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a b s t r a c t

The main objective of this work is to construct a new method to develop a consistent
second-order amplitudes theory to evaluate the potential of a rotating deformable
celestial body when the hydrostatic system equilibrium has been achieved. In this case,
we have:

−→
∇ P = ρ

−→
∇ Ψ , △Ψ = −4πGρ +2ω2, where P is the pressure, ρ is the density,

Ψ is the total potential, △ is Laplace operator, G is the gravitational constant and −→ω

is the angular velocity of the system. To integrate these equations in a general case of
mass distribution a state equation relating pressure and density is needed.

To assess the full potential, Ψ , it is necessary to calculate the self-gravitational
potential, Ω , and the centrifugal potential, Vc . The equilibrium configuration involves
the hydrostatic equilibrium, it is, the rigid rotation of the system corresponding to the
minimum potential and, according to Kopal, this state involves the identification of
equipotential, isobaric, isothermal and isopycnic surfaces.

To study the structure of the body we define a coordinate system OXYZ where O is
the center of mass of the component, OX is an axis fixed in an arbitrary point of the body
equator, OZ an axis parallel to angular velocity ω⃗ and OY defining a direct trihedron. For
an arbitrary point P in the rotating body the Clairaut coordinates are given by (a, θ, λ)
where a is the radius of the sphere that contains the same mass that the equipotential
surface that contains P and (θ, λ) are the angular spherical coordinates of P .

This problem has been solved in the first order in ω2 following two techniques: the
first one is based on the asymptotic properties of the numerical quadrature formulae.
The second is similar to the one used by Laplace to develop the inverse of the distance
between two planets. The second-order theory based on the first method has been
developed by the authors in a recent paper. In this work we develop a consistent second-
order theory about the equilibrium figures of rotating celestial bodies based on the
second method.

Finally, to show the performance of the method it is interesting to study a numerical
example based on a convective star.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Let M be a deformable isolated mass with uniform rotation around its mass center, endowed with angular velocity ω⃗

nd whose mass distribution is given by ρ(x, y, z). Let assume that the mass distribution function is differentiable.
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Let OXYZ be the coordinate system associated with the body, defined as follows:

• O is the mass center of the rotating body.
• OZ is the axis determined by the straight line passing through O and parallel to the angular velocity vector (ω⃗) of

the rotating body.
• OX is a line passing through O and contained in the OXY plane so that the trihedron OXYZ is direct.

Then, the potential at an inner point whose radius vector has r⃗ = (x, y, z) as components will be determined by the
ollowing expression:

Ψ = Ω + Vc = G
∫
M

dm′

∆
+

ω2

2

(
x2 + y2

)
. (1)

where Ω is the self-gravitational potential, Vc is the centrifugal potential, G is the universal gravitational constant, dm′ is
the mass element of an arbitrary inner coordinate point (x′, y′, z ′) and ∆ is the distance between the coordinate points
(x, y, z) and (x′, y′, z ′).

An inner point of the body in coordinate rotation (x, y, z) is expressed in spherical coordinates as follows:

x = r cos θ cos λ, y = r cos θ sin λ, z = r sin θ.

r ≥ 0, −
π
2 ≤ θ ≤

π
2 , 0 ≤ λ ≤ 2π.

The self-gravitational potential (Ω) is expressed, according to [1–5], through

Ω = G
∫ r0

0

∫ π
2

−
π
2

∫ 2π

0

ρ

∆
r ′2 cos θ ′dλ′dθ ′dr ′

+ G
∫ r1

r0

∫ π
2

−
π
2

∫ 2π

0

ρ

∆
r ′2 cos θ ′dλ′dθ ′dr ′. (2)

where r1 is the radius of the smallest O centered sphere containing the rotating body.
The inverse of the distance is developed as follows

1
∆

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
r

∞∑
n=0

(
r ′

r

)n

Pn(cos γ ) if r ′ < r

1
r ′

∞∑
n=0

( r
r ′

)n
Pn(cos γ ) if r < r ′

(3)

where γ is the angle between the radii vectors of r⃗ = (r, θ, λ) and r⃗ ′ = (r ′, θ ′, λ′) of the points (x, y, z) and (x′, y′, z ′),
respectively, expressed in spherical coordinates and Pn are the Legendre polynomials.

Then, the self-gravitational potential can be expressed as

Ω =

∞∑
n=0

{
Unrn + Vnr−n−1} , (4)

where

Un = G
∫ r1

r0

∫ 2π

0

∫ π
2

−
π
2

ρ r ′1−nPn(cos γ ) cos θ ′dθ ′dλ′dr ′, (5)

Vn = G
∫ r0

0

∫ 2π

0

∫ π
2

−
π
2

ρ r ′2+nPn(cos γ ) cos θ ′dθ ′dλ′dr ′. (6)

In the Clairaut coordinate system (a, θ, λ) a parameter is constant on each equipotential surface. In this work we
have chosen the parameter a so that it is the radius of the sphere centered in O such that it has the same mass as
the equipotential surface. The Clairaut coordinate system is related to the spherical coordinate system by the relation
r = r(a, θ, λ). In consequence,

x = r(a, θ, λ) cos θ cos λ,

y = r(a, θ, λ) cos θ sin λ,

z = r(a, θ, λ) sin θ.
(7)

In the Clairaut coordinate system the radius vector r of an equipotential surface is developed [1–4] as follows:

r = a

{
1 +

∞∑
n=0

n∑
m=−n

fn,m(a) Yn,m(θ, λ)

}
, (8)

where f (a) are the functions of amplitude and Y (θ, λ) the spherical functions in real form [6].
n,m n,m
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For symmetry reasons, the radius vector r can be developed as follows:

r = a

{
1 +

∞∑
m=0

f2m(a) P2m(sin θ )

}
, (9)

where Pn are the Legendre polynomials.
When ω⃗ is small (in a slow rotation case), the amplitudes f2m(a) are small quantities with respect to the unit.
In order to clarify the notation, we will denote:

Kn =
G

n − 2

∫ a1

a
ρ

∂

∂a′

∫ 2π

0

∫ π
2

−
π
2

r ′2−nPn(cos γ ) cos θ ′dθ ′dλ′da′, n ̸= 2 (10)

K2 = G
∫ a1

a
ρ

∂

∂a′

∫ 2π

0

∫ π
2

−
π
2

log r ′ Pn(cos γ ) cos θ ′dθ ′dλ′da′ (11)

nd

Wn =
G

n + 3

∫ a

0
ρ

∂

∂a′

∫ 2π

0

∫ π
2

−
π
2

r ′n+3Pn(cos γ ) cos θ ′dθ ′dλ′da′ (12)

where a1 is the first root of the equation ρ(a) = 0.
To evaluate these integrals up to second order in amplitudes, the following approximations are used:

rk = ak
[
1 + kΣ +

k(k − 1)
2

Σ2
]

, (13)

log r = log a + Σ −
1
2
Σ2 (14)

here Σ =
∑

∞

n=0 f2n(a)P2n.
To develop as a linear combination of Legendre polynomials the powers and cross products of Legendre polynomials

hat are obtained from the different powers of Σ in (13) and (14) the Adams–Newman formula are used [7].

Pn(x)Pm(x) =

m∑
j=0

Am−jAjAn−j

An+m−j

{
2n + 2m + 1 − 4j
2n + 2m + 1 − 2j

}
Pn+m−2j(x),

where Aj =
(2j−1)!!

j! , m ≤ n.

(15)

On the other hand, taking into account the spherical harmonics addition theorem in real form

Pn(cos γ ) =
4π

2n + 1

n∑
m=−n

Yn,m(θ, λ) Yn,m(θ ′, λ′), (16)

rom its orthonormality and from the fact that

Ps(sin θ ) =

√
4π

2s + 1
Ys,0(θ, λ), (17)

t is obtained∫ 2π

0

∫ π
2

−
π
2

Pn(cos γ ) Ps(sin θ ′) cos θ ′ dθ ′ dλ′
=

4π
2n + 1

Pn(sin θ ) δn,s, (18)

here δn,s is Kronecker’s delta.
On the one hand, it should be noted that the assumption made by Finlay [1] and Kopal [4] about the fact that (5) and

6) are equivalent to (10), (11) and (12) respectively, is based on the Laplace’s desideratum which, as indicated in [5]
volume II, chapter XIX, page 317), is not a proven fact but a conjecture. López [8–10] obtains the correct development in
irst and second order in amplitudes of Un(5) and Vn(6). Results are obtained in [9] and [10], respectively, without making
se of the Laplace’s desideratum.
However, the self-gravitational potential (Ω), developed up to first and second order in amplitudes by Kopal [4] and

ópez, [9] and [10], respectively, coincide. Then, although the developments up to first and second order in amplitudes
f the external (Un) and inner potentials Vn, carried out by Kopal [4] are incorrect, [9] and [10] demonstrate that the
evelopment, up to first and second order in amplitudes, of the self-gravitational potentials (Ω) obtained by Kopal [4]
nd by López, [9] and [10], are identical.
In this work it is proved, by following a completely different way that, without making use of Laplace’s desideratum,

he classical equations of the potential, up to the second order, and the amplitudes given by Kopal [4], are correct.
3
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This section introduces the problem that is going to be addressed and the research objectives.
In Section 2, by using an analytical method, the calculation of the inner and outer potentials to the equipotential

urface, up to the second order, passing by point P , is developed. This method makes unnecessary the use of the Laplace’s
desideratum.

Section 3 illustrates the power of the Clairaut method by taking a convective star as a sample.
In Section 4, the main conclusions of the work are presented.
For the theoretical foundation of the numerical example, the authors consider it interesting to include an Appendix

where the theoretical model to be used is exposed. It will allow us to approximate, almost exactly, a convective star of
the main sequence by means of a polytrope with a polytropy index n = 1.5. By means of this approximation, calculations
are considerably simplified with a negligible loss of accuracy.

2. Algorithm based on the inverse distance analytic development

Let be the self-gravitational potential Ω = K + W , where

K = G
∫
Outer

dm′

∆
, W = G

∫
Inner

dm′

∆
. (19)

To calculate the two above integrals, let us define

D(a, a′) =
1√

a2 + a′2 − 2a a′ cos γ
. (20)

Then, developing 1
∆

up to second order with respect to Σ y Σ ′, around (a, a′); where

r − a = aΣ , r ′
− a′

= a′ Σ ′

and the subscripts indicating the derivatives with respect to that parameter, it results

1
∆

= D(a, a′) + Da(a, a′) aΣ + Da′ (a, a′) a′ Σ ′
+

1
2
Daa(a, a′) a2 Σ2

+Daa′ (a, a′) a a′ Σ Σ ′
+

1
2
Da′a′ (a, a′) a′2 Σ ′2. (21)

On the other hand, from (13) it follows that

∂r ′

∂a′
= 1 + Σ ′

+ a′ Σ ′

a′ , (22)

r ′2
= a′2 (1 + 2Σ ′

+ Σ ′2) . (23)

ence, by truncating, up to the second order in Σ ′, the product ∂r ′
∂a′ r ′2 it is obtained

∂r ′

∂a′
r ′2

= a′2 (1 + 3Σ ′
+ 3Σ ′2

+ a′ Σ ′

a′ + 2a′ Σ ′ Σ ′

a′

)
. (24)

The mass element dm′ expressed in Clairaut’s coordinates (7) is

dm′
= ρ(a′)

∂r ′

∂a′
r ′2(a′, θ ′, λ′) cos θ da′ dθ ′ dλ′. (25)

Then, taking into account (24), the mass element dm′ is expressed as

dm′
= ρ(a′) a′2 (1 + 3Σ ′

+ 3Σ ′2
+ a′ Σ ′

a′ + 2a′ Σ ′ Σ ′

a′

)
cos θ ′ dθ ′ dλ′ da′. (26)

Consequently, from (21), (26) and truncating the development up to the second order in Σ and Σ ′ of the quotient dm′

∆
,

t stands
dm′

∆
=

{
D(a, a′) + Da(a, a′) aΣ +

[
3D(a, a′) + Da′ (a, a′) a′

]
Σ ′

+
1
2
Daa(a, a′) a2 Σ2

+
[
Daa′ (a, a′) a a′

+ 3Da(a, a′) a
]
Σ Σ ′

+

[
1
2
Da′,a′ (a, a′) a′2

+ 3Da′ (a, a′) a′
+ 3D(a, a′)

]
Σ ′2

+D(a, a′) a′ Σ ′

a′ + Da(a, a′) a a′ Σ Σ ′

a′

+
[
D ′ (a, a′) a′2

+ 2D(a, a′) a′
]
Σ ′ Σ ′

′

}
ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′. (27)
a a

4
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The next step is to develop Σ , Σ ′, Σ ′

a′ , Σ2, Σ ′2, ΣΣ ′, ΣΣ ′

a′ and Σ ′Σ ′

a′ until the second order with respect to the
mplitudes. Then it is obtained

Σ = f0(a) + f2(a) P2(sin θ ) + f4(a) P4(sin θ ) +

∞∑
m=3

f2m(a) P2m(sin θ ), (28)

Σ ′
= f0(a′) + f2(a′) P2(sin θ ′) + f4(a′) P4(sin θ ′) +

∞∑
m=3

f2m(a′) P2m(sin θ ′), (29)

Σ ′

a′ = f ′

0(a
′) + f ′

2(a
′) P2(sin θ ′) + f ′

4(a
′) P4(sin θ ′) +

∞∑
m=3

f ′

2m(a
′) P2m(sin θ ′), (30)

Σ2
= f 22 (a)

(
1
5

+
2
7
P2(sin θ ) +

18
35

P4(sin θ )
)

, (31)

Σ ′2
= f 22 (a

′)
(
1
5

+
2
7
P2(sin θ ′) +

18
35

P4(sin θ ′)
)

, (32)

Σ Σ ′
= f2(a) f2(a′) P2(sin θ ) P2(sin θ ′), (33)

Σ Σ ′

a′ = f2(a) f ′

2(a
′) P2(sin θ ) P2(sin θ ′), (34)

Σ ′ Σ ′

a′ = f2(a′) f ′

2(a
′)
(
1
5

+
2
7
P2(sin θ ′) +

18
35

P4(sin θ ′)
)

(35)

here f ′
n(a

′) =
d fn(a′)
da′ .

Moreover,

D(a, a′) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
a

∞∑
n=0

(
a′

a

)n

Pn(cos γ ) if a′ < a

1
a′

∞∑
n=0

( a
a′

)n
Pn(cos γ ) if a < a′

(36)

here γ is the angle between the radii vectors a and a′ and Pn are the Legendre polynomials.
Then, in the inner part of dm′ (a′ < a) equipotential surface, the following developments are obtained:

Da(a, a′) = −

∞∑
n=0

(n + 1)
a′n

an+2 Pn(cos γ ), (37)

Da′ (a, a′) =

∞∑
n=1

n
a′n−1

an+1 Pn(cos γ ), (38)

Daa(a, a′) =

∞∑
n=0

(n + 1)(n + 2)
a′n

an+3 Pn(cos γ ), (39)

Daa′ (a, a′) = −

∞∑
n=1

n (n + 1)
a′n−1

an+2 Pn(cos γ ), (40)

Da′a′ (a, a′) =

∞∑
n=2

n (n − 1)
a′n−2

an+1 Pn(cos γ ). (41)

Outside the equipotential surface dm′ (a < a′), the following developments are obtained:

Da(a, a′) =

∞∑
n=1

n
an−1

a′n+1 Pn(cos γ ), (42)

Da′ (a, a′) = −

∞∑
n=0

(n + 1)
an

a′n+2 Pn(cos γ ), (43)

Daa(a, a′) =

∞∑
n (n − 1)

an−2

a′n+1 Pn(cos γ ), (44)

n=2

5
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Daa′ (a, a′) = −

∞∑
n=1

n (n + 1)
an−1

a′n+2 Pn(cos γ ), (45)

Da′a′ (a, a′) =

∞∑
n=0

(n + 1)(n + 2)
an

a′n+3 Pn(cos γ ). (46)

Consequently, taking into account (18), (19) and (27)–(46), in the next step each of the terms of dm′ will be truncated
n the second order of amplitudes, in the inner and outside parts of the equipotential surface of (27).

The integrals of (27) different terms are shown below:
Inner part of the equipotential surface
D(a, a′)

G
∫ a

0

∫ 2π

0

∫ π
2

−
π
2

D(a, a′) ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

=
4πG
a

δn,0

∫ a

0
a′2 ρ(a′) da′. (47)

Da(a, a′) aΣ

G
∫ a

0

∫ 2π

0

∫ π
2

−
π
2

Da(a, a′) aΣ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

= −
4πG
a

(
∞∑

m=0

f2m(a) P2m(sin θ )

)
δn,0

∫ a

0
a′2 ρ(a′) da′. (48)

[
3D(a, a′) + Da′ (a, a′) a′

]
Σ′

G
∫ a

0

∫ 2π

0

∫ π
2

−
π
2

3D(a, a′)Σ ′ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

=
12πG

a
δn,0

∫ a

0
a′2 ρ(a′) f0(a′) da′

+
12πG
5a3

δn,2 P2(sin θ )
∫ a

0
a′4 ρ(a′) f2(a′) da′

+
12πG
9a5

δn,4 P4(sin θ )
∫ a

0
a′6 ρ(a′) f4(a′) da′

+

∞∑
m=3

12πG
(2n + 1)an+1 δn,2m P2m(sin θ )

∫ a

0
a′n+2 ρ(a′) f2m(a′) da′. (49)

G
∫ a

0

∫ 2π

0

∫ π
2

−
π
2

Da′ (a, a′) a′ Σ ′ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

=
8πG
5a3

δn,2 P2(sin θ )
∫ a

0
a′4 ρ(a′) f2(a′) da′

+
16πG
9a5

δn,4 P4(sin θ )
∫ a

0
a′6 ρ(a′) f4(a′) da′

+

∞∑
m=3

4 nπG
(2n + 1)an+1 δn,2m P2m(sin θ )

∫ a

0
a′n+2 ρ(a′) f2m(a′) da′. (50)

1
2 Daa(a, a′)a2Σ2

G
∫ a

0

∫ 2π

0

∫ π
2

−
π
2

1
2
Daa(a, a′) a2 Σ2 ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

=
4πG

f 22 (a)
(
1

+
2
P2(sin θ ) +

18
P4(sin θ )

)
δn,0

∫ a

a′2 ρ(a′) da′. (51)

a 5 7 35 0

6
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[
Daa′ (a, a′) a a′

+ 3Da(a, a′) a
]
ΣΣ′

G
∫ a

0

∫ 2π

0

∫ π
2

−
π
2

Daa′ (a, a′) a a′ Σ Σ ′ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′
= −

24πG
5a3

× f2(a)
(
1
5

+
2
7
P2(sin θ ) +

18
35

P4(sin θ )
)

δn,2

∫ a

0
a′4 ρ(a′) f2(a′) da′. (52)

G
∫ a

0

∫ 2π

0

∫ π
2

−
π
2

3Da(a, a′) aΣ Σ ′ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′
= −

36πG
5a3

× f2(a)
(
1
5

+
2
7
P2(sin θ ) +

18
35

P4(sin θ )
)

δn,2

∫ a

0
a′4 ρ(a′) f2(a′) da′. (53)[ 1

2 Da′a′ (a, a′) a′2
+ 3Da′ (a, a′) a′

+ 3D(a, a′)
]
Σ′2

G
∫ a

0

∫ 2π

0

∫ π
2

−
π
2

1
2
Da′a′ (a, a′) a′2 Σ ′2 ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

=
4πG
5a3

2
7
P2(sin θ ) δn,2

∫ a

0
a′4 ρ(a′) f 22 (a

′) da′

+
24πG
9a5

18
35

P4(sin θ ) δn,4

∫ a

0
a′6 ρ(a′) f 22 (a

′) da′. (54)

G
∫ a

0

∫ 2π

0

∫ π
2

−
π
2

3Da′ (a, a′) a′ Σ ′2 ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

=
24πG
5a3

2
7
P2(sin θ ) δn,2

∫ a

0
a′4 ρ(a′) f 22 (a

′) da′

+
48πG
9a5

18
35

P4(sin θ ) δn,4

∫ a

0
a′6 ρ(a′) f 22 (a

′) da′. (55)

G
∫ a

0

∫ 2π

0

∫ π
2

−
π
2

3D(a, a′)Σ ′2 ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

=
12πG
5a

δn,0

∫ a

0
a′2 ρ(a′) f 22 (a

′) da′

+
12πG
5a3

2
7
P2(sin θ ) δn,2

∫ a

0
a′4 ρ(a′) f 22 (a

′) da′

+
12πG
9a5

18
35

P4(sin θ ) δn,4

∫ a

0
a′6 ρ(a′) f 22 (a

′) da′. (56)

D(a, a′) a′ Σ′

a′

G
∫ a

0

∫ 2π

0

∫ π
2

−
π
2

D(a, a′) a′ Σ ′

a′ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

=
4πG
a

δn,0

∫ a

0
a′3 ρ(a′)

d f0(a′)
da′

da′

+
4πG
5a3

P2(sin θ ) δn,2

∫ a

0
a′5 ρ(a′)

d f2(a′)
da′

da′

+
4πG
9a5

P4(sin θ ) δn,4

∫ a

0
a′7 ρ(a′)

d f4(a′)
da′

da′

+

∞∑ 4πG
(2n + 1) an+1 P2m(sin θ ) δn,2m

∫ a

a′n+3 ρ(a′)
d f2m(a′)

da′
da′. (57)
m=3 0

7
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Da(a, a′) a a′ ΣΣ′

a′

G
∫ a

0

∫ 2π

0

∫ π
2

−
π
2

Da(a, a′) a a′ Σ Σ ′

a′ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′
= −

12πG
5a3(

1
5

+
2
7
P2(sin θ ) +

18
35

P4(sin θ )
)
f2(a) δn,2

∫ a

0
a′5 ρ(a′)

d f2(a′)
da′

da′. (58)[
Da′ (a, a′) a′2

+ 2a′ D(a, a′)
]
Σ′ Σ′

a′

G
∫ a

0

∫ 2π

0

∫ π
2

−
π
2

Da′ (a, a′) a′2 Σ ′ Σ ′

a′ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

=
8πG
5a3

2
7
P2(sin θ ) δn,2

∫ a

0
a′5 ρ(a′) f2(a′)

d f2(a′)
da′

da′

+
16πG
9a5

18
35

P4(sin θ ) δn,4

∫ a

0
a′7 ρ(a′) f2(a′)

d f2(a′)
da′

da′. (59)

G
∫ a

0

∫ 2π

0

∫ π
2

−
π
2

2a′ D(a, a′)Σ ′ Σ ′

a′ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

=
8πG
5a

δn,0

∫ a

0
a′3 ρ(a′) f2(a′)

d f2(a′)
da′

da′

+
8πG
5a3

2
7
P2(sin θ ) δn,2

∫ a

0
a′5 ρ(a′) f2(a′)

d f2(a′)
da′

da′

+
8πG
9a5

18
35

P4(sin θ ) δn,4

∫ a

0
a′7 ρ(a′) f2(a′)

d f2(a′)
da′

da′. (60)

Outer part of the equipotential surface
D(a, a′)

G
∫ a1

a

∫ 2π

0

∫ π
2

−
π
2

D(a, a′) ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

= 4πG δn,0

∫ a1

a
a′ ρ(a′) da′. (61)

Da(a, a′) aΣ

G
∫ a1

a

∫ 2π

0

∫ π
2

−
π
2

Da(a, a′) aΣ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′
= 0. (62)

[
3D(a, a′) + Da′ (a, a′) a′

]
Σ′

G
∫ a1

a

∫ 2π

0

∫ π
2

−
π
2

3D(a, a′)Σ ′ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

= 12πG δn,0

∫ a1

a
a′ ρ(a′) f0(a′) da′

+
12πG a2

5
δn,2 P2(sin θ )

∫ a1

a
a′−1 ρ(a′) f2(a′) da′

+
12πG a4

9
δn,4 P4(sin θ )

∫ a1

a
a′−3 ρ(a′) f4(a′) da′

+

∞∑
m=3

12πG an

(2n + 1)
δn,2m P2m(sin θ )

∫ a1

a
a′1−n ρ(a′) f2m(a′) da′. (63)

G
∫ a1

a

∫ 2π

0

∫ π
2

−
π
2

Da′ (a, a′) a′ Σ ′ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

−4πG δn,0

∫ a1
a′ ρ(a′) f0(a′) da′
a

8
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−
12πG a2

5
δn,2 P2(sin θ )

∫ a1

a
a′−1 ρ(a′) f2(a′) da′

−
20πG a4

9
δn,4 P4(sin θ )

∫ a1

a
a′−3 ρ(a′) f4(a′) da′

−

∞∑
m=3

4(n + 1)πG an

(2n + 1)
δn,2m P2m(sin θ )

∫ a1

a
a′1−n ρ(a′) f2m(a′) da′. (64)

1
2 Daa(a, a′)a2Σ2

G
∫ a1

a

∫ 2π

0

∫ π
2

−
π
2

1
2
Daa(a, a′) a2 Σ2 ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

= 0. (65)

[
Daa′ (a, a′) a a′

+ 3Da(a, a′) a
]
ΣΣ′

G
∫ a1

a

∫ 2π

0

∫ π
2

−
π
2

Daa′ (a, a′) a a′ Σ Σ ′ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′
= −

24πG a2

5

× f2(a)
(
1
5

+
2
7
P2(sin θ ) +

18
35

P4(sin θ )
)

δn,2

∫ a1

a
a′−1 ρ(a′) f2(a′) da′. (66)

G
∫ a1

a

∫ 2π

0

∫ π
2

−
π
2

3Da(a, a′) aΣ Σ ′ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′
=

24πG a2

5

f2(a)
(
1
5

+
2
7
P2(sin θ ) +

18
35

P4(sin θ )
)

δn,2

∫ a1

a
a′−1 ρ(a′) f2(a′) da′. (67)[ 1

2 Da′a′ (a, a′) a′2
+ 3Da′ (a, a′) a′

+ 3D(a, a′)
]
Σ′2

G
∫ a1

a

∫ 2π

0

∫ π
2

−
π
2

1
2
Da′a′ (a, a′) a′2 Σ ′2 ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

=
4πG
5

δn,0

∫ a1

a
a′ ρ(a′) f 22 (a

′) da′

+
24πG a2

5
2
7
P2(sin θ ) δn,2

∫ a1

a
a′−1 ρ(a′) f 22 (a

′) da′

+
60πG a4

9
18
35

P4(sin θ ) δn,4

∫ a1

a
a′−3 ρ(a′) f 22 (a

′) da′. (68)

G
∫ a1

a

∫ 2π

0

∫ π
2

−
π
2

3Da′ (a, a′) a′ Σ ′2 ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

= −
12πG

5
δn,0

∫ a1

a
a′ ρ(a′) f 22 (a

′) da′

−
36πG a2

5
2
7
P2(sin θ ) δn,2

∫ a1

a
a′−1 ρ(a′) f 22 (a

′) da′

−
60πG a4

9
18
35

P4(sin θ ) δn,4

∫ a1

a
a′−3 ρ(a′) f 22 (a

′) da′. (69)

G
∫ a1

a

∫ 2π

0

∫ π
2

−
π
2

3D(a, a′)Σ ′2 ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

=
12πG

5
δn,0

∫ a1

a
a′ ρ(a′) f 22 (a

′) da′

+
12πG a2

5
2
7
P2(sin θ ) δn,2

∫ a1

a
a′−1 ρ(a′) f 22 (a

′) da′

+
12πG a4 18

P4(sin θ ) δn,4

∫ a1
a′−3 ρ(a′) f 22 (a

′) da′. (70)

9 35 a

9
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D(a, a′) a′ Σ′

a′

G
∫ a1

a

∫ 2π

0

∫ π
2

−
π
2

D(a, a′) a′ Σ ′

a′ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

= 4πG δn,0

∫ a1

a
a′2 ρ(a′)

d f0(a′)
da′

da′

+
4πG a2

5
P2(sin θ ) δn,2

∫ a1

a
ρ(a′)

d f2(a′)
da′

da′

+
4πG a4

9
P4(sin θ ) δn,4

∫ a1

a
a′−2 ρ(a′)

d f4(a′)
da′

da′

+

∞∑
m=3

4πG an

2n + 1
P2m(sin θ ) δn,2m

∫ a1

a
a′2−n ρ(a′)

d f2m(a′)
da′

da′. (71)

Da(a, a′) a a′ ΣΣ′

a′

G
∫ a1

a

∫ 2π

0

∫ π
2

−
π
2

Da(a, a′) a a′ Σ Σ ′

a′ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′
=

8πG a2

5

×

(
1
5

+
2
7
P2(sin θ ) +

18
35

P4(sin θ )
)
f2(a) δn,2

∫ a1

a
ρ(a′)

d f2(a′)
da′

da′. (72)[
Da′ (a, a′) a′2

+ 2a′ D(a, a′)
]
Σ′ Σ′

a′

G
∫ a1

a

∫ 2π

0

∫ π
2

−
π
2

Da′ (a, a′) a′2 Σ ′ Σ ′

a′ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

−
4πG
5

δn,0

∫ a1

a
a′2 ρ(a′) f2(a′)

d f2(a′)
da′

da′

−
12πG a2

5
2
7
P2(sin θ ) δn,2

∫ a1

a
ρ(a′) f2(a′)

d f2(a′)
da′

da′

−
20πG a4

9
18
35

P4(sin θ ) δn,4

∫ a1

a
a′−2 ρ(a′) f2(a′)

d f2(a′)
da′

da′. (73)

G
∫ a1

a

∫ 2π

0

∫ π
2

−
π
2

2a′ D(a, a′)Σ ′ Σ ′

a′ ρ(a′) a′2 cos θ ′ dθ ′ dλ′ da′

=
8πG
5

δn,0

∫ a1

a
a′2 ρ(a′) f2(a′)

d f2(a′)
da′

da′

+
8πG a2

5
2
7
P2(sin θ ) δn,2

∫ a1

a
ρ(a′) f2(a′)

d f2(a′)
da′

da′

+
8πG a4

9
18
35

P4(sin θ ) δn,4

∫ a1

a
a′−2 ρ(a′) f2(a′)

d f2(a′)
da′

da′. (74)

By adding together the common factor inner potentials δn,j, with j = 0, 2, 4, results can be seen fully coincident with
Wj r−j−1, with j = 0, 2, 4, respectively, and by adding the common factor outer potential of δn,j, with j = 0, 2, 4, results
can be seen fully coincident with Kj r j, with j = 0, 2, 4, respectively.

Taking into account all the factors mentioned above, it follows that, up to the second order, the autogravitational
potential is expressed by

Ω =

2∑
n=0

Knrn +

2∑
n=0

Wnr−n−1. (75)

Consequently, it has been established by using an alternative method to that of Kopal, that the classical equations of the
terms of the autogravitational potential, up to second order, obtained by Kopal, are correct.

3. Numerical example

In this section, a numerical example of Clairaut’s method is shown to compare the effect of rotation in a main sequence
star, whose energy transport model is convective, with an ideal convective star [11–13].
10
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The Clairaut coordinate system is defined in (7) and the equipotential surfaces are determined by the parameter a.
The equations determining the stellar structure, which can be expressed in Clairaut coordinates [14], are given, among

others, by Faulkner [15].
The variables appearing in these equations are: M , mass; ρ, density; P , pressure; Ψ , total potential; L, luminosity; ε,

energy generation per unit mass; T , temperature in degrees Kelvin, κ , radiative opacity per unit mass; ⃗omega, angular
velocity; A, radiation constant; c , speed of light in vacuum; G, constant of universal gravitation; µ, mean molecular mass
of plasma; R, gas constant and Γ2 the second adiabatic exponent.

The management of structure equations is complex. Now, in the case of main sequence stars whose energy transport is
purely radiative or convective, these equations can be simplified by using a polytropic model of index 3 for the radiative
case and of index 1.5 for the convective case [16].

Given our training as mathematicians and knowing that this work is mainly aimed at mathematicians, we have
considered it interesting to include an Appendix where it is shown that an ideal gas composed of isolated particles and
whose energy transport is carried out in an adiabatic way, satisfies the equation of a polytrope of index 1.5. Furthermore,
it is easy to accept the assumption that the plasma forming a main sequence star behaves like an ideal gas of free
particles since nuclei and electrons move freely in plasma and, therefore, the volume occupied by the particles is negligible
compared to the star volume. Obviously, the gas temperature is well above the critical temperature.

The use of polytropic models to solve the main sequence star structure equations is justified because it considerably
simplifies the calculations and the results obtained differ very little from those obtained by other means.

In main sequence stars the transport of energy is convective when their mass is less than or equal to 0.5MS (being MS
the mass of the Sun). In case of a mass between 0.5MS and 1.5MS , the transport is radiative in the nucleus and convective
in outer layers. For a mass greater than 1.5MS , transport is convective in the nucleus and radiative in the outermost layers.

To verify Clairaut’s method goodness of fit by using a numerical example, we have chosen a star in which it is assumed
a completely convective energy transport. Consequently, according to what is stated in [10,14] and Appendix, its equation
of state is

P = Kρ1+ 1
n , (76)

here n = 1.5.
Introducing variables Θ and ξ , defined as:

ρ = ρcΘ
n, (77)

nd

r =

[
(n + 1)K
4πG

ρ
1
n −1
c

]1/2
ξ, (78)

t follows that from the Poisson equation the Lane–Emden equation results

1
ξ 2

d
dξ

(
ξ 2 dΘ

dξ

)
+ Θn

= 0, (79)

opal [14] shows that using the Clairaut coordinates defined above, for the case of equilibrium configurations of polytropic
asses in uniform slow rotation and with a small angular velocity ω, and defining ξ by

a =

[
(n + 1)K
4πG

ρ
1
n −1
c

]1/2
ξ, (80)

he perturbed Lane–Emden equation is verified, whose expression is

1
ξ 2

d
dξ

(
ξ 2 dΘ

dξ

)
+ Θn

= ν, (81)

where ν is a small parameter given by

ν =
ω2

2πGρc
. (82)

o solve (81) in first order of disturbance, Kopal [14] develops Θ in first order with respect to ν Θ(ξ ) = Θ0(ξ ) + ν ϕ(ξ ).
Replacing this last expression in (81) it results that Θ0 and ϕ satisfy

1
ξ 2

d
dξ

(
ξ 2 dΘ0

dξ

)
+ Θ0 = 0, (83)

1
ξ 2

d
dξ

(
ξ 2 dϕ

dξ

)
+ nΘn−1

0 ϕ = 1, (84)

with the initial conditions Θ (0) = 1, Θ ′ (0) = 0, ϕ(0) = 0, ϕ′(0) = 0.
0 0

11
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The value ξ ∗

1 where Θ vanishes is obtained from the relation

ξ ∗

1 = ξ1 −
ϕ(ξ1)
−Θ ′

0
. (85)

n the other hand, the relationship between the mean and the central density is given by
ρ

ρc
= −

3
ξ1

(
dϕ
dξ

)
ξ1

, (86)

here the values of ξ1 and
(

dϕ
dξ

)
ξ1

for the surface ξ1 of the polytrope are given by solving the Lane–Emden equation [11]

nd depend exclusively on the polytropy index.
For n = 1.5, Chandrasekhar gives the value ρc/ρ = 5.99071. Finally, the constant K of the polytrope is determined

from the relation given by Clayton [12] for the total mass

M = −4π
[
(n + 1)K
4πG

] 3
2

ρ(3−n)/2
c

(
ξ 2
1
dϕ
dξ

)
ξ1

, (87)

here for n = 1.5 it is verified [11]
(
ξ 2
1

dϕ
dξ

)
ξ1

= −2.71406.

Next we consider a star with mass M = 0.5MS so that the energy transport can be considered fully convective.
To develop the numerical model, the value of the mean density must be determined first. According to Clayton, for a

tar of the main sequence, this value is ρ = 1.4/M expressed in g/cm3 where M is the mass expressed in MS .
From this value and taking into account (86), K = 7.75872 · 1013.
According to Kopal [14], the amplitude functions f2 and f4 satisfy, up to second order in ν, the differential equations:

ξ 2f ′′

2 + 6D(ξ f ′

2) − 6f2 =
2
7

[
2(ξ f ′

2)
2
+ 9ξ f ′

2f2 − 9D((ξ 2f ′

2)
2
+ 18ξ f ′

2f2)
]

+6ν
ρc

ρ
(1 − D)(ξ f ′

2 + f2),
(88)

here D =
ρ

ρ
.

ξ 2f ′′

4 + 6D(ξ f ′

4) − 20f4 =
18
35

[
1(ξ f ′

4)
2
+ 4f ′

4f4 − 3D3(ξ f ′

4)
2
+ 6ξ f ′

4f4 + 7f 24
]
. (89)

The functions f2 and f4 satisfy at the origin f ′

2(0) = f ′

4(0) = 0.
To complete the system it is required that the boundary conditions are satisfied on the outer surface given by ξ ∗

1

2f2 + ξ1f ′

2 +
5
2

ρc

ρm
ν = (ξ1f ′

2 + 5f2)
ρc

ρm
ν +

2
7
((ξ1f ′

2)
2
+ 3ξ f ′

2f2 + 6f 22 ), (90)

4f4 + ξ1f ′

4 =
18
35

((ξ1f ′

2)
2
+ 5ξ f ′

2f2 + 6f 22 ), (91)

here ρm is the mean density of the star.
For a polytrope of order n it is verified

ρc

ρ
= −

ξ

3Θ ′(ξ )
, D = −

ξΘn(ξ )
3Θ ′(ξ )

. (92)

The integration of these equations can be carried out in stages using a classical fourth-order Runge–Kutta method. Now,
since Eqs. (83) and (84) must be continuous in ξ and present a regular singular point at ξ = 0, then the value of the first
iteration of the method will be taken by making a series approximation, around the origin, of a higher order than the
integration method which, according to index Eqs. (83) and (84), results in the following developments:

Θ0(ξ ) =
ξ 2

6
+

ξ 4

80
−

ξ 6

1440
,

ϕ(ξ ) =
ξ 2

6
−

ξ 4

80
+

19ξ 6

20160
. (93)

nce these equations are integrated and in order to avoid uncertainties around the origin, it is convenient to take as
(ξ ) = ρ(ξ )/ρ(ξ ) the approximation

D(ξ ) = 1 −
ξ 2

10
+

ξ 4

600
−

7ξ 6

162000
. (94)

For the resolution of (88) we find ourselves in a case analogous to that of the polytrope. So, from its index equation
and the continuity at the origin, we have up to sixth order in ξ :

f2(ξ ) = k2(1 +
3ξ 2

+
47ξ 4

+
157ξ 6

). (95)

70 25260 2268000

12
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Table 1
Lane–Emden and amplitude functions.
ξ Θ(ξ ) f0(ξ ) f2(ξ ) f4(ξ )

0.00000000 0.00000000 −0.00000104 −0.00228408 0.00000402
0.50000000 0.95930834 −0.00000112 −0.00237129 0.00000444
1.00000000 0.84594504 −0.00000142 −0.00266645 0.00000601
1.50000000 0.68273070 −0.00000214 −0.00327215 0.00001000
2.00000000 0.49851733 −0.00000385 −0.00438795 0.00002028
2.50000000 0.31951480 −0.00000798 −0.00631640 0.00004746
3.00000000 0.16358877 −0.00001772 −0.00941361 0.00011669
3.50000000 0.03862348 −0.00003917 −0.01399503 0.00027639
3.65375369 0.00000000 −0.00004954 −0.01573887 0.00035479

The value of k2 is determined by imposing on ξ ∗

1 the boundary condition (90) resulting in K2 = −2.28408 ·10−3. Similarly,
from (89), we have for f4(ξ ) that around the origin and up to sixth order in ξ it is verified:

f4(ξ ) = k22

(
−

27
35

−
503ξ 4

539000
+

12787ξ 6

1471470000

)
+ k4ξ 2

(
1 +

9ξ 2

110
+

237ξ 4

57220

)
. (96)

The value of k4 is obtained by imposing on ξ ∗

1 the boundary condition (91) resulting in k4 = −9.086 · 10−8.
Table 1 shows the values of Θ(ξ ), f0(ξ ), f2(ξ ), f4(ξ ) for various values of ξ :

. Concluding remarks

Main conclusions of this work can be summarized as follows:

• The proposed algorithm consists of replacing the development of the inverse of the distance given by a similar
method to the one used by Laplace for the case of construction of planetary theories. Laplace, in his algorithm,
obtains an approximation to the inverse of the distance up to second order in ω2 and proceeds to the integration of
the terms resulting from K and W .

• By means of this algorithm it is also proved, without using the Laplace’s desideratum, that the classical development
of the self-gravitational potential is correct up to the second order in ν = ω2/2πGρc .

• As we can see in this work, moving from a first order theory to a second order theory supposes a considerable
increase in algorithmic complexity. Consequently, the number of calculations required to evaluate potentials beyond
the second order is so large that it is extremely difficult to achieve. All this reasons lead us to conjecture that the
method exposed in this work is extendable to orders above the second.

• The method proposed in the present work does not require the derivability of the density in the case of a barotrope,
which is true for a polytropic star.

• The numerical results obtained from applying this theory to a convective star with a mass M equal to 0.5 solar
masses is consistent with what is expected, since it presents less deformations than in the case of a convective star
whose mass is equal to that of the Sun [10], which validates the theory.

Appendix

As the star matter is in state of plasma due to its temperature we assume that the star behaves like an ideal gas where
its particles are free [17]:

• Gases are made up of a large number of particles, which behave like hard spherical objects, in a state of constant
and random motion.

• Gas particles move in a straight line until they collide with other particles or with the walls of the container.
• Particles are much smaller than the distances between them. Most of the volume of a gas is therefore empty space.
• There is no force of attraction between the gas particles, nor between these particles and the walls of the container.
• The collisions between the gas particles or between them and the walls of the container are perfectly elastic. Energy

can be transferred from one particle to another during a collision, but the total kinetic energy of the particles after
the collision is the same as before the collision.

• The average kinetic energy of a set of gas particles depends only on the temperature of the gas.

For a perfect gas, its internal energy U is given by

U = ncvT , (A.1)

where n is the molar concentration of the gas, cv the constant-volume heat of the gas and T the absolute temperature.
The constant-volume heat for a gas whose particles have three degrees of freedom, c = 3 cal K−1 mol−1.
v
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On the other hand, we know Mayer’s law

cp − cv = R, (A.2)

where cp is the molar heat at constant pressure and R is the gas constant, being its value
(
R = 2 cal K−1 mol−1).

Defining the adiabatic exponent as γ = vp/cv , we have that γ = 5/3.
On the other hand, according to the first principle of thermodynamics, we have

dU = dQ − dW , (A.3)

where dQ is the heat received by the system and dW is the work done by the system. Note that U in (A.3) is a state
function. Consequently, its variation is independent of the path followed. However, this is not the case for Q and W .

In an adiabatic transformation we have that dQ = 0 and, therefore, dU = −dW .
To express the variation of internal energy with respect to the pressure and volume variables, it is enough to take into

account the Clapeyron equation

PV = nRT , (A.4)

in consequence

U = cv
PV
R

. (A.5)

Differentiating (A.5) we have dU =
cvPdV+cvVdP

R and since dW = PdV is obtained from (A.3)

cvPdV + cvVdP
R

+ PdV = 0, (A.6)

ultiplying by R and grouping gives

P(cv + R)dV + cvVdP = cpPdV + cvVdP = 0, (A.7)

from where
dP
P

+ γ
dV
V

= 0. (A.8)

Integrating this last equation that of the adiabatic equation is obtained

PV γ
= K . (A.9)

Taking into account that ρ = nµ/V , (A.9)

P = K ′ργ , (A.10)

here K ′ is constant.
On the other hand, a polytrope of order n is defined as that gas in which pressure and density satisfy the relation

P = Cte · ρ1+ 1
n . (A.11)

Now, as for the convective case γ = 5/3, we have that 1 +
1
n =

5
3 and therefore n = 1.5. Consequently, a convective

tar can be modeled almost exactly by a polytrope of index n = 1.5.
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