ⊗B† =

a1,1 ·B† · · · am,1 ·B†

...
a1,n ·B† · · · am,n ·B†

 (1.219)

=

a1,1 ·B† · · · am,1 ·B†

...
a1,n ·B† · · · am,n ·B†

††

(1.220)

=

a1,1 ·B†T · · · a1,n ·B†T

...
am,1 ·B†T · · · am,n ·B†T

†

(1.221)

=

a1,1 ·B†T · · · a1,n ·B†T

...
am,1 ·B†T · · · am,nB†

T

†

(1.222)

=

a1,1 ·B†

† · · · a1,n ·B†
†

...
am,1 ·B†

† · · · am,nB
††

†

(1.223)

=

a1,1 ·B · · · a1,n ·B

...
am,1 ·B · · · am,nB

†

= (A⊗B)† (1.224)

3. Tensor product of inner products. Let A,A′
, B and B′ matrices of the

appropiate size, then

(A×A′)⊗ (B ×B′) = (A⊗B)× (A′ ⊗B′) (1.225)

Proof :
Let

A =

a1,1 · · · a1,n
...

am,1 · · · am,n

 (1.226)

A
′ =

a

′
1,1 · · · a

′
1,n

...
a

′
m,1 · · · a

′
m,n

 (1.227)

1.4. OTHER OPERATORS IN COMPLEX VECTOR SPACES 25

So, we have that

A×A′ =

∑n
i=0 a1,ia

′
1,i · · ·

∑n
i=0 a1,ia

′
m,i

...∑n
i=0 am,ia

′
1,i · · ·

∑n
i=0 am,ia

′
m,i

 (1.228)

(A×A′)⊗ (B ×B′) =

∑n
i=0 a1,ia

′
1,i · (B ×B

′) · · ·
∑n
i=0 a1,ia

′
m,i · (B ×B

′)
...∑n

i=0 am,ia
′
1,i · (B ×B

′) · · ·
∑n
i=0 am,ia

′
m,i · (B ×B

′)

So, if we look at the other part of que equation, we see that

(A⊗B)× (A′ ⊗B′) =

a1,1 ·B · · · a1,n ·B

...
am,1 ·B · · · am,n ·B

×

a

′
1,1 ·B

′ · · · a
′
1,n ·B

′

...
a

′
m,1 ·B

′ · · · a
′
m,n ·B

′

 (1.229)

=

∑n
i=0(a1,i ·B)× (a′

1,i ·B
′) · · ·

∑n
i=0(a1,i ·B)× (a′

m,i ·B
′)

...∑n
i=0(am,i ·B)× (a′

1,i ·B
′) · · ·

∑n
i=0(am,i ·B)× (a′

m,i ·B
′)

But, as long as ai,j , a

′
i,j ∈ C ∀ai,j ∈ A and ∀a′

i,j ∈ A
′ , then

(A⊗B)× (A′ ⊗B′) =

∑n
i=0(a1,i ·B)× (a′

1,i ·B
′) · · ·

∑n
i=0(a1,i ·B)× (a′

m,i ·B
′)

...∑n
i=0(am,i ·B)× (a′

1,i ·B
′) · · ·

∑n
i=0(am,i ·B)× (a′

m,i ·B
′)

=

∑n
i=0 a1,ia

′
1,i · (B ×B

′) · · ·
∑n
i=0 a1,ia

′
m,i · (B ×B

′)
...∑n

i=0 am,ia
′
1,i · (B ×B

′) · · ·
∑n
i=0 am,ia

′
m,i · (B ×B

′)

(1.230)
= (A×A′)⊗ (B ×B′) (1.231)

As an example of complex vector space we have polynomials of degree n or
less. Polynomials have the form

P (x) = c0 + c1x+ · · ·+ cnx
n (1.232)

With ci ∈ C ∀ci. Another useful notation for polinomials is

P (x) =
n∑
i=0

cix
i (1.233)

For completeness, let us go through the operations. Let k ∈ C and let
P (x), Q(x) ∈ Polyn with P (x) =

∑n
i=0 cix

i and Q(x) =
∑n
i=0 dix

i

26 1. INTRODUCTION TO COMPLEX SPACE

1. Addition

P (x) +Q(x) =
n∑
i=0

cix
i +

n∑
i=0

dix
i (1.234)

=
n∑
i=0

(ci + di)xi (1.235)

2. Negation

−P (x) =
n∑
i=0
−cixi (1.236)

3. Scalar multiplication

kP (x) =
n∑
i=0

kcix
i = k

n∑
i=0

cix
i (1.237)

With these operations, Polyn forms a complex vector space. In other words,
it satisfies the following properties. Let k1, k2 ∈ C and let P (x), Q(x), R(x) ∈
Polyn with P (x) =

∑n
i=0 cix

i, Q(x) =
∑n
i=0 dix

i and R(x) =
∑n
i=0 eix

i

1. Commutativity

P (x) +Q(x) =
n∑
i=0

(ci + di)xi =
n∑
i=0

(di + ci)xi

= Q(x) + P (x) (1.238)

2. Associativity

(P (x) +Q(x)) +R(x) =
n∑
i=0

(ci + di)xi +R(x) (1.239)

=
n∑
i=0

([ci + di] + ei)xi (1.240)

=
n∑
i=0

(ci + [di + ei])xi (1.241)

= P (x) +
n∑
i=0

(di + ei)xi (1.242)

= P (x) + (Q(x) +R(x)) (1.243)

3. Zero is identity. Let 0 ∈ C

P (x) + 0 =
n∑
i=0

cix
i +

n∑
i=0

0xi =
n∑
i=0

cix
i = P (x) (1.244)

1.5. HILBERT SPACES AND HERMITIAN MATRICES 27

4. Inverse

P (x) + (−P (x)) =
n∑
i=0

cix
i +

n∑
i=0
−cixi = 0 (1.245)

5. Multiplicative identity. Let 1 ∈ C

1P (x) =
n∑
i=0

1cixi =
n∑
i=0

cix
i = P (x) (1.246)

6. Respect complex multiplication

k1(k2P (x)) = k1(
n∑
i=0

k2cix
i) =

n∑
i=0

k1k2cix
i (1.247)

= k2(
n∑
i=0

k1cix
i) = k2(k1P (x)) (1.248)

1.5 Hilbert Spaces and Hermitian Matrices

Hilbert spaces are widely used due to their comfortable properties. To get
their definition, first we need to define two concepts

Definition 1.5.2: Let (V, 〈−,−〉) an inner product space with the derived
norm and distance function. Therefore, a Cauchy sequence is a sequence of
vectors V0, V1, · · · ∈ V such that ∀ε > 0, there exists an N0 ∈ N such that

∀m,n ≥ N0, d(Vm, Vn) ≤ ε (1.249)

Definition 1.5.3: Let a complex vector space V, then V is complete if for
any Cauchy sequence of vectors V0, V1, · · · ∈ V, exists L ∈ V such that

lim
n→∞

|Vn − L| = 0 (1.250)

The intuition behind this is that a vector space with an inner product
is complete if any sequence accumulating somewhere converges to a point.
With these definitions, we are in position of defining the Hilbert space.

Definition 1.5.4: A Hilbert space is a complex inner product space that is
complete.

Eigenvectors and eigenvalues are the base of the Quantum Mechanics and
for so it is important to keep in mind its definition

28 1. INTRODUCTION TO COMPLEX SPACE

Definition 1.5.5: Let a matrix A ∈ Cn×n. If there exists c ∈ C and
v 6= 0 ∈ Cn such that Av = cv then c is called a eigenvalue of A and v an
eigenvector of A associated with c.

Proposition: Every eigenvector determines a complex vector subspace of
the vector space and it is known as eigenspace associated with the given
eigenvector

Proof Let the matrix A with eigenvalue e and with eigenvector associated
v. To be a complex vector subspace, we must prove that the space is closed
under addition and scalar multiplication.

1. Closed under addition
Let e′ and e′′ eigenvalue for the eigenvector v, then

A(e′′
v + e

′
v) = Ae

′′
v +Ae

′
v = e

′′
Av + e

′
Av (1.251)

= e
′′(ev) + e

′(ev) = e(e′′ + e
′)v (1.252)

2. Closed under scalar multiplication
∀c ∈ C we have that

A(cv) = cAv = ceV = e(cv) (1.253)

We shall need certain types of important square matrices and their proper-
ties. Let us generalize this notion from to the complex numbers

Definition 1.5.6: Let a matrix A ∈ Cn×n. If A† = A, we say that A is
hermitian. In other words, A is hermitian ifA[i, j] = A[j, i] for i, j = 1, · · · , n

Definition 1.5.7: Let a hermitian matrix A ∈ Cn×n. Then, the operator
that it represents is called self-adjoint.

Let’s develop the definition 1.5.6

A† = A→ AT = A→ AT = A→ AT = A (1.254)

It follows that A is Hermitian if and only if AT = A

Let see some properties of the hermitian matrices.

1.5. HILBERT SPACES AND HERMITIAN MATRICES 29

Proposition: Let A ∈ Cn×n be a hermitian matrix. ∀v, v′ ∈ Cn we have
that

〈Av, v′〉 = 〈v,Av′〉 (1.255)

Proof

〈Av, v′〉 = (Av)†v′ = v†A†v
′ = v†Av

′ = v†(Av′) = 〈v,Av′〉 (1.256)

Proposition: Let A ∈ Cn×n be a hermitian matrix. Then all its eigenvalues
are real.

Proof : Let A ∈ Cn×n be a hermitian matrix with an eigenvalue c ∈ C and
an eigenvector v ∈ Cn, then from the properties of the inner product we
have

c〈v, v〉 = 〈cv, v〉 (1.257)
But from the properties of the definition of eigenvalue we have

〈cv, v〉 = 〈Av, v〉 (1.258)

And from the last propostion

〈Av, v〉 = 〈v,Av〉 (1.259)

Finally, using again the definition of eigenvalue and the properties of inner
product

〈v,Av〉 = 〈v, cv〉 = c〈v, v〉 (1.260)
So we end up with the following equality

c〈v, v〉 = c〈v, v〉 → c = c (1.261)

So c must be real

Proposition: For a given hermitian matrix, distinc eigenvectors that have
distinct eigenvalues are orthogonal for a given hermitian matrix.

Proof : Let A ∈ Cn×n be a hermitian matrix with an eigenvalues c1, c2 ∈ C
and an eigenvectors v1, v2 ∈ Cn such that

Av1 = c1v1 Av2 = c2v2 c1 6= c2 (1.262)

then, using the properties from the inner product and the definition of the
eigenvectors we have the following equalities

c1〈v1, v2〉 = 〈c1v1, v2〉 = 〈Av1, v2〉 (1.263)

30 1. INTRODUCTION TO COMPLEX SPACE

since A is hermitian, we have that

〈Av1, v2〉 = 〈v1, Av2〉 (1.264)

again we have this equality from the properties of inner product and defini-
tion of eigenvectors

〈v1, Av2〉 = 〈v1, c2v2〉 = c2〈v1, v2〉 (1.265)

finally, from the last proposition we know that c2 is real, so

c2〈v1, v2〉 = c2〈v1, v2〉 (1.266)

so we end up with

c1〈v1, v2〉 = c2〈v1, v2〉 → c1〈v1, v2〉 − c2〈v1, v2〉 = 0→ (c1 − c2)〈v1, v2〉 = 0
(1.267)

but from hypotesis, c1 6= c2, so 〈v1, v2〉 = 0 and they are orthogonal.

Definition 1.5.8: Let matrix A ∈ Cn×n such that

AA† = A†A = Idn (1.268)

then A is called unitary matrix

Unitary matrices have also important properties that we need to know. Let’s
see some of them

Proposition: Let U, V ∈ Cn×n be a unitary matrices, then UV is a unitary
matrix.

Proof : U and V are unitary so UU † = Idn = V V † and for so, the next
equalities follow

Idn = UU † = UIdnU
† = UV V †U † = (UV)(V U)† = (UV)(UV)† (1.269)

and that is the definition of being unitary matrix, so UV is a unitary matrix.

Proposition: Let U ∈ Cn×n be a unitary matrix. Then ∀V,W ∈ Cn we
have 〈UV,UW 〉 = 〈V,W 〉.

Proof :

〈UV,UW 〉 = (UV)†(UW) = V †(U †U)W = V †IdnW = V †W = 〈V,W 〉
(1.270)

1.5. HILBERT SPACES AND HERMITIAN MATRICES 31

Proposition: Let U ∈ Cn×n be a unitary matrix. Then ∀V,W ∈ Cn we
have d(UV,UW) = d(V,W).

Proof : Let consider d(UV,UW)2. From definition, we have that

d(UV,UW)2 = |UV − UW |2 = 〈UV − UW,UV − UW 〉 (1.271)

and from the properties of inner product, we have

〈UV − UW,UV − UW 〉 = 〈UV,UV − UW 〉 − 〈UW,UV − UW 〉
= (〈UV,UV 〉 − 〈UV,UW 〉)− (〈UW,UV 〉 − 〈UW,UW 〉)
= 〈V, V 〉 − 〈V,W 〉 − 〈W,V 〉+ 〈W,W 〉
= 〈V, V −W 〉 − 〈W,V −W 〉
= 〈V −W,V −W 〉 = |V −W |2 = d(V,W)2 (1.272)

And for so, we end up with

d(UV,UW)2 = 〈UV−UW,UV−UW 〉 = d(V,W)2 → d(UV,UW) = d(V,W)
(1.273)

32 1. INTRODUCTION TO COMPLEX SPACE

2

Introduction to Quantum
Theory

Before studing Quantum Algorithms and how to program them, we must
study the basic principles in wich Quantum Mechanics is based in. Our goal
is to understand the properties that we are going to use and how to exploit
them to gain more power with respect to the classical systems. Hence,
first we study the differences between the classical systems and Quantum
Systems by using graphs. Next, we will go deeper in the undestarding of
Quantum Mechanics so we can explain the Quantum Architecture in which
our program languages are based in order to program a Quantum Computer.
Finally, we will see some well known tools to programs and execute quantum
algorithms. This chapter is based in [2] and [3].

2.1 Classical Systems vs Quantum Systems

Consider a system described by a graph in which we place some identical
flints on the vertices. The state of the system is represented by the number
of flints located in each vertex. To describe completely our system, we need
to know how the system evolves over time. In other words, we need to know
its dynamics.

Our graph is directed, indicating where the flints are moving. We are con-
siderating a non-probabilistical system, so we do not permit an arbitrary
graph. The graphs than can represent these systems are those which have
exactly one outgoing edge. If the edge points to the same flint, it is not

33

34 2. INTRODUCTION TO QUANTUM THEORY

moving. Next we show an example matrix representing a valid graph

G =

0 0 0 0
0 0 0 0
0 1 0 1
1 0 1 0

 (2.1)

Where G[i, j] = 1 indicates that exists a directed edge from vertex j to
vertext 0 and G[i, j] = 0 that it does not exist. The matrix corresponds to
the graph shown in Figure 2.1

Figure 2.1: Classical Non-Probabilistic System Graph.

Suposse that we have a vector X that describes the state of our system at
t = 0. Then, GX describes the state of our system one time step later
(t = 1). Let’s see an example. Let X = [2, 5, 3, 1]T

GX =

0 0 0 0
0 0 0 0
0 1 0 1
1 0 1 0

2
5
3
1

 =

0
0
6
5

 (2.2)

In general, if we have a vector X that describes the state of our system at
t = 0 and being G, the matrix that represents the dynamics of our system,
then GnX describes the state of our system at t = n.

In quantum mechanics, there exists an inherent indeterminacy in our knowl-
edge about the system. Our dynamics are governed by a probabilistic be-
haviour. Let’s modify our previous definition to make room for this new
paradigm. Now there can have more than 1 one arrow from each vertex,
but the sum of all these arrows must be 1, because the global probability of

2.1. CLASSICAL SYSTEMS VS QUANTUM SYSTEMS 35

moving to some place must be one. Let see an example

G =

0 0.3 0.3
1 0 0.3
0 0.7 0.4

 (2.3)

Where G[i, j] indicates the probability of going from vertex j to vertex i. G
corresponds to the graph show in Figure 2.2

Figure 2.2: Probabilistic System Graph.

Definition 2.1.1: Let matrix G represent a graph, then G is called adja-
cency matrix (for the graph).

As we have seen before, the sum of probabilities of arrows leaving a vertex
must be one -and all arrows must have positive probabilities-. So the sum
of the elements of each column of the adjacency matrix must be one.

Definition 2.1.2: Let matrix G be an adjacency matrix such that the sum
of each row is one. Then G is a doubly stochastic matrix.

The importance of doubly stochastics matrices is given by the following
properties:

Proposition: Let M ∈ Rn×n be a doubly stochastic matrix. Let X =
(x1, · · · , xn)T ∈ Rn and let the result Y = (y1, · · · , yn) = MX. Then

n∑
i=1

xi =
n∑
i=1

yi (2.4)

Proof : Let M be a doubly stochastic matrix such that

M =

m1,1 · · · m1,n
...

mn,1 · · · mn,n

 (2.5)

36 2. INTRODUCTION TO QUANTUM THEORY

Let’s calculate MX

MX =

m1,1 · · · m1,n
...

mn,1 · · · mn,n

x1
...
xn

 =

∑n
i=1m1,ixi

...∑n
i=1mn,ixn

 (2.6)

But Y = MX so
n∑
i=1

yi =
n∑
j=1

n∑
i=1

mj,ixi =
n∑
i=1

n∑
j=1

mj,ixi =
n∑
i=1

xi

n∑
j=1

mj,i (2.7)

As long as M is doubly stochastic, then
n∑
i=1

mi,j
∑n
i=1mj,i ∀j = 1, · · · , n (2.8)

and so
n∑
i=1

yi =
n∑
i=1

xi

n∑
j=1

mj,i =
n∑
i=1

xi (2.9)

Proposition: Let M ∈ Rn×n be a doubly stochastic matrix. Let X =
(x1, · · · , xn) ∈ Rn and let the result Y = (y1, · · · , yn)T = XM . Then

n∑
i=1

xi =
n∑
i=1

yi (2.10)

Proof : Let doubly stochastic matrix M such that

M =

m1,1 · · · m1,n
...

mn,1 · · · mn,n

 (2.11)

Let’s calculate XM

XM =
[
x1 · · · xn

]
m1,1 · · · m1,n
...

mn,1 · · · mn,n

 =

∑n
i=1mi,1xi

...∑n
i=1mi,nxn

T

(2.12)

But Y = MX so
n∑
i=1

yi =
n∑
j=1

n∑
i=1

mi,jxi =
n∑
i=1

n∑
j=1

mi,jxi =
n∑
i=1

xi

n∑
j=1

mi,j (2.13)

As long as M is doubly stochastic, then
n∑
i=1

mi,j
∑n
i=1mj,i ∀j = 1, · · · , n (2.14)

2.1. CLASSICAL SYSTEMS VS QUANTUM SYSTEMS 37

Therefore
n∑
i=1

yi =
n∑
i=1

xi

n∑
j=1

mi,j =
n∑
i=1

xi (2.15)

Proposition: Let M,N ∈ Rn×n be doubly stochastic matrices. Then MN
is a doubly stochastic matrix.

Proof : Let the doubly stochastic matrices

M =

m1,1 · · · m1,n
...

mn,1 · · · mn,n

 N =

n1,1 · · · n1,n
...

nn,1 · · · nn,n

 (2.16)

then, we can calculate the product MN

MN =

∑n
i=1m1,in1,i · · ·

∑n
i=1m1,inn,i

...∑n
i=1mn,in1,i · · ·

∑n
i=1mn,inn,i

 (2.17)

Let’s calculate the sum of the s-row
n∑
j=1

n∑
i=1

ms,inj,i =
n∑
i=1

n∑
j=1

ms,inj,i =
n∑
i=1

ms,i

n∑
j=1

nj,i (2.18)

But N and M are doubly stochastic, so

n∑
j=1

n∑
i=1

ms,inj,i =
n∑
i=1

ms,i

n∑
j=1

nj,i =
n∑
i=1

ms,i = 1 (2.19)

Now let’s calculate the sum of the s-column
n∑
j=1

n∑
i=1

mj,ins,i =
n∑
i=1

n∑
j=1

mj,ins,i =
n∑
i=1

ns,i

n∑
j=1

mj,i (2.20)

But N and M are doubly stochastic, so

n∑
j=1

n∑
i=1

mj,ins,i =
n∑
i=1

ns,i

n∑
j=1

mj,i =
n∑
i=1

ns,i = 1 (2.21)

Therefore, MN is a doubly stochastic matrix.

We have seen that, given a doubly stochastix matrix M , if we want to know
the state of the system at time t = 2, we need the matrix M2 = MM .
But we can multiply M to another doubly stochastic matrix. Let G,M be

38 2. INTRODUCTION TO QUANTUM THEORY

two doubly stochastic matrices of the same size. Then we can define their
multiplication

GM [i, j] =
n∑
k=1

G[i, k]M [k, j] (2.22)

The meaning of this multiplication is the following: GM [i, j] is the sum of
the probabilites of going from vertex j to some arbitrary vertex k, with the
probabilities of G, and then going from this vertex k to the vertex i, with the
probabilities of M. If, for example, G describes the dynamics of the system
to go from t = 0 to t = 1 and M to go from timestep t = 1 to t = 2, then
GM describes the dynamics of the system to go from timestep t = 0 to
t = 2.

We are now ready to go into the world of quantum. Quantum mechanics
works in a similar way as the probabilistic system described before. The
difference is that in the probabilistic systems, the probabilities are given by
real numbers between 0 and 1 and in quantum mechanics, these probabilities
are given by complex numbers c ∈ C such that |c|2 is between 0 and 1.

There is one fundamental difference between using real numbers and using
complex numbers. We know that given two positive real numbers r1, r2 ∈ R
then p1 ≤ p1 + p2 and p2 ≤ p1 + p2. But when we work with two complex
numbers c1, c2 ∈ C such that 0 ≤ |c1|2, |c2|2 ≤ 1, then there’s no need for
|c1 +c2|2 to be bigger than |c1|2 or |c2|2 because complex numbers can cancel
each other. This phenomenon is referrered to as interference and it’s one
of the most important concepts in quantum theory.

Instead of asking that the adjacency matrix be a doubly stochastic matrix,
we ask instead that the adjancency matrix U be unitary (UU † = Id). An
example of a well know unitary matrix is

U =

cos(θ) −sen(θ) 0
sen(θ) cos(θ) 0

0 0 1

 (2.23)

Why we want unitary matrices instead of the adjacency matrices described
before? The answer of these questions is in the next two propositions:

Proposition: Given any unitary matrix U such that

U =

u1,1 · · · u1,n
...

un,1 · · · un,n

 (2.24)

2.1. CLASSICAL SYSTEMS VS QUANTUM SYSTEMS 39

Then, using the modulus squared of each of the entries
|u1,1|2 · · · |u1,n|2

...
|un,1|2 · · · |un,n|2

 (2.25)

we get a doubly stochastic matrix.

Proof : Let U be a unitary matrix such that ul,j = al,j + bl,j ∈ C ∀l, j =
1, · · · , n with al,j , bl,j ∈ R. As U is unitary, then

UU † = Id (2.26)

and for so, we have that
n∑
l=1

ul,jul,j = 1 →
n∑
l=1

(al,j + bl,ji)(al,j + bl,ji) = 1 (2.27)

→
n∑
l=1

(a2
l,j + b2

l,j) = 1→
n∑
l=1
|ul,j |2 = 1 (2.28)

n∑
j=1

ul,jul,j = 1 →
n∑
j=1

(al,j + bl,ji)(al,j + bl,ji) = 1 (2.29)

→
n∑
j=1

(a2
l,j + b2

l,j) = 1→
n∑
j=1
|ul,j |2 = 1 (2.30)

So the matrix described in Eq 2.25 is doubly stochastic.

Proposition: Given any unitary matrix U ∈ Cn×n and given any column
vector c ∈ Cn, then Uc preserves the sum of the modulus squared of c.

Proof : first, we need to prove the next property. Let arbitrary (a + bi),
(c+ di) ∈ C

|(a+ bi)(c+ di)|2 = |(ac− bd) + (ad+ bc)i|2

= (ac− bd)2 + (ad+ bc)2

= a2c2 + b2d2 −���2abcd+ a2d2 + b2c2 +���2abcd
= a2c2 + b2d2 + a2d2 + b2c2

= (a2 + b2)(c2 + d2)
= |a+ bi|2|c+ di|2 (2.31)

Let c = (c1, · · · , cn)T ∈ Cn such that ci = di + ei and let U be a unitary
matrix such that

U =

u1,1 · · · u1,n
...

un,1 · · · un,n

 =

a1,1 + b1,1i · · · a1,n + b1,ni

...
an,1 + bn,1i · · · an,n + bn,ni

 (2.32)

40 2. INTRODUCTION TO QUANTUM THEORY

From the previous proposition we know that
n∑
i=1
|ai,j + bi,ji|2 = 1

∑n
i=1 |aj,i + bj,ii|2 = 1 ∀j = 1, · · · , n (2.33)

Now we are going to calculate the product Uc

Uc =

∑n
j=1(a1,j + b1,ji)(d1 + e1i)

...∑n
j=1(an,j + bn,ji)(dn + eni)

 (2.34)

If we calculate the sum of the modulus squared of the multiplication we get∑n
k=1

∑n
j=1 |(ak,j + bk,ji)(dk + eki)|2 (2.35)

=
∑n
k=1

∑n
j=1 |ak,j + bk,ji|2|dk + eki|2 (2.36)

=
∑n
k=1 |dk + eki|2

∑n
j=1 |ak,j + bk,ji|2 (2.37)

=
∑n
k=1 |dk + eki|2 (2.38)

One of the main principle in quantum mechanics is the superposition.
This principle is the most important quality to overcome the information
procesing capacity of classical systems. Paul Dirac described this concept
in [2] as follow: The general principle of superposition of quantum me-
chanics applies to the states [that are theoretically possible without mutual
interference or contradiction] ... of any one dynamical system. It requires
us to assume that between these states there exist peculiar relationships such
that whenever the system is definitely in one state we can consider it as
being partly in each of two or more other states. The original state must
be regarded as the result of a kind of superposition of the two or more new
states, in a way that cannot be conceived on classical ideas. Any state may
be considered as the result of a superposition of two or more other states,
and indeed in an infinite number of ways. Conversely, any two or more
states may be superposed to give a new state...

The non-classical nature of the superposition process is brought out clearly
if we consider the superposition of two states, A and B, such that there exists
an observation which, when made on the system in state A, is certain to lead
to one particular result, a say, and when made on the system in state B is
certain to lead to some different result, b say. What will be the result of the
observation when made on the system in the superposed state? The answer
is that the result will be sometimes a and sometimes b, according to a prob-
ability law depending on the relative weights of A and B in the superposition
process. It will never be different from both a and b [i.e., either a or b]. The
intermediate character of the state formed by superposition thus expresses

2.2. BASIC QUANTUM THEORY 41

itself through the probability of a particular result for an observation being
intermediate between the corresponding probabilities for the original states,
not through the result itself being intermediate between the corresponding
results for the original states.

The mind blowing consequence of superposition is that one particle is "in
some degree" in several places at the same time. But what happens if we
measure if the particle is in one of these places? Then, the superposition
collapses and the particle is only in one of them. That means that we can
work with particles that behave as if they are simultaneously in multiple
places, but if we observe them, they are only in one of the places, with a
given probability.

2.2 Basic Quantum Theory

In the Quantum world a different notation is used to represent the vectors.
The commonly used notation is the Dirac or Bra notation. The Diract ket
is used to represent column vectors. For example, let x = (c1, · · · , cn)T ∈
Cn, then this vector in the Diract notation is represented by |x〉. Alter-
natively, for the row vectors we have the bra notation. Let the vector
y = (d1, · · · , dn) ∈ Cn, then this vector in the bra notation is represented
by 〈y|.

One of the basic concepts that we need in Quantum Computing -and in
Quantum Mechanicals in general- is the quantum states, that describes the
state of our system at a given time. To undestand the concept, supose that
we have one particle that can be found in one of the positions x1, · · · , xn.
Then the state of the system is the vector (c1, · · · , cn)T ∈ Cn that represents
the probabilities of the particle being found in each position. The complex
weights c1, · · · , cn are know as complex amplitudes. We define the state |ψ〉
of the particle as

|ψ〉 = c1|x1〉+ · · ·+ cn|xn〉 (2.39)

Where the ket |xi〉 represents the state of the particle being in this position.
If we see |ψ〉 in this way, we can say that |ψ〉 is a superposition of the basic
states |x1〉, · · · , |xn〉. In this way, the probability for being in state |xi〉 is

P (|xi〉) = |ci|2∑n
j=1 |cj |2

(2.40)

Let c ∈ C be an arbitrary complex number and consider c|ψ〉, then if we

42 2. INTRODUCTION TO QUANTUM THEORY

calculate again the probability of being at state |xi〉 we have that

Pc|ψ〉(|xi〉) = |cci|2∑n
j=1 |ccj |2

= |c|2|ci|2∑n
j=1 |c|2|cj |2

(2.41)

= �
�|c|2|ci|2

�
�|c|2
∑n
j=1 |cj |2

= |ci|2∑n
j=1 |cj |2

= P|ψ〉(|xi〉) (2.42)

Therefore, the probabilities of being at each state of |ψ〉 does not change if
we multiply them by any complex number. This means that, given any |ψ〉,
we can always find another |ψ′〉 that represents the same state as |ψ〉 but
with modulus 1. This ket is known as the normalized vector of |ψ〉. We can
calculate |ψ′〉 as follow

|ψ′〉 = |ψ〉
||ψ〉|

(2.43)

To introduce the next important concept, we need to explain a property of
subatomic particles called spin. Spin is an intrinsic form of angular momen-
tum and it is one of two types of angular momentum in quantum mechanics.
In some ways, spin is like a vector quantity: it has a defined magnitude, and
it has a "direction". There are only two basic spin states for each direction
in space. From the point of view of the vertical axis, these states are spin
up |↑〉 and spin down |↓〉. Then a generic superposed state |ψ〉 of this basic
states is

|ψ〉 = c1|↑〉+ c2|↓〉 (2.44)

Where c1, c2 ∈ C allows us to compute probabilities of finding the particle
with spin up (|c1|2) or finding them with spin down (|c2|2).

Inner product is important to determine how likely the state of the given sys-
tem will change to another state after measuring. The complex number that
determines this concept is known as the transition amplitude. Supose that
we have two arbitrary states |ψ〉 = (c1, · · · , cn)T and |ψ′〉 = (c′

1, · · · , c
′
n)T

then we need to calculate the inner product between them. In order to do
so in ket-bra notation, let’s put |ψ′〉 in bra notation

〈ψ′ | = |ψ′〉† = (c′
1, · · · , c

′
n) (2.45)

And then, we multiply them using an inner product to find the transition
amplitude

〈ψ′ |ψ〉 = (c′
1, · · · , c

′
n)

c1
...
cn

 = c
′
1c1 + · · ·+ c′

ncn (2.46)

2.2. BASIC QUANTUM THEORY 43

The next concept allows us to have information about the properties of the
system: observables. We call observable to the physical quantities than can
be observed in each state. We can think of observables as questions about
the system that we want to answer. We have two important postulates that
we need to know.

Postulate 1:
To each physical observable there corresponds a hermitian operator.

Postulate 2:
The eigenvalues of a hermitian operator ω associated with a physical ob-
servable are the only possible values the observable can take as a result of
measuring it on any given state. Furthermore, the eigenvectors of ω form a
basis for the state space.

We may be concerned about manipulating an observable to obtain another
one, so we are going to study how we can transform an observable -that is
a hermitian operator- so that it remains being an observable.

Proposition: Let an hermitian matrix H and a real scalar r. Then rH is
hermitian.

Proof : Let H ∈ Rn×n be a hermitian matrix. As it is hermitian, then

H[i, j] = H[j, i] ∀i, j = 1, ·, n (2.47)

We know that r ∈ R so r = r. If rH is hermitian then it must be fulfilled
for all i, j = 1, ·, n that

rH[i, j] = rH[j, i] = rH[j, i] = rH[j, i] (2.48)
→ �rH[i, j] = �rH[j, i]→ H[i, j] = H[j, i] (2.49)

And that is true by hypothesis.

So we can multiply an arbitrary hermitian matrix by any real number and
still be hermitian but, what about complex numbers? When we try an
example, we see that this property is not true for complex numbers. Let’s
see an example. Let

H =
[
1 0
0 1

]
c = i (2.50)

then

cH =
[
i 0
0 i

]
(cH)† =

[
−i 0
0 −i

]
(2.51)

44 2. INTRODUCTION TO QUANTUM THEORY

And so, cH is not an hermitian matrix. Another useful transformation is
the addition. If we have an observable Ω1 and another observable Ω2 then
we can have their sum Ω1 + Ω2 as the sum of their hermitian matrices. But
in order to have it, we will need the following proposition.

Proposition: Let two hermitian matrices H,H ′ ∈ Cc×n, then H + H
′ is

hermitian.

Proof :
To prove that, we need to prove that H[i, j] +H

′ [i, j] = H[i, j] +H ′ [i, j]

H[i, j] +H ′ [i, j] = H[i, j] +H ′ [i, j] (2.52)

but both H and H ′ are hermitian, so

H[i, j] +H ′ [i, j] = H[i, j] +H ′ [i, j] = H[i, j] +H
′ [i, j] (2.53)

The sum of hermitian matrices is hermitian but, what about multiplication?
Well, multiplication generally does not produce an hermitian matrix. Let
Ω1,Ω2 ∈ Cn×n two hermitian matrices and let ψ, φ two arbitrary states.
Then we have

〈Ω1Ω2φ, ψ〉 = 〈Ω2φ,Ω1ψ〉 = 〈φ,Ω1Ω2ψ〉 (2.54)

where the equalities comes from the fact that Ω1 and Ω2 are hermitian.
Then, for the multiplication being hermitian we need that

〈Ω1Ω2φ, ψ〉 = 〈φ,Ω2Ω1ψ〉 (2.55)

which implies that

Ω1Ω2 = Ω2Ω1 (2.56)

and we know that for general matrices this is not always true. In the case
that it is, then the multiplication is hermitian. If they are not hermitian,
we can define a usefull operator called commutator as

[Ω1,Ω2] = Ω1Ω2 − Ω2Ω1 (2.57)

which is a hermitian matrix. To prove this, Let’sH,Ω ∈ Cn×n be a hermitian

2.2. BASIC QUANTUM THEORY 45

matrices. Now, for i, j = 1, · · · , n consider

[H,Ω][i, j] = (HΩ)[i, j]− (ΩH)[i, j] (2.58)

=
n∑
h=0

(H[i, h]Ω[h, j])−
n∑
h=0

(Ω[i, h]H[h, j]) (2.59)

=
n∑
h=0

(H[i, h]†Ω[h, j]†)−
n∑
h=0

(Ω[i, h]†H[h, j]†) (2.60)

=
n∑
h=0

(Ω[i, h]H[h, j])† −
n∑
h=0

(H[i, h]Ω[h, j])† (2.61)

=

 n∑
h=0

(Ω[i, h]H[h, j])−
n∑
h=0

(H[i, h]Ω[h, j])

† (2.62)

= [H,Ω][i, j]† (2.63)

To introduce the next postulate, we need to remember that a hermitian
operator Ω is an operator that, for two given states |ψ〉, |φ〉, respects the
inner product, that is

〈Ω|ψ〉, |φ〉〉 = 〈|ψ〉,Ω|φ〉〉 (2.64)

So, if it is the same state, then it is a real unique value and we will denote
as

|Ω〉ψ = 〈Ω|ψ〉, |φ〉〉 = 〈|ψ〉,Ω|φ〉〉 (2.65)
Postulate 3:
|Ω〉ψ is the expected value of observing Ω repeteadly on the same state |ψ〉.

Let’s explain the postulate. Let Ω be a hermitian operator and λ1, · · · , λn
the list of its eigenvalues. When we observed this states, we are going to
obtain one of the eigenvalues. Supose that we make m observations. Then,
we observed pi times every λi with 0 ≥ pi ≥ m. Now perform the calculation

λ1
p1
m

+ · · ·+ λn
pn
m

(2.66)

If m is large enough, the previous value will be very close to |Ω〉ψ.

As we will see, variance is an important concept in quantum mechanics. In
order to define it, we need first to introduce the hermitian operator

∆ψ(Ω) = Ω− 〈Ω〉ψId (2.67)

where Id is the identity matrix, Ω is an hermitian operator and |ψ〉 is a
normalized vector. So, we can now define the variance of Ω at |ψ〉 as

V arψ(Ω) = 〈(∆ψ(Ω) ?∆ψ(Ω))〉ψ (2.68)

46 2. INTRODUCTION TO QUANTUM THEORY

Now we are ready to get into one of the most important principles of quan-
tum mechanics.

Heisenberg’s Uncertain Principle: The product of the variances of two
arbitrary hermitian operators on a given state is always greater than or
equal to one-fourth the square of the expected value of their commutator.
In formulas:

V arψ(Ω1)× V arψ(Ω2) ≥ 1
4

∣∣∣〈[Ω1,Ω2]〉ψ
∣∣∣2 (2.69)

So, using the commutator, Heisenberg’s Uncertain Principle tells us how
good a simultaneous measurement of two observables can be. If we look
deeper to the formula of the principle, we can notice than if the commutator
is 0, then there’s no limit to how good the measurament can be.

Measuring is the act of observing a given physical system. If we think
about the metaphor in which observables represents questions posed to the
system, then the act of measuring is to ask one of these specific questions. In
classical systems, we assume that measuraments will not change the system
and will always give a predictable state but these two assumptions prove
wrong when we consider quantum systems. In a quantum system, measuring
will perturb a system and will modify it. Futhermore, the state that will
yield as a result of this measurament can not be well defined beforehand,
we can only calculate the probability of being in specific states. Then, we
do not have a way to determine how frecuently we are going to see a specific
eigenvalue λ. Moreover, we do not have a way to know what happens if we
actually observe this value λ. We need the next postulate to handle concrete
measurements.

Postulate 4:
Let Ω be an observable and |ψ〉 be a state. If the result of measuring Ω is the
eigenvalue λ, then the state after measurament will always be an eigenvector
corresponding to λ.

In order to understand the postulate, let’s see an example. Let a quantum
system described by

Ω =
[

0 −1
−1 2

]
(2.70)

Then, thanks to the previous postulate, we can define all the posible states
that this system can be. Let |ψ〉 be an arbitrary state of system described
by Ω. Then that means that ψ is an eigenvector of Ω and so there exists an
eigenvalue c ∈ C such that

Ω|ψ〉 = λ|ψ〉 (2.71)

2.2. BASIC QUANTUM THEORY 47

If we suppose that |ψ〉 has the form |ψ〉 = (a, b)T where a, b ∈ C, then we
can express the equality as

Ω|ψ〉 =
[

0 −1
−1 2

] [
a
b

]
=
[
−b

−a+ 2b

]
= λ|ψ〉 (2.72)

So, we have both equalities

−b = λa→ λ = −b
a

(2.73)

λb = −a+ 2b (2.74)

replacing the first equality into the second we have that

−b
a
b = −a+ 2b→ −a2 + b2 + 2ab = 0→ b = a± a

√
2 (2.75)

replacing this result into the first one, we have that

λ = −Aa∓ Aa(
√

2
Aa

= ∓
√

2− 1 (2.76)

So far, we have studied quantum systems that do not evolve over time. But
in the real world, the system evolve over time, and for so we need to study
the dynamics of a system. The next postulate tell us how to represent such
dynamics.

Postulate 5:
The evolution of a quantum system (that is not a measurament) is given by
a unitary operator or transformation.

So the dynamics of a system is given by another unitary operator. Let us
see an example of how the dynamics works. Let be |φ〉 = [1, 0, 0, 0]T the
initial state vector and let the dynamics be given by

Ω =

0 1√

2
1√
2 0

i√
2 0 0 1√

2
1√
2 0 0 i√

2
0 1√

2
−1√

2 0

 (2.77)

Then, the state after 3 timesteps is

Ω3|φ〉 = 1
4[4i− 2, 0, 0, 2i]T (2.78)

48 2. INTRODUCTION TO QUANTUM THEORY

2.3 Quantum Architecture

At this point we already know how to work with one particle in a quantum
system. We know how to determine its possible states, the unitary opera-
tions that we can apply over it an how to determine its dynamics. But we
are interested in combining multiple particles to deal with a more complex
quantum system. In this section we will see how to assemble quantum sys-
tems. The following postulate describes how to combine two independent
systems.

Postulate 6:
Assume we have two independent quantum systems Q and Q′, represented
respectively by the vectors spaces V and V′. The quantum system obtained
by merging Q and Q′ will have the tensor product V⊗ V′ as a state space.

Let us see an example to understand how to combine systems. Let Q′ and
Q in C2 be two independent systems with their respective basis {|x0〉, |x1〉}
and {|y0〉, |y1〉}. Then, the combined system has the basis

{|x0〉 ⊗ |y0〉, |x0〉 ⊗ |y1〉, |x1〉 ⊗ |y0〉, |x1〉 ⊗ |y1〉} (2.79)

Therefore, the basic states of the combined system are just the tensor prod-
uct of basic states of each system. We can think that all states from the
assembled system can be rewritten as a tensor products of basic states, each
one from one system. But we find that this is not always true. When we
can not make this separation it means that the states are entangled.

Let us work with the simplest nontrivial system of two particles in which
each particle has two posible states. Then, we can express any state of the
first particle as

c0|x0〉+ c1|x1〉 (2.80)

with c0, c1 ∈ C. Similary, we can express any state of the second particle as

c
′
0|y0〉+ c

′
1|y1〉 (2.81)

With c′
0, c

′
1 ∈ C. Then, from Postulate 6 we can write any state |φ〉 of the

combinated system as

|φ〉 = (c0|x0〉+ c1|x1〉)⊗ (c′
0|y0〉+ c

′
1|y1〉) (2.82)

= c0c
′
0|x0〉 ⊗ |y0〉+ c0c

′
1|x0〉 ⊗ |y1〉 (2.83)

+c1c
′
0|x1〉 ⊗ |y0〉+ c1c

′
1|x1〉 ⊗ |y1〉 (2.84)

2.3. QUANTUM ARCHITECTURE 49

Supose that we have the state

|ψ〉 = |x0〉 ⊗ |y1〉+ |x1〉 ⊗ |y1〉 (2.85)

To determine from which basic states is |ψ〉 built, we match this state with
the general expression, getting the following system of equations

c0c
′
0 = 0 (2.86)

c0c
′
1 = 1 (2.87)

c1c
′
0 = 0 (2.88)

c1c
′
1 = 1 (2.89)

Solving it, we get that the state |ψ〉 is a combination of the states

|ψ0〉 = |x0〉+ |x1〉 (2.90)
|ψ1〉 = |y1〉 (2.91)

As long as we can split |ψ〉 in a combination of basics states, we call it a
separable state. On the contrary, supose that we have the state

|ψ′〉 = |x0〉 ⊗ |y0〉+ |x0〉 ⊗ |y1〉+ |x1〉 ⊗ |y0〉+ |x1〉 ⊗ |y1〉 (2.92)

This state yields us the next system of equations

c0c
′
0 = 1 (2.93)

c0c
′
1 = 1 (2.94)

c1c
′
0 = 1 (2.95)

c1c
′
1 = 1 (2.96)

which has no solution, so we can not split |ψ′〉 into a combination of basics
states, so we denote |ψ′〉 as a entangled state.

As we mentioned before, the simplest quantum system that we can have is a
two dimensional system, and so it will become the basic unit of information
in quantum computing -such as the bits for classical computing- with the
next definition:

Definition 2.3.1: A quantum bit or qubit is a unit of information describing
a two-dimensional quantum system.

So, qubits have two elemental states. We denote them as |0〉 and |1〉. Also,
the states of a qubit have to be normalized, so if we want to represent the
state [1 + i, 1 − i], then we need to calculate its norm (

√
4) and divide the

whole vector by it, obtaining the state

|φ〉 = 1 + i√
4
|0〉+ 1− i√

4
|1〉 (2.97)

50 2. INTRODUCTION TO QUANTUM THEORY

Postulate 6 tell us how to combine quantum systems, including qubits by
means of the tensor product. Let us see an easy example. Supose we have
the qubits |φ0〉, |φ1〉 such that |φ0〉 = |1〉 and |φ1〉 = |0〉, so the result of
combining these two systems is

|φ0〉 ⊗ |φ1〉 = |1〉 ⊗ |0〉 (2.98)

We can also represent this state in vector form as [0, 0, 1, 0]T where the first
element corresponds to the coefficient of the state |00〉, the second element
of |01〉 and so on. Now, supose that we combine |φ〉 and |φ0〉, so as a result
we have

|φ〉 ⊗ |φ0〉 = 1 + i√
4
|01〉+ 1− i√

4
|11〉 (2.99)

and so, its vector form is

1√
4

0

1 + i
0

1− i

 (2.100)

2.4 Quantum Gates

So far, we have defined the basic structure of information of the quantum
computing, but we need a way to manipulate that information. In classical
systems, we use classical gates such as NAND or NOR, so in quantum me-
chanics we have quantum gates. In order to study these gates, we first need
a formal definition of a quantum gate.

Definition 2.4.1: A quantum gate is an operator that acts on qubits. Such
an operator will be represented by a unitary matrix.

The previous definition implies that quantum gates are reversible. A gate is
reversible if and only if we can deduce the input with the output of the gate,
in other words, a gate is reversible if and only if exists another gate such
that applying both gates in succesion leaves the input unchanged. Many

2.4. QUANTUM GATES 51

classical gates are not reversible. For example, the inputs of an AND gate
can not be deducted from its output.

Now we are going to study the basic gates that are used in quantum com-
puting. The simplest gate is the identity, as long as Id ? Id = Id, so it is
reversible. One of the most important quantum gate is the controlled-NOT
gate. We can see the behaviour of the gate in Figure 2.3 in which we can
see |x〉 and |y〉 being the two qubits input. |x〉 is the control qubit and |y〉 is
the target qubit, so that this gate applies and NOT operation to the target
qubit if and only if the control qubit is in state |1〉.

Figure 2.3: CNOT Gate Diagram.

The controlled-NOT gate is given by the next unitary matrix

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.101)

We can easily see that the CNOT gate is reversible:

CNOT ? CNOT = Id (2.102)

The other most important gate is the Hadamard gate. It is important be-
cause this gate allows us to build a superposition of the two basic states
given one of them, that means

|0〉 → 1√
2

(|0〉+ |1〉) (2.103)

|1〉 → 1√
2

(|0〉 − |1〉) (2.104)

The Hadamard gate is represented by

H = 1√
2

[
1 1
1 −1

]
(2.105)

52 2. INTRODUCTION TO QUANTUM THEORY

And we can also easily see that Hadamard matrix is unitary and hermitian,
as long as

H ?H† = H ?H = Id (2.106)

The next gates that we are going to see are called the Pauli gates, whose
associated matrices are:

X =
[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
(2.107)

Each of these matrices is also unitary and hermitian, as we show below

X ?X = Id (2.108)
Y ? Y = Id (2.109)
Z ? Z = Id (2.110)

Another important matrices that we will use to perform rotations of the
quantum state are the next ones

S =
[
1 0
0 i

]
T =

[
1 0
0 e

iπ
4

]
(2.111)

These matrices are unitary and they are not hermitian

S ? S = Id (2.112)
T ? T = Id (2.113)

These last 5 quantum gates have interesting properties that relate them to
each other.

1.
X2 = Y 2 = Z2 = Id (2.114)

Proof :
Trivial due to the demostration of being reversible.

2.
H = 1√

2
(X + Z) (2.115)

Proof :

1√
2

(X + Z) = 1√
2

[0 1
1 0

]
+
[
1 0
0 −1

] = 1√
2

[
1 1
1 −1

]
= H

(2.116)

2.4. QUANTUM GATES 53

3.

X = H ? Z ? H (2.117)

Proof :

H ? Z ? H =

 1√
2

[
1 1
1 −1

] ?

[
1 0
0 −1

]

?

 1√
2

[
1 1
1 −1

]
= 1

2

[1 −1
1 1

]
?

[
1 1
1 −1

]
= 1

2

[
0 2
2 0

]
= X (2.118)

4.

Z = H ?X ? H (2.119)

Proof :

H ?X ? H =

 1√
2

[
1 1
1 −1

] ?

[
0 1
1 0

]

?

 1√
2

[
1 1
1 −1

]
= 1

2

[1 1
−1 1

]
?

[
1 1
1 −1

]
= 1

2

[
2 0
0 −2

]
= Z (2.120)

5.

−Y = H ? Y ? H (2.121)

54 2. INTRODUCTION TO QUANTUM THEORY

Proof :

H ? Y ? H =

 1√
2

[
1 1
1 −1

] ?

[
0 −i
i 0

]

?

 1√
2

[
1 1
1 −1

]
= 1

2

[i −i
−i −i

]
?

[
1 1
1 −1

]
= 1

2

[
0 2i
−2i 0

]
= −Y (2.122)

6.
S = T 2 (2.123)

Proof :

T 2 =
[
1 0
0 e

iπ
4

]2

=
[
1 0
0 e

iπ
2

]2

=
[
1 0
0 i

]
= S (2.124)

As long as
e
iπ
2 = cos

(
π

2

)
+ isen

(
π

2

)
= i (2.125)

7.
−Y = X ? Y ? X (2.126)

Proof :

X ? Y ? X =
[
0 1
1 0

]
?

[
0 −i
i 0

]
?

[
0 1
1 0

]

=
[
i 0
0 −i

]
?

[
0 1
1 0

]

=
[

0 i
−i 0

]
= −Y (2.127)

Summarizing, the properties are

1.
X2 = Y 2 = Z2 = Id (2.128)

2.
H = 1√

2
(X + Z) (2.129)

2.4. QUANTUM GATES 55

3.

X = H ? Z ? H (2.130)

4.

Z = H ?X ? H (2.131)

5.

−Y = H ? Y ? H (2.132)

6.

S = T 2 (2.133)

7.

−Y = X ? Y ? X (2.134)

All the quantum gates that we have shown before are gates designed to use
with two qubits, but we can design quantum gates for more than two qubits.
For example, the Toffoli gate is an important one that it is applied over 3
qubits. It is a doubly controlled NOT gate. In Figure 2.4 we see that the
gate applies a NOT to the third qubit |z〉 if and only if te first two qubits
|x〉 and |y〉 are |1〉.

Figure 2.4: Toffoli Gate Diagram.

Using the Toffoli gates we can build reversible versions of the classical gates,
such as AND, OR or NAND. Toffoli gate is represented by the next unitary

56 2. INTRODUCTION TO QUANTUM THEORY

and hermitian matrix

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

(2.135)

2.5 Simulating Quantum Computer

So far, we have introduced the basic concepts needed to develop quantum
algorithms. But as long as this is an introduction to quantum computing,
we are not only interested in the mathematical foundations, but also in how
to implement quantum algorithms. Quantum computers are too expensive
to buy one, so we can not test the algorithms on our own quantum com-
puter. Instead, we will use two different tools that allow us to implement
our algorithms and run them in a quantum simulator or a real quantum
computer.

The first tool that we are going to use is Quirk1. Quirk is an open source
quantum simulator developed by the community to study quantum com-
puting. It provides a graphic interface in which we can design our quan-
tum circuits by dragging and dropping the gates, make meassuraments and
obtain graphicall and statistical information about the resulting quantum
states. It is very helpful to start in the quantum computing world due to
its simplicity and expressiveness.

In Figure 2.5 we can see the initial interface of Quirk. In the upper part we
have the basic gates that we studied before, in the lower part more complex
gates (see [3] for more information) and in the center of the interface we can
build, analyze and test our quantum circuit. Each line represent a qubit
and its transformations over time, and the circles at the end of the lines
represent the states of each qubit using a Bloch sphere representation. If we
want to apply a gate to a qubit i.e. a H -Hadamard- gate to the first qubit,
we just drag and drop the gate over the line as shown in Figure 2.6. As you
can see, an H gate is now in the first line, and that modifies the final state

1https://algassert.com/quirk

2.5. SIMULATING QUANTUM COMPUTER 57

of our qubit. H gate, as we studied before, builds a superposition of the two
basic states of a qubit. Now, the final state of the first qubit has changed
and two of the final circles have an equal blue background. That means that
we can measure the qubit in two different states with 50% probability. If we
put the cursor over one of these sphere, we can see the probability of being
in this specific state. If we want to remove a gate applied to one qubit, we
just drag and drop the gate outside the circuit and it will be removed. More
information about the usage of the Quirk simulator can be found in its web
page 2.

Figure 2.5: Quirk Interface.

Figure 2.6: Quirk Basic Circuit.

2https://github.com/Strilanc/Quirk/wiki/How-to-use-Quirk

58 2. INTRODUCTION TO QUANTUM THEORY

The other tool that we are going to use is projectQ 3. This tool offers us a
python API to implement quantum algorithms. It offers us the capability
to declare qubits and use quantum gates as functions. To use this API, the
first thing we need to do in our program is declaring an engine in which
to simulate or execute the quantum algorithm. We can use the function
allocate_qubit to declare one qubit. The funcion returns the qubit, and we
can then apply gates to it. To apply the gates (i.e. the H gate), we need to
pipe the qubit into the gate (H | qubit). When we put the gates into our
algorithm, they do not modify the qubit. To truly apply the gates to one
qubit, we need to use the function flush at the end of our quantum circuit.
To measure a given qubit, we need to apply the Measurament function as
a gate. To understand how to use ProjectQ, we include a code example in
Figure 2.7 in which we apply the H gate to a qubit and then measure it.

from projectq import MainEngine # import the main compiler engine
from projectq.ops import H, Measure # import the operations we want

to perform (Hadamard and measurement)

eng = MainEngine() # create a default compiler (the back-end is a
simulator)

qubit = eng.allocate_qubit() # allocate 1 qubit

H | qubit # apply a Hadamard gate
Measure | qubit # measure the qubit

eng.flush() # flush all gates (and execute measurements)
print("Measured {}".format(int(qubit))) # output measurement result

Figure 2.7: Basic Program in ProjectQ.

3http://projectq.ch/

3

Algorithms

We have seen that the quantum computing world offers a very unusual
paradigm that it is not always intuitive. In fact, Richard Faynman said
"If you think you understand quantum mechanics, you don’t understand
quantum mechanics". So, why do we want to program anything using this
complex paradigm? The answer is that quantum computing can be much
faster than classical computing in some cases and it allows us to simulate
many quantum phenomenons.

In this chapter we review some basic quantum algorithms, including their
implementations, and the benefits to use the quantum versions instead of
the classical ones.

3.1 Quantum Teleportation

The first algorithm that we are going to see is the Quantum Teleportation.
This algorithm leverages the property that, if two qubits are entangled, then
no matter how far apart they are, when we change one of them, then the
other changes simultaneously. With this property in mind, we are going to
send data using this entangled qubits with no time delay! Indeed, we are
going to see that this is not really true due to the fact that we need to send
classical data to perform the quantum teleportation.

Supose that we have two persons, Alice and Bob that want to share infor-
mation, in fact, Alice wants to send a qubit to Bob. First, Alice and Bob
entangle two qubits, |y〉 and |z〉 and each one takes one of them. Then,

59

60 3. ALGORITHMS

when Alice wants to send the state of a third qubit |x〉 to Bob, she starts
by entangling the qubit that she wants to send to Bob to her component |y〉
of the initial entangled pair. Next, Alice measures both qubits |x〉 and |y〉.
With this measurament, the state of the qubit |x〉 that we want to send is
teleported to Bob’s qubit |z〉. Therefore, Bob gets instanteniusly the state
of |x〉 in his component |z〉 of the initial entangled pair.

丨φ1〉 丨φ2〉 丨φ3〉 丨φ4〉 丨φ5〉 丨φ6〉

丨x〉

丨y〉

丨z〉

Alice

Bob

Figure 3.1: Quantum Teleportation in Quirk.

In Figure 3.1 we show an implementation of quantum teleportation using
quirk. In it, we start with all the qubits inicialized to |0〉, and we can also see
the final states of the qubits. In |ϕ4〉 the first two qubits can be measured
in any combination of the basic states with equal probability. After Bob
applies the appropiate gates based on the classical information recived from
Alice, it gets the state of the qubit that Alice wanted to send him. Let’s
detail the main steps of the algorithm.

Let |ψ〉 = α|0〉+β|1〉 be the qubit that Alice wants to send to Bob. In order
to do that, Alice and Bob need to share two entangled qubits. The next
definition describes this two entangled qubits

Definition 3.1.1: A Bell pair is a two qubits quantum system entangled in
one of the four possible Bell states. The Bell pair obtained from entangling
the state |00〉 is |φ〉 = 1√

2(|00〉+ |11〉)

To build this Bell pair, we use two qubits in state |0〉 and, by applying a H
gate to the first one, we obtain the state

|ϕ1〉 = 1√
2

(|0〉+ |1〉)⊗ |0〉 =

 1√
2

1√
2

⊗ [1
0

]
(3.1)

=

1√
2

0
1√
2

0

 = 1√
2

(|00〉+ |10〉) (3.2)

If now we apply a CNOT gate, that changes the state |10〉 to |11〉, we obtain

3.1. QUANTUM TELEPORTATION 61

|B〉 = CNOT ? |ϕ1〉 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ·

1√
2

0
1√
2

0

 =

1√
2

0
0
1√
2

 (3.3)

Now we have the desired Bell pair -and we will denote it as |B〉. If we
combine the qubit to teleport to this Bell pair we obtain the following three-
qubit quantum state:

|ϕ2〉 = |ψ〉 ⊗ |B〉 = (α|0〉+ β|1〉)⊗ 1√
2

(|00〉+ |11〉) (3.4)

=
[
α
β

]
⊗

1√
2

0
0
1√
2

 =
[
α√
2
, 0, 0, α√

2
,
β√
2
, 0, 0, β√

2

]T
(3.5)

= 1√
2

(α|000〉+ α|011〉+ β|100〉+ β|111〉) (3.6)

Remember that Alice has the first two qubits and Bob has the last one.
Now, after Alice applies a CNOT gate to her qubits, our global state is

|ϕ3〉 = (CNOT ⊗ Id) · |φ2〉 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⊗
[
1 0
0 1

] · |φ2〉(3.7)

=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

·

α√
2

0
0
α√
2
β√
2

0
0
β√
2

=

α√
2

0
0
α√
2

0
β√
2
β√
2

0

(3.8)

= 1√
2

(α|000〉+ α|011〉+ β|110〉+ β|101〉) (3.9)

An equivalent expresion is

|ϕ3〉 = 1√
2

(α|0〉 ⊗ (|00〉+ |11〉) + (β|1〉 ⊗ (|10〉+ |01〉) (3.10)

Next, Alice applies a H gate to |ψ〉, so the state of the whole quantum system

62 3. ALGORITHMS

becomes

|ϕ4〉 = (H ⊗ Id⊗ Id)
(

1√
2

[α|0〉 ⊗ (|00〉+ |11〉)] + [β|1〉 ⊗ (|10〉+ |01〉)]
)

= 1√
2

[1 1
1 −1

]
⊗
[
1 0
0 1

]
⊗
[
1 0
0 1

] ·

α√
2

0
0
α√
2

0
β√
2
β√
2

0

(3.11)

= 1
2

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1

·

α
0
0
α
0
β
β
0

= 1

2

α
β
β
α
α
−β
−β
α

(3.12)

= 1
2
[
α(|000〉+ |011〉+ |100〉+ |111〉) + β(|010〉+ |001〉 − |110〉 − |101〉)

]
= 1

2[|00〉(β|1〉+ α|0〉) + |01〉(α|1〉+ β|0〉)

+|10〉(−β|1〉+ α|0〉) + |11〉(α|1〉 − β|0〉)] (3.13)

Now is time for Alice to measure her two qubits. If Alice gets, for example,
|00〉 as a result, then, due to the act of measuring, the two qubits collapse
to this state, and the whole quantum system is in the state

|ϕ5〉 = |00〉(β|1〉+ α|0〉) (3.14)

That implies that Bob’s qubit is in the state

|z〉 = β|1〉+ α|0〉 (3.15)

and that is exactly the state that Alice wanted to send to Bob. Notice that
only in the case that Alice obtains |00〉 in her measurament we have sent
this state. If Alice obtains, for example, |01〉, then the whole state is

|ϕ5〉 = |01〉(α|1〉+ β|0〉) (3.16)

So Bob’s qubit is not exactly in the same state that Alice wanted to send
to him. In this case, Bob needs to apply some transformations to get the

3.1. QUANTUM TELEPORTATION 63

state |ψ〉. If the first qubit that Alice measures is on the state |1〉, then we
apply a Z gate to Bobs qubit. If the second qubit is on state |1〉, we apply
a X gate, and if both are in state |1〉, then we apply both gates, ending in
the state

|ϕ6〉 = |Φ〉(β|1〉+ α|0〉) (3.17)

where |Φ〉 denotes one of the states |00〉, |01〉, |10〉 or |11〉. Therefore, if
Bob’s has to apply the correct gates, Alice has to send him the result of
measuring her two qubits throught a classical channel. Note that in |ϕ6〉 the
initial state qubit of |ψ〉 has been destroyed.

Another implementation of the algorithm using ProjectQ can be found in
Figure 3.2, in which the qubit that Alice wants to send is in a superposition
of states given by the Hadamard gate.

64 3. ALGORITHMS

from projectq.ops import H, CNOT, X, Z, Measure
from projectq import MainEngine

Setting up the simulator
eng = MainEngine()

Creating the qubits to operate
mystery_qubit = eng.allocate_qubit()
alice_qubit = eng.allocate_qubit()
bob_qubit = eng.allocate_qubit()

Arbitatry transformations to mystery qubit for test purposes
H | mystery_qubit

Entagle qubits to form phi +
H | alice_qubit
CNOT | (alice_qubit, bob_qubit)

Interact with the entangled qubit
CNOT | (mystery_qubit, alice_qubit)
H | mystery_qubit

Measurig Alice qubit
Measure | mystery_qubit
Measure | alice_qubit
b1 = int(mystery_qubit)
b2 = int(alice_qubit)

Recovering the original qubit
if b1 == 1:

Z | bob_qubit
if b2 == 1:

X | bob_qubit

Doing the operations
eng.flush()

Mesuring the final qubit
Measure | bob_qubit
print("Measured {}".format(int(bob_qubit))) # output measurement

result

Figure 3.2: Quantum Teleportation in ProjectQ.

3.2. DEUTSCH’S ALGORITHM 65

3.2 Deutsch’s Algorithm

This algorithm is a toy example with two qubits that is used as the base to
develop the Deutsch-Jozsa algorithm. The problem that is solved by this
algorithm is to determine if a function is constant or balanced in functions
with one bit input and one bit output. If we have a function f : {0, 1} →
{0, 1}, we call it constant if f(0) = f(1), and balanced if f(0) 6= f(1).

To solve this problem, we need to face another important problem. f is
a function defined in the classical way, that means, if we represent f as a
matrix, there is no need for this matrix to be unitary, so the gate represented
for this matrix will not always be reversible. Remember that quantum gates
must be reversible, so f can not be always a quantum circuit. When we
apply this algorithm, we need to find an oracle -that we will call Uf - that
is the quantum circuit that represents the function f but with an unitary
matrix. We will not explain how to construct this quantum gates, to get
more information about them, you should see the bibliography.

Figure 3.3: Classical Version of f

To undestand better the behaviour of the Uf circuit, let’s explain how to
build the reversible version of a classical one-qubit function. In figure 3.3
we see the classical circuit in with x is the input and, when we apply the
circuit, outputs f(x). The quantum version is different, we need two input
qubits, |x〉 and |y〉, and apply the oracle Uf to them. When we do so, then
the first qubit |x〉 does not change but the qubit |y〉 becomes |y ⊕ f(x)〉 as
we see in Figure 3.4. So, for example, if the qubit |y〉 is |0〉 as in Figure 3.5,
then the result after applying the oracle is |f(x)〉, in other words, we have
as a result a qubit with the input |x〉 and another with it’s evaluation over
f , |f(x)〉.

66 3. ALGORITHMS

Figure 3.4: Quantum Computing
of a Function f

Figure 3.5: Application of the Cir-
cuit to Compute f

丨φ1〉 丨φ2〉 丨φ3〉 丨φ4〉

Figure 3.6: Deutch’s Algorithm in Quirk.

Once we have the Uf gate, to figure if f is balanced or constant, we will
use as input a uniform superposition of all basic states {|0〉, |1〉} to evaluate
the function in all posible states at the same time. We will use Figure 3.6
to follow the behaviour of the algorithm. We start with two qubits at the
state |ϕ1〉 = |01〉 and then we apply a Hadamard gate to the both of them,
getting the state

|ϕ2〉 = 1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉 − |1〉) = 1
2(|00〉 − |01〉+ |10〉 − |11〉) (3.18)

Note that by applying a Hadamard gate to the first qubit in state |0〉, we have
obtained the desired uniform superposition of states 1√

2(|0〉+ |1〉). Applying
the Uf gate, we get the state

|ϕ3〉 =
[

(−1)f(0)|0〉+ (−1)f(1)|1〉√
2

] [
|0〉 − |1〉√

2

]
(3.19)

Note that, in some sense, we have stored the result of evaluation f in the
amplitudes of the basic states of the first qubit. This is an example of phase
kickback, which is where the eigenvalue added by a gate to a qubit is ‘kicked
back’ into a different qubit via a controlled operation. In this state, if f is

3.2. DEUTSCH’S ALGORITHM 67

constant, then f(0) = f(1) and for so we get the state

|ϕ4〉 = (±1)
[
|0〉+ |1〉√

2

] [
|0〉 − |1〉√

2

]
(3.20)

and if it is balanced, then we get the state

|ϕ4〉 = (±1)
[
|0〉 − |1〉√

2

] [
|0〉 − |1〉√

2

]
(3.21)

Applying a Hadamard gate to the first qubit, if f is constant we get the
state

|ϕ3〉 = (±1)|0〉
[
|0〉 − |1〉√

2

]
(3.22)

And if f is balanced, then we get

|ϕ3〉 = (±1)|1〉
[
|0〉 − |1〉√

2

]
(3.23)

So, finally, to know if f is constant or balanced, we measure the first qubit.
If we measure 0, then f is constant. Otherwise f is balance. In Figure 3.7
we show the implementation of Deutch’s algorithm using ProjectQ. Note
that, in the classical version of this problem, to determine if f is balanced
or constant, we need to make two evaluations of f but in the quantum
version we only need one thanks to the superposition. That means that the
quantum version needs half of the evaluations of the classical version, so it
is twice as fast as the classical version.

68 3. ALGORITHMS

from projectq.ops import H, X, CNOT, Measure
from projectq import MainEngine

Setting up the simulator
eng = MainEngine()

Creating the qubits to operate
q1 = eng.allocate_qubit()
q2 = eng.allocate_qubit()

Putting the q2 to state 1
X | q2

Entangle states
H | q1
H | q2

Uf gate
CNOT | (q1, q2)

Calculating the result
H | q1

Doing the operations
eng.flush()

Getting the result
Measure | q1
Measure | q2
r = int(q1)

Printing result
if r == 1:

print("Uf is a non-constant function")
else:

print("Uf is a constant function")

Figure 3.7: Deutsch’s Algorithm in ProjectQ.

3.3. DEUTSCH-JOZSA ALGORITHM 69

3.3 Deutsch-Jozsa Algorithm

This algorithm is a generalization of the previous one. In this case, we have
a function f : {0, 1}n → {0, 1}. We say that f is balanced if exactly half
of the outputs are 0 and the other half are 1 and we say that f is constant
if all outputs are 0 or 1. For this problem, we assume that f can only be
constant or balanced.

Figure 3.8: Quantum Computing
of a n-qubit Function

Figure 3.9: Application of the Cir-
cuit to Compute f

In order to build the quantum circuit for this algorithm, we need a gener-
alization for the oracle Uf used in Deutch’s algorithm because this oracle
is only usefull for function with one input qubit. The generalization is the
obviously one that can see in Figure 3.8, in which we have n input qubits
and 1 output qubit. As with the other oracle, we see in Figure 3.9 that if
the output qubit |y〉 of the oracle is at state |0〉, then the output is directly
the evaluation of the funcion f .

Figure 3.10: Deutch-Jozsa Algorithm in Quirk.

To build the circuit, we need n + 1 initial qubits as we see in the Quirk
implementation in Figure 3.10. We need to apply a Hadamard gate to all
the qubits. We denote as H⊗n to apply the Hadamard gate to n qubits. To
make the notation easily, we will denote the first n qubits as |ϕ〉, so we have

70 3. ALGORITHMS

|ϕ〉 = H⊗n ? |00 · · · 0〉 = 1√
2n

∑
x∈{0,1}n

|x〉 (3.24)

that is a uniform superposition of all basic states. With this notation, after
the first step, we get the state

|ϕ1〉 = |ϕ〉 ⊗
(
|0〉 − |1〉√

2

)
(3.25)

Apliying the Uf oracle, we get the state

|ϕ2〉 = |ψ〉 ⊗ |f(ψ)⊕ 0〉 − |f(ψ)⊕ 1〉√
2

= |ψ〉 ⊗ |f(ψ)〉 − |f(ψ)⊕ 1〉√
2

(3.26)

if we denote f(x) as the opposite result of f(x) (remember that f has only
two possible outputs, 0 and 1) then we can rewrite our state as

|ϕ2〉 = |ψ〉 ⊗ |f(ψ)〉 − |f(ψ)〉√
2

(3.27)

= |ϕ〉 ⊗
(
(−1)f(ϕ)(|0〉 − |1〉)

)
(3.28)

= (−1)f(ψ)|ψ〉 ⊗
[
|0〉 − |1〉√

2

]
(3.29)

Replacing back the notation contraction using the equation 3.24, we can
express our state as

|ϕ2〉 =

∑x∈{0,1}n(−1)f(x)|x〉
√

2n

[|0〉 − |1〉√
2

]
(3.30)

Note how we are exploting the quantum parallelism obtained from eval-
uating a function in a superposition of states. We are only applying the
function circuit once and computing the result of the function for all 2n
posible input states x ∈ {0, 1}n. Applying the Hadamard gates to a given
state |x〉 yields us

H⊗n ? |x〉 = 1√
2n

∑
y∈{0,1}n

(−1)〈x,y〉|y〉 (3.31)

where
〈x, y〉 = x0y0 ⊕ · · · ⊕ xn−1yn−1 (3.32)

3.3. DEUTSCH-JOZSA ALGORITHM 71

is the sum mod 2 of the bitwise product of x and y. So, if we apply again
the n Hadamard gates to state |ϕ2〉 we get

|ϕ3〉 =

∑x∈{0,1}n(−1)f(x) 1√
2n
∑
y∈{0,1}n(−1)〈x,y〉|y〉

√
2n

[|0〉 − |1〉√
2

]

=

∑x∈{0,1}n
∑
y∈{0,1}n(−1)f(x)(−1)〈x,y〉|y〉

2n

[|0〉 − |1〉√
2

]

=

∑x∈{0,1}n
∑
y∈{0,1}n(−1)f(x)⊕〈x,y〉|y〉

2n

[|0〉 − |1〉√
2

]
(3.33)

Now it’s time to figure out the state |ϕ4〉, but is very complex analyzing all
the posible output states with respect to the input states, so let’s change
the main objective and try to figure out when we get get the first n qubits
of |ϕ4〉 equal to |0 · · · 0〉. The probability is given with |y〉 = 0 in state |ϕ3〉.
In this case, 〈x, y〉 = 0 for all x, and so we have reduced |ϕ3〉 to∑x∈{0,1}n(−1)f(x)|0 · · · 0〉

2n

[|0〉 − |1〉√
2

]
(3.34)

Therefore, the state |ϕ4〉 only depends on the evaluations of f . If f is
constant at 1, then the top n qubits become∑

x∈{0,1}n(−1)|0 · · · 0〉
2n = −2n|0 · · · 0〉√

2
= −1|0 · · · 0〉 (3.35)

and if f is constant at 0, then they become∑
x∈{0,1}n 1|0 · · · 0〉

2n = 2n|0 · · · 0〉√
2

= |0 · · · 0〉 (3.36)

that means that the probability of measuring |0 · · · 0〉 if f is constant is 1.
On the contrary if f is balance, half of the amplitudes (−1) will cancel with
the half (+1), and we will get∑

x∈{0,1}n(−1)f(x)|0 · · · 0〉
2n = 0|0 · · · 0〉√

2
= 0|0 · · · 0〉 (3.37)

Therefore, if we measure |0 · · · 0〉, then f is constant, as long as there is
no probability to measure this state if f is balanced. In this algorithm we

72 3. ALGORITHMS

have seen how to use the interference to cancel probabilities of certain
states. The more impresive thing about this algorithm is that in classical
computing we need 2n−1 evaluation of the function f to check if is balanced
or constant, but in this algorithm we only need 1 evaluation of the function
f , which means an impresive exponential speedup.

We can find another implementation of this algorithm in Figure 3.11 using
ProjectQ with a balanced function.

3.3. DEUTSCH-JOZSA ALGORITHM 73

from projectq.ops import H, X, Measure, CNOT
from projectq import MainEngine

Constants
n = 4 #length of the problem

Setting up the simulator
eng = MainEngine()

Creating the qubits to operate
qubits = [eng.allocate_qubit() for _ in range(n+1)]

Putting the last qubit to state 1
X | qubits[-1]

Entangle states
for q in qubits:

H | q

Uf gate
i = 0
while i < len(qubits) - 1:

CNOT | (qubits[i], qubits[i+1])
i += 1

Calculating the result
for i in range(n):

H | qubits[i]

Doing the operations
eng.flush()

Getting the result
r = 0
for q in qubits:

Measure | q
r += int(q)

r -= int(qubits[-1])

Printing result
if r == 0:

print("Uf is a constant function")
else:

print("Uf is a balance function")

Figure 3.11: Deutsch-Jozsa Algorithm in ProjectQ.

74 3. ALGORITHMS

4

Conclusion and Future Work

Quantum computing can offer exponential speedups with respect to classical
computing when applied to some problmes. This fact makes us rethink some
classical problems without an efficient solution -NP and NP-Complete-, since
in quantum computing these problems could have one quantum algorithm
that solves them in a polynomial time. Many fields can be affected and
greatly benefited by this speedup, fields such as artificial intelligence or
medicine, since the algorithms that they execute are computationally very
expensive. Quantum computing could break down these barriers imposed
by classical computers’ lack of computing power to solve these problems.

Nowadays, both quantum algorithms and quantum computers are still in a
very early stage, so we can not use them with better results than a classical
computer in any problem or situation. But this situation it may not last
long and we may soon be able to apply quantum computing to solve prac-
tical problems. When that time comes, we must be ready to use the new
computational power that these systems can offer us. For this reason, it is
interesting to continue researching and developing new quantum algorithms
for these kind of systems, which can range from new approaches to classical
algorithms to adapting classical algorithms to the quantum paradigm.

At this point, we know much of the concepts necessary to develop more
quantum algorithms applied to a specific field. In [4] we can see examples
of quantum algorithms in the field of machine learning. As future work,
such algorithms can be studied and implemented, such as quantum random
walks or quantum minimal spaning tree.

75

76 4. CONCLUSION AND FUTURE WORK

Of the main quantum algorithms that are necessary to know, one of them
is missing to study. As future work, the quantum Fourier transform will be
studied, essential for the development of other algorithms such as HHL.

Bibliography

[1] Noson S. Yanofsky and Mirco A: Mannucci. Quantum Computing for
Computer Scientist. Ca, bridge. 2008.

[2] P.A.M. Dirac (1947). The Principles of Quantum Mechanics (2nd ed.).
Clarendon Press. p. 12.

[3] Jack D. Hidary: Quantum Computing: An Applied Approach. Moun-
tain View, CA, USA. 2019.

[4] Abhijith J., Adetokunbo Adedoyin: Quantum Algorithm Implementa-
tions for Beginners. Los Alamos National Laboratory, Los Alamos, New
Mexico 87545, USA.

77

	Introduction to Complex Space
	Basic Definitions
	Geometric Interpretation
	Definition of Complex Vector Space
	Other Operators in Complex Vector Spaces
	Hilbert Spaces and Hermitian Matrices

	Introduction to Quantum Theory
	Classical Systems vs Quantum Systems
	Basic Quantum Theory
	Quantum Architecture
	Quantum Gates
	Simulating Quantum Computer

	Algorithms
	Quantum Teleportation
	Deutsch's Algorithm
	Deutsch-Jozsa Algorithm

	Conclusion and Future Work

