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Abstract

Background: Anomaly detection in Activities of Daily Living (ADL) plays
an important role in e-health applications. An abrupt change in ADL taken by
a subject might indicate that she/he needs some help. Another important issue
related with e-health application is the case where the change in ADL experiments
a linear drift, this is the case in cognitive decline, Alzheimer disease or dementia.

Methods: This work presents a novel method for detecting a linear drift in
ADL modeled as circular normal distributions. The method is based on techniques
commonly used in Statistical Process Control, and is able to detect and estimate
the change point in time when a linear drift started.
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Results: Public data sets have been used to asses that ADLs can be modeled
by a mixture of circular normal distributions. Exhaustive experimentation were
performed on simulated data to asses the validity of the change detection algo-
rithm, showing that the difference between the real change point and the estimated
change point was 4.90−1.98

+3.17 days on average.

Conclusion: ADLs might be modeled using a mixture of circular normal dis-
tributions. A new method to detect anomalies following a linear drift is presented.
Exhaustive experiments showed that this method is able to estimate the change
point in time for processes following a linear drift.

Keywords Anomaly detection · Activities of Daily Living (ADL) · Abrupt
change · Linear drift · Circular normal distribution.

1 Introduction

[1]

Anomaly detection in ADL is a particularly important issue in e-health ap-
plications such as elderly monitoring [2–4], chronic diseases monitoring [5], and
depression detection [6], to cite a few. In this kind of application, the subject is
continuously monitored, commonly by means of a sensor network. Each sensor in
the network generates a stream of data which in turn is used to detect anomalies.
The monitoring system, in these cases, is able to detect an abrupt change in the
data stream, for example, an anomalous reading from the accelerometer might sig-
nal a fall [7]. Moreover, anomaly detection [8] plays a central role in realms such a
intrusion/fraud detection [9,10], quality control in the Industry [11], public health
breakouts [12], and climate change [13].

Statistical Process Control (SPC) [14], applied in industries for quality control,
has faced the issue of abrupt change detection for a long time. The statistical ap-
proach is well suited when monitoring temporal data which follows a known prob-
ability distribution function (pdf ) and the parameters of the pdf are also known
before and after the change, which is the case of the cumulative sum algorithm,
also know as CUSUM algorithm [15,16].

In contrast with abrupt changes, progressive changes, or changes with some
trend in the data stream, are more difficult to detect, especially if the data is ran-
domly distributed, like in the case of ADL. This is the case for most older-specific
illnesses, like cognitive decline, Alzheimer disease (AD), dementia or functional
impairment in general [17–20].

Due to the importance of an early detection of cognitive decline in the older
adults [21–24] and to the rate at which the world population is aging [25], to de-
velop techniques for early detecting changes in ADL, and to estimate the point
in time where the change happened, is of great importance. This, in turn, can be
integrated in already e-health systems to detect changes in continuously monitored
older adults [26]. In this kind of systems the older adults are continuously mon-
itored by means attached to the users’ body and the collected data is sent using
wireless communication to a server for later analysis. Analyzed data can provide
insights in physical aspects of health, but also on psychological aspects of health
as loneliness, social isolation life satisfaction and quality of life [27,28]
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Our first hypothesis is that periodic ADLs can be modeled using circular nor-
mal distribution functions. Our second hypothesis is that abrupt changes in pe-
riodic ADLs modeled by circular normal distribution can be detected and the
change point in time can be estimated by means of the methods used in SPC. Our
third hypothesis is that the methods applied for abrupt change detection can be
extended to detect changes in a circular normal distribution which at some point
in time starts to follow a linear drift, and this result can be applied to detect a
linear drift in ADLs.

Both cases are quite important when monitoring ADL of older adults. Abrupt
change detection, when applied to ADL, might indicate that a change in the med-
ication taken by an older adult has had some effect on his/her behaviour [29]. A
linear trend detection in ADL might indicate the start of some cognitive decline,
for example Alzheimer Disease [30,31].

Change detection in ADLs is of special interest in early detection of cognitive
decay in older adults [32]. There exist evidences that circadian rhythm disruption
is a symptom of neurodegeneration, which in turn changes ADLs patterns [33–
35]. Recently, a relationship has been suggested between sleep characteristics and
cognitive decline in the older adults, emphasizing the fact that sleep and cognition
are closely related [36–42]. The authors in [43] present a one year study with 77
older adults (21 mild AD, 27 moderate to severe AD and 29 control subjects). The
results show that patients with moderate to severe AD have earlier bedtimes (9:45,
σ = 1h 31min) compared with patients with mild AD (10:45, σ = 1h 36min) and
control (11:30, σ = 58min). No differences regarding the rise time were reported,
moderate to server AD (7:15, σ = 55min), mild AD (6:55, σ = 54min) and
control subjects (7:00, σ = 47min).

Furthermore, some works positively correlate the severity of the disorder and
the severity of the cognitive impairment [32,44,30,31]. An early study by Stem,
R. G. et al [45] on 183 patients (111 with AD and 72 non-AD) during 90 months
showed a positive linear correlation between the scores of the AD patients on the
Cognitive Subscale of the Alzheimer’s Disease Assesment Scale and the assesment
time within 24 months. In addition, this study also showed that the rate score
followed a quadratic correlated with the score at the assessing time.

Time pattern followed by an older adult in out-of-home activities has been
recently correlated with cognitive decay. A study including 85 independent older
adults who live alone has stated that more hours spent outside the home was asso-
ciated with better cognitive functions measured by the Clinical Dementia Rating
[46]. Similar results was found out in [47].

Cognitive inspired techniques play an important role in Ambient Assisted Liv-
ing for developing new systems which improve the quality of life of the citizens in
general and the older adults in particular [48]. Activities of Daily Living recogni-
tion is a key aspect in such a systems which is mainly performed applying machine
learning techniques [49] to data provided by an in-home sensor network [26]. Other
novel techniques are based on analyzing the speech and emotional temperature [50]
or the performance on handwriting/drawing tasks on digitizing tablets [51].

The contributions of our work are the following:

1. We model Activities of Daily Living (ADL) by means of circular normal prob-
ability distributions, and we asses its validity by performing experiments on
two public data sets.
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2. We extend the CUSUM algorithm in order to detect a linear trend in a pro-
cess following a circular normal distribution, and we use MLE to estimate the
change point.

3. We perform extensive simulations in order to asses the validity of the presented
approach in the two cases: abrupt change and linear drift change.

The rest of the paper is organised as follows: Section 2 presents the background
in the fields of SPC, Human Activity Recognition (HAR), Circular Statistics, and
Anomaly Detection on ADL. Section 3 shows how to model ADL by means of a
circular normal distribution; this section also presents the CUSUM algorithm and
how it is applied to detect abrupt changes in a process following a circular nor-
mal distribution; then, a contribution extending the CUSUM algorithm to detect
linear trends is presented and applied to the case of a process following a circular
normal distribution. Section 4 presents an extensive set of experiments performed
to asses the validity of the presented method. Finally, Section 5 presents the main
conclusions.

2 Background

In this section, SPC is first introduced, as the method presented in this paper relies
on SPC techniques. Then, HAR is presented as the base problem of identifying
ADL. Finally, some related works on the field of anomalies detection are reviewed.

2.1 Statistical Process Control

SPC is a main field for quality control in industrial processes. Since its introduction
by Shewhart [52], SPC control charts have become one of the most used tools for
change detection in industrial processes. Other extensively and successfully used
control charts are the Cumulative Sum (CUSUM) introduced by Page [15,16] and
the Exponential Weighted Moving Average (EWMA) introduced by Roberts [53].
In general, the main objective of control charts is to detect, as soon as possible,
abrupt changes in monitored processes [54].

After detecting an abrupt change, the next step is to estimate the time when the
change has happened. Different approaches have been presented for change point
estimation: neural networks [55–57], fuzzy sets [58–60,49,61] and the bayesian
approach [62,63], among others. Nevertheless, most existing approaches are based
on MLE [64–66].

In most cases, the detection algorithm and estimation method assume an
abrupt change in the process. However, a more gradual change, such as a lin-
ear trend disturbance, may be important to consider [64–66]. The results in these
last cases show that the performance and accuracy of the abrupt change methods
are outperformed by those methods specifically designed for linear drift anomaly
detection [64].

2.2 Human Activity Recognition

The goal of HAR is to find out the set of activities performed by a person in a time
interval, based on some measured attributes. Formally: given a set of activity labels
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A = {A1, ..., Ai}, a time interval T = [tstart, tend], and a set of j time series, each
one from a particular measured attribute S = {S1, ..., Sj} the goal is to find out
the sequence of non overlapping activities A = 〈A[tstart,t1), A[t1,t2), ..., A[tk,tend]〉
based on the data on S [67]. Some typical activities are: getting out of bed, eating,
watching TV, bathing and going to bed, just to cite a few.

The measured attributes can be image recordings [68–70], binary sensors at-
tached to doors, drawers and windows [68,71] in the case of external sensors; and
accelerometers, gyroscopes, temperature or heart rate sensors worn by the human
being [68,67].

In this work, it is assumed that the set of non overlapping activities and the
time interval for each of them A = 〈A[tstart,t1), A[t1,t2), ..., A[tk,tend]〉 is already
known. The goal of this paper is to detect changes in routine activities such as
going to bed, based on its starting or ending time, since such changes in a person’s
behavior can indicate a decay in health.

2.3 Circular statistics

Directional statistics deals with data that represents directions. In the case of two
dimensions, directional statistics is named circular statistics. A particular case is
periodic data, for example, the arrival times of patients at a hospital [72], where
each time in the clock face represents a direction.

Circular statistics has been used successfully for modeling human activity
recognition [73,74], time patters in crime analysis [75], and analysis of social inter-
actions and mood [76]. In all cited cases there is a clear periodicity of the studied
phenomenon regarding the time; this periodicity might be a day, a week, or even
a year or longer periods of time.

Different circular pdfs have been used to model directional data. The circular
Gumbel distribution has been used in [77] to model ADL. Also, the Wrapped
Normal distributions has been used in [78,72] to model ADL. The circular normal
distribution, also known as von Mises distribution, has been extensively used to
model directional data [75,76,73,74].

2.4 Anomaly detection

Following [79], we define anomalous activities as events with the following prop-
erties: a) they occur rarely and, b) they have not been expected in advance.

These properties highlight two facts: a) it is difficult to find out HAR databases
containing anomalous activities; b) it is also difficult to know the parameters that
define an anomalous activity.

Several techniques have been used to detect anomalous activities. A two-phase
pipeline process is used in [80]. In the first phase, normal activities are filtered out
using a one-class Support Vector Machine addressed to reduce the false positive
rate. The second phase uses an iterative procedure in which a Hidden Markov
Model (HMM) of the initial activities is first created, and each new activity in-
stance is then checked against the current model. Every new activity is thus clas-
sified using the trained HMM, and if its likelihood is below a given threshold, it
is considered as anomalous, and a new class is created for it.
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A variant of the Hamming distance is used in [77] to measure the dissimilarity
between two circular sequences of data. These sequences models ADL of the older
adults at home as circular Gumbel distributions. The data was acquired during
six months using a network of PIR motion sensors installed in a 80-year woman
flat.

Probabilistic models including Näıve Bayes, Hidden Markov Model, Hidden
Semi-Markov Models and Conditional Random Fields are compared in [71] using
three datasets acquired in real scenarios. Data is provided by several sensors as reed
switches, pressure mats, mercury contacts, passive infra-red and float sensors [81].
The presented results show that an increase in model complexity also improves
the results.

The work in [82] also uses an HMM to detect anomalous activities, then ex-
ponential smoothing on histories of time series is used to predict future changes,
and finally both outcomes are fused to detect anomalous activities. In the former
two works, an activity willing to be classified as anomalous might consist on two
consecutive activities in the time series being exchanged, but any abrupt change
in the beginning or ending time of a single activity would not be detected as an
anomalous behavior. On the contrary, the work presented in this paper is able
to detect anomalous behaviors consisting on a delay in the beginning time of an
activity.

A probabilistic anomalous detection method based on dynamic Bayesian net-
works is presented in [83]. Information provided by wearable sensors and location
context is used to detect anomalous behaviors in spatial, timing, duration and
sequences of ADLs.

A two-layered extension of the hidden semi-Markov model is used in [84] for
modeling ADL based on the data provided by a set of cameras. This model, in
turn, is used to detect anomalies in the duration of activities.

Machine Learning techniques are commonly used to detect anomalous behav-
iors. In particular [85] and [86] use Support Vector Machines (SVM) to build
models based on normal behavior data to latter try to detect anomalous behav-
iors.

The authors in [87] use a semantic approximation for detecting anomalous
behaviors of mild cognitive impairment. With the help of cognitive neuroscience
researchers, both normal and anomalous activities are represented using a Web
Ontology Language version 2 (OWL 2) ontology. Logic inference is used to find
out anomalous behavior.

Infrared sensor and magnetic contacts in doors are used in [88] to locate an user
in order to measure her circadian activity. After registering long periods of activity,
a probabilistic model is built. Then, activities with high entropy are considered to
be anomalous behaviors.

Information provided by binary sensors and its activation times are used in
[89] to create regularity and duration scores. The authors use density based spatial
clustering with noise on the scores to cluster activities. The cluster with the largest
number of instances represents the normal behavior.
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Fig. 1 Examples of circular normal distribution functions. Solid lines show the circular normal
distribution before an abrupt change, dashed plots show the circular normal distribution after
a change. The case on the left shows a challenging to detect. On the contrary, the case on the
right shows an easy case to detect.

3 Methodology

The circular distribution is introduced first in this section to model periodic events.
Then abrupt change detection using the CUSUM algorithm is presented. After
that, the main contribution of this work is presented: a novel method to detect a
linear trend in a circular normal distribution.

3.1 Activity modeling using the circular normal distribution

The circular normal distribution, is a symmetric unimodal distribution describ-
ing circular data with periodical nature. This kind of data arise in a number of
fields such as biology, geography, geology geophysics, medicine, meteorology and
oceanography. Examples of such data include directions of wind and ocean cur-
rents, directional movement of animals in response to stimuli, and biorhythms [90],
[88].

The probability density function of the circular normal distribution for a given
angle φ is given by:

f(φ|µ, κ) =
eκ cos(φ−µ)

2πI0(κ)

∀φ ∈ <, µ ∈ [0, 2π) and κ ≥ 0. The µ parameter is known as the mean direction
parameter, the κ parameter is know as a concentration parameter, and I0(κ) is
the modified Bessel function of order 0 defined by:

I0(κ) =
1

2π

∫ 2π

0

eκ cos ϕdϕ

The variance of the circular distribution is given by:
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Table 1 Equivalences between some concentration parameters κ and the squared root of the
variance for a circular distribution.

κ σ (in minutes)

33 40
58 30

84.5 25
131 20
233 15
517 10

σ2 = 1− I1(κ)

I0(κ)
(1)

If the value of mean direction µ ∈ [0, 2π) is taken as time units in the range [0,
24) hours, the equivalence between the concentration parameter κ and the squared
root of the variance σ can be extracted using (1). Table 1 shows some equivalent
values used in the experiments presented in Section 4. In the remainder of this
work the parameter σ, in minutes, will be used instead of κ because it can be
interpreted as the dispersion of the data, for example the dispersion time for a
person’s wake up time. Fig. 1 shows some circular normal probability distribution
functions plots. Note that parameter κ is related with the dispersion of the data,
the bigger κ the lower dispersion of the data.

For a set of samples {φi} with i ∈ [1, N ], the MLE for µ and κ are:

µ̂ = tan−1

(∑N
i=1 sin φi∑N
i=1 cos φi

)

κ̂ =
1

n


 N∑
i=1

cos φi

2

+

 N∑
i=1

sin φi

2


These two expressions can be used to estimate the parameters µ and κ from a
set of data.

Two public data sets from the CASAS project have been used to assess the
validity of using the circular normal probability distribution for modeling ADLs.
The first data set is called Milan [91]. The data set is annotated with ADL and
was acquired between 16/10/2009 and 6/1/2010 by an older adult leaving alone in
an apartment. The second data set is called Aruba [92]. The data set is annotated
with ADL and was acquired between 4/11/2010 and 11/6/2011 by an older adult
leaving alone in a apartment.

In order to test if ADL can be modeled by circular normal distributions, six
ADL were selected from each data set, and there were adjusted to a mixtures
of circular normal distributions using the R library movMF [93]. The Kullback-
Leibler divergence [94] was used to calculate the divergence between the empirical
probability density function and the fitted probability density function. Results
are shown on Tables 2 and 3. Figures 2 and 3 show the data for the Milan and
Aruba data sets using a rose diagram; the solid lines show the empirical density
from the data, the dashed lines show the density for the fitted mixtures of circular
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Table 2 Mila data set. The name of the ADLs are the same as used in the public data set. #pfs
is the number of circular normal distributions used to fit the data. KL is the KL-divergence
between the empirical density and the density of the fitted data. Ex: Time(σ) stands for an
example of the time of the activity and its fitted σ in minutes.

ADL samples #pdfs KL Ex: Time(σ)
Sleep begin 156 8 0.0252 22:17 (38.05)
Sleep end 156 8 0.0120 08:14 (17.28)

Bed to toilet begin 88 8 0.0072 02:11 (13:52)
Bed to toilet end 88 8 0.0045 02:13 (13.40)
Leave home begin 214 8 0.0145 17:16 (30.95)
Leave home end 214 8 0.0059 17:22 (31.00)

Table 3 Aruba data set. The name of the ADLs are the same as used in the public data
set. #pfs is the number of circular normal distributions used to fit the data. KL is the KL-
divergence between the empirical density and the density of the fitted data. Ex: Time (σ)
stands for an example of the time of the activity and its fitted σ in minutes.

ADL samples #pdfs KL Ex: Time(σ)
Sleep begin 401 6 0.0182 00:12 (24.52)
Sleep end 401 8 0.0260 05:45 (26.97)

Bed to toilet begin 157 7 0.0063 00:34 (8.85)
Bed to toilet end 157 8 0.0036 00:36 (9.23)
Leave home begin 431 9 0.0093 14:48 (8.80)
Enter home begin 431 9 0.0051 15:01 (36.69)

normal distributions. The radial segments at these Figures correspond with the
example times shown in Tables 2 and 3. The KL-divergence of all analyzed data
is less than 0.03, and the maximum of the lobes for the activities are near of the
density of real data. The analysis of these data suggest that a mixture of circular
normal distributions might be use to feasibly model ADLs.

In addition to our own data analysis, the data plots presented in [36] and [29]
also suggest that ADLs (going to the bathroom, going to the bedroom, going out
of home) could be modeled by a mixture of circular normal distribution.

3.2 Abrupt change detection and change point estimation

The CUSUM algorithm is a quality control method which was first proposed in [16]
as a continuous inspection scheme to detect changes in a sequence of independent
random variables following some known probability function.

If it is assumed that a signal can be modeled as a discrete random signal Y,
with independent and identically distributed samples, the pdf of each sample is
given by pθ(yi), where θ is a deterministic parameter. The occurrence of an event
is modeled by an instantaneous change in θ, so that θ = θ1 before the event at
i = τ and θ = θ2 when i ≥ τ . Thus, the two possible hypotheses are:

HHH1 : θ = θ1, No change has happened.

HHH2 : θ = θ2, A change has happened.

The pdf of the signal Y observed between the initial sample y1 and the current
sample yN can take two forms depending on the above hypotheses. Under the ‘no
change’ hypothesis, also know as the in-control process, HHH1, the pdf is:
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Fig. 2 Activities in the Milan data set. Rose diagrams show the data at intervals of 10 minutes.
The solid line shows the density of the data. The dashed line shows the density of the fitted
data. The solid segment at each activity is the time for the fitted circular normal distribution
showed in Table 2.

pθ1|HHH1
=

N∏
i=1

pθ1(yi).

On the other hand, under the ‘change’ hypothesis, also know as the out-of
control process, HHH2 the pdf is:

pθ2|HHH2
=

τ−1∏
i=1

pθ1(yi)
N∏
i=τ

pθ2(yi).

With these assumptions, the CUSUM algorithm defines two quantities, the
cumulative sum:

SNτ =
N∑
i=τ

ln
pθ2(yi)

pθ1(yi)
=

N∑
i=τ

si (2)

where si = ln
pθ2 (yi)

pθ1 (yi)
is defined as the instantaneous log-likelihood ; and the decision

function:

gN = max
1≤τ≤N

SNτ (3)
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Fig. 3 Activities in the Aruba data set. Rose diagrams show the data at intervals of 10
minutes. The solid line shows the density of the data. The dashed line shows the density of
the fitted data. The solid segment at each activity is the time for the fitted circular normal
distribution showed in Table 3.

Given a user-defined threshold h, if the decision function gN < h the hypothesis
HHH1 is true and so no change has been produced. On the contrary, if the decision
function gN > h the hypothesis HHH2 becomes true and so it is assumed that a
change has happened. In the latter case, Maximum Likelihood can be used to find
an estimate of the change point considering (3):

τ̂ = arg max
1≤τ≤N

SNτ

Equations 2 and 3 can be rewritten in a recursive form: SNτ = SN−1
τ + sN

and gN = {gN−1 + sN}+ where {z}+ = sup(0, z). These recursive equations
are convenient to evaluate the cumulative sum and decision function as data is
produced, as in the case of ADL monitoring, and to raise an alarm in case an
anomaly was detected; for example, an abrupt change in a monitorized person’s
wake up time over several consecutive days would trigger an alarm.

If we assume two processes described by a circular normal distribution f(φ|µ1, κ)
and f(φ|µ2, κ) with same concentration parameter κ but different mean direction
parameter µ1 and µ2, the instantaneous log-likelihood can be written as:
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Fig. 4 Data (left), cumulative sum (middle), and decision function (right) for two sets of
temporal data following a circular normal distribution. The change point was set to τ = 50
in both experiments. The plots on the first row were generated with µ1 = 0, µ2 = 5min., σ =
25min. and h = 2.9 (horizontal line). The plots on the second row were generated with
µ1 = 0, µ2 = 10min., σ = 10min. and h = 6.2.

si = ln
f(φi|µ2, κ)

f(φi|µ1, κ)
= κ[cos φi (cos µ2 − cos µ1)

+sin φi (sin µ2 − sin µ1)]

An MLE for si before the change point (i < τ) is proportional to:

ŝi(φ̂i = µ1) ∝ cos(µ1 − µ2)− 1 ≤ 0 (4)

In the same way, an MLE for si after the change point (i ≥ τ) is proportional
to:

ŝi(φ̂i = µ2) ∝ 1− cos(µ1 − µ2) ≥ 0 (5)

Regarding to Si, it is a sum of negative values before de change point (4), and
of positive values after the change point (5), so Si will have a local minimum in
the interval [1, N ].

In summary, the most likely value for the instantaneous log-likelihood before
the change point is less than zero. On the contrary, the most likely value for
the instantaneous log-likelihood after the change point is great than zero, so the
cumulative sum will decrease before the change point and will increase after the
change point. Fig. 4 shows a set of plots with an example for the cumulative sum
Si and decision function gi for processes following a circular normal distribution,
when an abrupt change was introduced at time τ = 50.



Anomaly detection on Activities of Daily Living with Linear Drift 13

Fig. 5 Data (left), cumulative sum (middle), and decision function (right) for two sets of
temporal data following a circular normal distribution. The change point was set to τ =
50 in both experiments. The plots on the first row were generated with σ = 25min., β =
0.25min. per day and h = 2.9 (horizontal line). The plots on the second row were generated
with σ = 10min., β = 0.25min. per day and h = 6.2.

3.3 Linear trend detection and change point estimation

Let’s assume an elderly person living alone and continuously monitored at her
own home [36,95]. The monitoring system detects a drift in her daily routines, for
example time to bed, wake up time and time to go out of home. Health practi-
tioners decide her to answer the Mini-Mental State Examination, and the results
suggest that she is starting a cognitive decay. Some time later, she is diagnosed
with AD and starts to take medication under medical prescription. Again, some
time later the monitoring system detects another drift in her daily routine which
might be related with de medication provided by health practitioners [29]. This
scenario describes an hypothetical case for the main contribution of our work, to
detect such a linear drift in the data for ADL.

If a process starts to follow a linear drift at event i0 = τ at rate β, it can be
modeled as:

θ(t ≤ τ) = θ1

θ(t > τ) = θ2 = θ1 + (i− τ)β

Note that the drift rate β is unknown, so some heuristic should be used to
detect that the process has started to follow a linear drift.

To detect that the process has started a linear drift, the following pair of
hypothesis is used:

HHH1 : θ = θ1, No change has happened.

HHH2 : θ = θ1 + δ, A change has happened.
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where HHH1 is the no change hypothesis, and HHH2 is the change hypothesis. If δ > 0
the change happened after time θ, on the contrary, if δ < 0 the change happened
before time θ. Without loss of generality, it will be assumed δ > 0 in the remainder
of this work. Hereafter, the parameter δ will be called the detector time.

Particularizing for the circular normal distribution, without loss of generality,
it can be assumed that µ1 = 0 and given that µ2 = δ, the instantaneous log-
likelihood in (4) becomes:

ŝi = κ[cos(φi)(cos(δ)− 1) + sin(φi)sin(δ)] (6)

A MLE for si before the change is proportional to:

ŝi ∝ cos(δ)− 1

so the MLE of the instantaneous log-likelihood is negative before the change, and
after the change is proportional to:

ŝi ∝ cos(iβ)(cos(δ)− 1) + sin(iβ)sin(δ)

this last expression is negative when tan(iβ) < 1−cos(δ)
sin(δ) and positive when tan(iβ) >

1−cos(δ)
sin(δ) . So at point tan(iβ) = 1−cos(δ)

sin(δ) the cumulative sum, and the decision func-
tion start to increase. Finally, the decision function will reach a given threshold
and it can be considered that a change has happened. Fig. 5 shows a set of plots
for the cumulative sum Si an the decision function gi for two processed following
a circular normal distribution when a linear drift was introduced at time τ = 50.

The next step after detecting the change is to estimate the rate of the process
after the change. In our case, once the change has been detected we define a series
of hypothesis HHHn at regular intervals ahead of the current value of θ (θ1,i>τ ), and
we use the classic CUSUM algorithm for each pair of consecutive hypothesis.

Formally, this is expressed in the following way. If we assume a linear trend in
the process, without loss of generality, we can define a set of W pairs of hypothesis
equally spaced (δ) in the parameter θ:

{
HHH1 : θ = θ1, No change has been produced .

HHH2 : θ = θ1 + δ, A change has been produced .{
HHH2 : θ = θ1 + δ, No change has been produced .

HHH3 : θ = θ1 + 2δ, A change has been produced .

· · ·

{
HHHW : θ = θ1 + (W − 1)δ, No change has been produced .

HHHW+1 : θ = θ1 +Wδ, A change has been produced .

The cumulative sum algorithm can be applied to each pair of consecutive hy-
pothesis, HHHw and HHHw+1 with w ∈ [1,W ]. The change point for each pair of
hypothesis can be estimated by:
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SNτ+1,w =
N∑
i=τ

ln
pθ1+wδ(Xi)

pθ1+(w−1)δ(Xi)

τ̂w = SN1,w − arg min
1≤τ≤N

Sτ1,w (7)

At any time the cumulative sum STτ+1,w reaches a minimum it means that
hypothesis HHHw+1 becomes valid and HHHw is no longer valid. This minimum is
reached, for the pair of hypothesis HHHw and HHHw+1, at τ̂w, as stated by (7). As the
out-of control process evolves at rate β over time, the minima τ̂w should evolve
with the same rate, so we can write:

∂τ̂w
∂w

=
∂θ1,i>τ
∂i

= β̂ (8)

Equation 8 is the key point of our proposed algorithm, if we are able to estimate
the linear trend rate of the minima for a set of pairs of hypothesis, we will be able
to measure the linear trend of the process after the change.

3.4 Simulated data generation

Random data sets were generated before the change point (τ) using a circular
normal distribution with constant mean direction µ1 and concentration parameter
κ, and with a white noise added to it N(0, ε):

yi(i ≤ τ)→ f(φ|µ1, κ) +N(0, σ);µ1 = cte;σ � µ1 (9)

after the change point, the mean direction µ2 parameter of the circular normal
distribution starts to follow a linear drift with rate β, the concentration parameter
κ does not change:

yi(i > τ)→ f(φ|µ2, κ) +N(0, σ);µ2 = µ1 + (i− τ)β;σ � µ1 (10)

Figure 5 shows, on the left, some realizations of simulated data.

4 Results

As stated in Section 2.4, anomalous activities occur rarely, and they are not ex-
pected in advance. These implies that it is difficult to find out any public ADL
database containing anomalous behaviors, and so it is indeed difficult to figure
out the rate for anomalous behaviors in ADLs. For this reason, in order to asses
the validity of the presented method, anomalous behavior data were simulated, as
done in related approaches (e.g. [88] and [82]). The simulated data were generated
following the expression presented in Section 3.4.

This section presents the results of applying our proposal for using the CUSUM
algorithm to a process following a circular normal distribution, according to the
procedures described above. The performance in abrupt change detection is first
presented and discussed, followed by the performance in linear trend detection.
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Table 4 Results for abrupt changes experiments. µafter and σ are set in minutes. The Mean

Run Length (MRL) and ¯̂τ are in days. False Alarms, Change Fails and τ̂ are in units as number
of experiments. Success is the percentage of successful experiments.

σ µafter h MRL ¯̂τ
False

Alarms
Change

Fails
τ̂

Fails
Success

40 5 1.2 90.76 ± 0.31 51.82 ± 0.35 1426 1760 134 66.80
40 10 2.5 90.01 ± 0.26 51.40 ± 0.27 681 969 88 82.62
40 15 3.7 85.84 ± 0.22 51.22 ± 0.21 351 361 34 92.54
40 20 5.2 83.25 ± 0.19 50.44 ± 0.16 106 107 20 97.67
40 25 6.7 80.01 ± 0.16 50.09 ± 0.12 31 32 5 99.32
40 30 9.1 79.71 ± 0.14 50.04 ± 0.09 0 5 2 99.93
30 5 1.5 88.78 ± 0.29 52.90 ± 0.32 1565 1116 90 72.29
30 10 3.4 88.79 ± 0.24 51.27 ± 0.23 392 593 44 89.71
30 15 5.2 83.08 ± 0.19 50.61 ± 0.16 93 125 24 97.58
30 20 7.7 80.84 ± 0.15 50.14 ± 0.11 14 20 6 99.60
30 25 9.4 75.01 ± 0.11 50.00 ± 0.07 2 0 0 99.98
30 30 10.4 69.71 ± 0.09 49.95 ± 0.05 0 0 0 100.0
25 5 1.9 88.85 ± 0.28 51.76 ± 0.30 1165 1093 83 76.59
25 10 4.1 85.49 ± 0.21 50.94 ± 0.19 232 365 34 93.78
25 15 6.8 82.35 ± 0.17 50.18 ± 0.12 22 57 6 99.15
25 20 9.8 77.97 ± 0.12 50.04 ± 0.08 0 4 1 99.95
25 25 10.4 69.44 ± 0.09 49.98 ± 0.05 0 0 0 100.00
25 30 10.7 63.95 ± 0.06 50.01 ± 0.04 0 0 0 100.00
20 5 2.4 88.13 ± 0.26 51.63 ± 0.27 774 891 83 82.52
20 10 5.1 82.35 ± 0.18 50.62 ± 0.15 96 120 26 97.58
20 15 8.2 75.97 ± 0.13 49.94 ± 0.09 5 5 0 99.90
20 20 11.4 71.60 ± 0.09 50.01 ± 0.05 0 0 0 100.00
20 25 10.4 62.52 ± 0.06 50.00 ± 0.03 0 0 0 100.00
20 30 10.5 58.78 ± 0.04 50.02 ± 0.02 0 0 0 100.00
15 5 3.4 87.42 ± 0.22 50.57 ± 0.21 331 582 74 90.13
15 10 7.6 80.15 ± 0.15 50.12 ± 0.10 10 20 2 99.68
15 15 10.1 68.81 ± 0.09 49.98 ± 0.05 0 0 0 100.00
15 20 10.3 60.94 ± 0.05 50.01 ± 0.03 0 0 0 100.00
15 25 10.9 57.38 ± 0.03 49.99 ± 0.02 0 0 0 100.00
15 30 10.5 54.92 ± 0.02 50.00 ± 0.01 0 0 0 100.00
10 5 5.4 84.67 ± 0.19 50.61 ± 0.16 90 152 23 97.35
10 10 10.2 69.25 ± 0.09 50.06 ± 0.05 0 0 0 100.00
10 15 10.3 58.80 ± 0.04 49.98 ± 0.02 0 0 0 100.00
10 20 11.5 55.48 ± 0.02 50.00 ± 0.01 0 0 0 100.00
10 25 11.7 53.45 ± 0.02 50.00 ± 0.01 0 0 0 100.00
10 30 10.5 52.02 ± 0.01 50.00 ± 0.01 0 0 0 100.00

The σ values for experimentation where chosen to be in accordance with those
data extracted from the experimentation with real data sets presented in Section
3.1 (Tables 2 and 3) which ranges between 13.40 ≤ σ ≤ 38.05 minutes for the
Milan data set, and between 8.80 ≤ σ ≤ 36.69 minutes for the Aruba data set.

4.1 Abrupt change detection and change point estimation in a process following
a circular normal distribution

The CUSUM algorithm was developed to estimate the change point in time when
a process following a known pdf defined by some parameters, suddenly changes the
value of one of its parameters. In the case of circular normal pdf such parameter
is µ, and it is assumed that κ is unchanged. Having into account the periodicity
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Fig. 6 Percentage of successful experiments as a function of decision function threshold (left).
MRL as a function of decision function threshold (right). For this particular experiment σ = 25
min.. For the first row µafter = 5 min.. For the second row µafter = 30 min..

of the circular normal distribution, without loss of generality it can be assumed
that µ = 0, in the case of the in-control process.

The first set of experiments were performed to asses the validity of the CUSUM
algorithm to detect a change in a time series when a sudden change happens. As
mentioned before, a case example is a sudden change in a person’s wake up time
due, for instance, to the beginning of a cold.

For each experiment 50 samples following a circular normal distribution were
generated with parameter µbefore = 0, and given as basis that 24 hours are 2π
radians. The change point in time was set at sample 50th in all cases. After the
change, 100 new samples following a circular normal distribution with parame-
ter µafter ranging from 5 minutes (0.022 radians) to 30 minutes (0.131 radians)
were generated. As it was previously stated, parameter κ, and equivalently σ, was
unchanged. For each combination of parameters, the experiment was repeated
10,000 times. The value for the threshold h must be carefully set: if the value
for the threshold is too low, a great number of false alarms could be detected;
on the opposite, if the value for the threshold is too high, the decision function
could never reach it. Fig. 6 shows how the percentage of successful experiments
and the Mean Run Length (MRL) depends on the value of the decision function
threshold (h). An experiment is considered successful if the CUSUM algorithm is
able at providing an estimate of the change point τ̂ . Table 4 shows the experimen-
tal results for various combination of σ (note the equivalence between σ and κ in
Table 1) and µafter, each rows presents the results when the maximum number of
successful experiments was reached (column labelled with Success). The MRL is
the interval between the experiment start and the change detection. ¯̂τ is the mean
of the estimated change point. A False Alarms happens when a change is detected
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Fig. 7 Percentage of successful experiments vs. threshold for different detector times δ in
minutes. σ = 25min. for all experiments. The dashed line is for 90% of successful experiments.

before the real change has happened, namely when τ̂ < τ . Change Fails is the
number changes that were not detected by the algorithm. τ̂ Fail happens when a
change is correctly detected but the algorithm is unable at estimating the change
point τ̂ . Finally, Success experiments is the percentage of experiments which were
able at estimating the change point τ̂ .

In all experiments, the mean estimated change point ¯̂τ is quite close to the
real value τ = 50. The differences between the real value for the change point τ
and its estimated value ¯̂τ is within the range 0 ≤

∥∥τ − ¯̂τ
∥∥ ≤ 1.82 ± 0.35 for all

performed experiments. The biggest difference corresponds to σ = 40min. and
µafter = 5min., which is the most challenging case tested, since there is a high
variability in the data (σ = 40min.), and the abrupt change in the mean µ is
only 5 minutes. In the case example presented above, if a person’s wake up time
would be 7:00 a.m. with a dispersion of 40 minutes, and she suddenly change her
wake up time 5 minutes, namely 7:05 a.m., the CUSUM algorithm might detect
the change after an average of 41 days, and estimate the day of the change with
an error of only 2 days.

For each pair of values (µ, σ) the value for threshold h can be set in order to
achieve the maximum percentage of successful experiments increases when µafter
increases also. On the opposite, the MRL, the number of False alarms, the number
of Change Fails, the number of τ̂ Fails and the number of successful experiments
decreases when µafter increases.

From the results presented in Table 4 it can be stated that the CUSUM algo-
rithm for abrupt change detection can be successfully applied to data following a
curcular normal distribution within the parameter values tested.
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Table 5 Mean Run Length (MRL) and mean change point estimate ¯̂τ for same percentage of
successful experiments in the case of an abrupt change. Note that both variables are approxi-
mately the same regardless the time detector δ. The values were set to µ = 0 and σ = 25min.
for all experiments. Each experiment with same parameters was performed 10,000 times. Light
gray rows highlights experiments with the same pair of time detector δ and threshold h. There
was no change fails in any experiment.

β δ h MRL ¯̂τ
False

Alarms
τ̂

Fails
Success

0.25 2.5 1.2 90.52 ± 0.17 65.17 ± 0.10 749 160 90.91
0.25 5.0 2.0 90.43 ± 0.17 65.08 ± 0.10 919 173 89.08
0.25 7.5 2.6 91.25 ± 0.17 65.26 ± 0.10 959 114 89.27
0.25 10.0 3.2 93.95 ± 0.17 66.07 ± 0.10 798 118 90.84
0.5 2.5 1.2 78.59 ± 0.11 55.65 ± 0.16 705 188 91.07
0.5 5.0 2.0 78.11 ± 0.11 55.79 ± 0.16 917 154 89.29
0.5 7.5 2.6 78.37 ± 0.11 55.92 ± 0.16 902 151 89.47
0.5 10.0 3.2 79.73 ± 0.11 56.05 ± 0.16 795 130 90.75
0.75 2.5 1.2 73.07 ± 0.08 51.38 ± 0.14 752 210 90.38
0.75 5.0 2.0 72.63 ± 0.08 51.94 ± 0.14 871 155 89.74
0.75 7.5 2.6 72.71 ± 0.08 51.93 ± 0.14 906 160 89.34
0.75 10.0 3.2 73.58 ± 0.08 52.11 ± 0.14 763 127 91.10
1.0 2.5 1.2 69.94 ± 0.07 49.67 ± 0.13 699 198 91.03
1.0 5.0 2.0 69.44 ± 0.07 49.88 ± 0.13 890 180 89.30
1.0 7.5 2.6 69.41 ± 0.07 50.18 ± 0.13 965 143 88.92
1.0 10.0 3.2 69.90 ± 0.07 50.08 ± 0.13 785 152 90.63
1.5 2.5 1.2 66.06 ± 0.05 47.37 ± 0.12 767 184 90.49
1.5 5.0 2.0 65.61 ± 0.05 47.66 ± 0.12 899 175 89.26
1.5 7.5 2.6 65.51 ± 0.05 47.90 ± 0.12 995 149 88.56
1.5 10.0 3.2 65.71 ± 0.05 47.87 ± 0.12 800 147 90.53
2.0 2.5 1.2 63.76 ± 0.04 46.48 ± 0.11 735 182 90.83
2.0 5.0 2.0 63.31 ± 0.04 46.58 ± 0.11 882 172 89.46
2.0 7.5 2.8 63.75 ± 0.04 46.50 ± 0.11 739 191 90.70
2.0 10.0 3.2 63.39 ± 0.04 46.80 ± 0.11 776 168 90.56

4.2 Linear trend detection and change point estimation in a process following a
circular normal distribution

The first step for detecting a change in a process following a circular normal
distribution with a linear drift is to use the log-likelihood (Eq. 6), so a value
for the detector time δ should be chosen. For doing that, we present first some
experimental insights.

Fig. 7 shows the number of successful experiments with regards the threshold h
set, for the values δ ∈ {2.5, 5.0, 7.5, 10.0} in minutes. Note that the same percentage
of successful experiments were achieved for different values of the detector time δ.
So the first insight is that, once the detector time δ is set, the threshold h can be
chosen to approximately achieve the same percentage of successful experiments.

Table 5 shows the values for the MRL and the mean estimated change point
¯̂τ for values of the linear drift rate β ∈ {0.25, 0.5, 0.75, 1.0, 1.5, 2.0} minutes per
day. Once the detector time δ was set, the value for the threshold h was chosen
to approximately achieve the same percentage of successful experiments in all
cases (90%). Note that, for the same linear drift rate β, and once the values
for time detector δ and threshold h have been set to approximately achieve the
same percentage of successful experiments, the differences in the MRL and the
mean of the estimated change point ¯̂τ are small. For example, in the case of
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Table 6 MRL and mean change point estimate ¯̂τ for different combinations of σ in minutes,
and drift rate β in minutes per day, in the case of linear drift. The time of the detector was set
to δ = 2.5min. in all experiments. Threshold h was set to approximately get 90% of successful
experiments. Each experiment with same parameters was performed 10,000 times.

σ β h
Mean Run

Length
¯̂τ

False
Alarms

τ̂
Fails

Success

40 0.25 0.8 99.80 ± 0.21 73.11 ± 0.25 670 188 90.68
40 0.50 0.8 86.28 ± 0.14 61.45 ± 0.19 730 187 90.83
40 0.75 0.8 79.54 ± 0.11 55.83 ± 0.16 668 223 91.09
40 1.00 0.8 75.75 ± 0.09 53.28 ± 0.15 660 236 91.04
40 1.50 0.8 70.82 ± 0.07 49.69 ± 0.13 648 234 91.18
40 2.00 0.8 70.82 ± 0.07 49.69 ± 0.13 648 234 91.18
30 0.25 1.0 93.33 ± 0.18 67.97 ± 0.22 829 186 89.83
30 0.50 1.0 80.80 ± 0.12 57.83 ± 0.17 745 207 90.48
30 0.75 1.0 80.80 ± 0.12 57.83 ± 0.17 745 207 90.48
30 1.00 1.0 71.72 ± 0.07 50.99 ± 0.13 775 168 90.57
30 1.50 1.0 71.72 ± 0.07 50.99 ± 0.13 775 168 90.57
30 2.00 1.0 71.72 ± 0.07 50.99 ± 0.13 775 168 90.57
25 0.25 1.2 90.27 ± 0.17 64.94 ± 0.22 720 200 90.80
25 0.50 1.2 78.61 ± 0.11 55.56 ± 0.17 761 180 90.59
25 0.75 1.2 73.16 ± 0.08 51.72 ± 0.14 731 185 90.84
25 1.00 1.2 69.92 ± 0.07 49.66 ± 0.13 758 202 90.40
25 1.50 1.2 66.19 ± 0.05 47.71 ± 0.12 751 191 90.58
25 2.00 1.2 63.80 ± 0.04 46.42 ± 0.11 735 183 90.82
20 0.25 1.4 85.64 ± 0.15 61.37 ± 0.20 874 181 89.45
20 0.50 1.4 74.99 ± 0.09 53.43 ± 0.15 831 181 89.88
20 0.75 1.4 70.33 ± 0.07 50.40 ± 0.13 823 194 89.83
20 1.00 1.4 67.45 ± 0.06 48.44 ± 0.13 836 194 89.70
20 1.50 1.4 64.04 ± 0.05 46.88 ± 0.11 859 178 89.63
20 2.00 1.4 62.01 ± 0.04 46.09 ± 0.11 822 165 90.13
15 0.25 1.8 81.38 ± 0.12 57.60 ± 0.17 762 184 90.54
15 0.50 1.8 71.93 ± 0.07 50.95 ± 0.14 778 195 90.27
15 0.75 1.8 67.64 ± 0.06 48.35 ± 0.13 745 181 90.74
15 1.00 1.8 65.09 ± 0.05 47.33 ± 0.12 754 183 90.63
15 1.50 1.8 62.06 ± 0.04 45.89 ± 0.11 783 158 90.59
15 2.00 1.8 60.30 ± 0.03 45.55 ± 0.10 802 140 90.58
10 0.25 2.4 75.84 ± 0.09 53.61 ± 0.15 783 146 90.71
10 0.50 2.4 67.68 ± 0.06 48.56 ± 0.13 817 175 90.08
10 0.75 2.4 64.18 ± 0.04 46.73 ± 0.12 792 182 90.26
10 1.00 2.4 62.00 ± 0.04 46.02 ± 0.11 775 152 90.73
10 1.50 2.4 59.51 ± 0.03 45.36 ± 0.10 756 131 91.13
10 2.00 2.4 58.04 ± 0.02 45.19 ± 0.09 805 126 90.69

β = 0.25 minutes per day, the maximum of the MRL is 93.95± 0.17 (δ = 10, h =
3.2), and the minimum of the MRL is 90.43 ± 0.17 (δ = 5.0, h = 2.0), which
difference is 3.53 ± 0.34(3.89%). For the estimated change point τ̂ the maximum
is 66.07 ± 0.10(δ = 10.0, h = 3.2), the minimum is 65.08 ± 0.10(δ = 5.0, h = 2.0),
which difference is 0.99± 0.20(1.52%). In the case of β = 2.0 minutes per day, the
maximum of the MRL is 63.76± 0.04 (δ = 2.5, h = 1.2), and the minimum of the
MRL is 63.31± 0.04 (δ = 5.0, h = 2.0), which difference is 0.45± 0.08(0.71%). For
the estimated change point τ̂ the maximum is 46.80± 0.11(δ = 10.0, h = 3.2), the
minimum is 46.48± 0.11(δ = 2.5, h = 1.2), which difference is 0.32± 0.22(0.69%).
There was no change fails in any experiment. This is the second insight, if the
values for δ and h are set to achieve some percentage of successful experiments,
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Fig. 8 Percentage of successful experiments vs. threshold for different drift rates in minutes
per day. σ = 25min. and tdetector = 5.0min. for all experiments.

the MRL and the mean of the estimated change point ¯̂τ are approximately the
same for any linear drift rate β.

As a conclusion, and taken the two previous insights, it can be stated that for
any given time detector δ, the threshold h can be set to achieve a percentage of
successful experiments, which in turn gives the same result for the MRL and the
mean estimated change point ¯̂τ .

A third important insight can be extracted from Table 5 if one looks at the
light grey highlighted rows: once the time detector δ is set, and independently of
the linear drift rate β, the threshold h can be chosen to obtain the same percentage
of successful experiments. Fig. 8 shows this behavior in detail: for the six values of
β ∈ {0.25, 0.50, 0.75, 1.00, 1.50, 2.00} minutes per day, the percentage of successful
experiments as a function of the threshold h are quite similar (the profile of the six
plots behave the same). Therefore, it can be concluded that once the detector time
δ is set, the threshold h can be chosen to achieve the same percentage of successful
experiments regardless the linear drift rate β of the process. This conclusion is
important because it allows us to compare the MRL and mean estimated change
point¯̂τ for different linear drift rates β just setting the threshold h, which in turn
sets the percentage of successful experiments.

Table 6 shows the MRL and the mean estimated change point ¯̂τ for different
values of σ in minutes, and linear drift rate β in minutes per day. For all exper-
iments the change point was set to τ = 50, the detector time was set to δ = 2.5
minutes, and the threshold h was chosen to approximately achieve 90% of suc-
cessful experiments. Note that the value for the chosen threshold was the same
for all linear drift rates β for each value of σ, as it was concluded in the former
paragraph.
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The biggest MRL in Table 6 is 99.80± 0.21, which corresponds to a value for
σ = 40 minutes, and linear drift rate β = 0.25 minutes per day. In this case,
the change was detected 49.80 days after it happened. After these 49.80 days, the
mean of the circular normal process is µ = 49.80 × 0.25 = 12.45 minutes. This
could seem a big delay for detecting an anomalous behavior, but it is not so big
when compared with the value of σ = 40min. in this case, in fact, this is the most
challenging experiment in the series of performed experiments. Also, all processes
were random, and the drift rate was linear, so the difference between the original
mean and the final mean increments 0.25 minutes per day only. In the case of
σ = 10min., and β = 0.25 minutes per day, the MRL was 75.84 ± 0.09, so the
change in the process was detected 25.84 days after it happened, and the mean of
the process at this time was µ = 6.25 minutes. Note the same behavior for other
values of σ and β from Table 6, the smaller the value for σ the quicker the change
was detected. Also, for the same value of σ, when the linear drift increases the
MRL decreases.

The biggest difference between the real value of the change point τ (50) and the
mean estimated change point ¯̂τ is 23.11 pm0.25 days, corresponds to σ = 40min.
and β = 0.25 minutes per day, which is the most challenging case tested: there
is a high variability in the data σ and a low drift rate β. The second biggest
difference is 17.97 which corresponds to σ = 30min. and β = 0.25 minutes per
day. In the other cases, the differences ranges between 0.40 ≤

∥∥τ − ¯̂τ
∥∥ ≤ 14.94

days. The average difference between the real value of the change point and the
mean estimated change point is 4.90−1.98

+3.17 days for all set of experiments performed.
The results from the experiments show that the proposed method can be used

to first detect, and then estimate a linear change in data series following a circular
normal distribution.

5 Conclusions

A new method to detect linear behavior drift in processes following a circular
normal distribution is presented in this work. This method is based on the used
of multiple hypothesis to estimate the linear drift rate of a process following a
circular normal distribution. The method was applied on public ADLs data sets
which were modeled as mixtures of circular normal distribution. The method is
able at detecting first, and then estimate, a change point in a time series. The
circular normal distribution is used to model periodic data, which is the case of
Activities of Daily Living. Experimental results have shown the validity of the
method in detecting and estimating the change point in time.

Some examples of application of the proposed method are: to detect, and esti-
mate, the start of a cognitive or physical decay of a monitorized older adult; or to
detect, and estimate, the change in ADL due to a replacement in the medication
a person takes. These may be of great interest in the health realm, as it can help
health practitioners to better understand behavioural changes in patients.

A key point in the method is to select a threshold h to detect the change,
the lower the threshold, the more false positives detected. Taken this insight, a
manifold strategy can be developed to supervise the behavior of a monitorized
person. First, a low threshold can be used to check for change in ADL, if the
threshold was reached, a first level of alarm can be set, and a particular supervision
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of the person could be established; then the threshold was increased, and if the new
threshold was reached a higher level alarm could be set and special supervision,
or even some kind of intervention, could be placed.

Although the MRL could seem quite long in the tested challenging case (41
days for β = 0.25 and σ = 40min.), this delay is not so long when compared with
the time between reported onset of symptoms and diagnosis, which is reported as
2.8 years [96].

In order to asses the validity of the algorithm using real data, we have planned
to perform a set of experiments with volunteers. The data will be get, in part,
with an improved version of the acquisition system developed by the members of
our research group [97].
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50. López-de Ipiña K, Alonso JB, Solé-Casals J, Barroso N, Henriquez P, Faundez-Zanuy
M, et al. On Automatic Diagnosis of Alzheimer’s Disease Based on Spontaneous Speech
Analysis and Emotional Temperature. Cognitive Computation. 2015 Feb;7(1):44–55.

51. Impedovo D, Pirlo G, Vessio G, Angelillo MT. A Handwriting-Based Protocol for Assessing
Neurodegenerative Dementia. Cognitive Computation. 2019 May;.

52. Shewhart WA. Economic control of quality of manufactured product. vol. 509. ASQ
Quality Press; 1931.

53. Roberts S. Control chart tests based on geometric moving averages. Technometrics.
1959;1(3):239–250.

54. Basseville M, Nikiforov IV. Detection of Abrupt Changes: Theory and Application. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc.; 1993.

55. Cheng CS. A multi-layer neural network model for detecting changes in the process mean.
vol. 28; 1995. p. 51 – 61.
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71. van Kasteren TL, Englebienne G, Kröse BJ. Human activity recognition from wireless sen-
sor network data: Benchmark and software. In: Activity recognition in pervasive intelligent
environments. Springer; 2011. p. 165–186.

72. Mardia KV, Jupp PE. Directional statistics. vol. 494. John Wiley & Sons; 2009.
73. Diethe T, Twomey N, Flach P. Bayesian modelling of the temporal aspects of smart home

activity with circular statistics. In: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer; 2015. p. 279–294.

74. Chinellato E, Mardia K, Hogg D, Cohn A. An Incremental von Mises Mixture Framework
for Modelling Human Activity Streaming Data. In: International Work-Conference on
Time Series Analysis (ITISE 2017);. p. 379–389.

75. Brunsdon C, Corcoran J. Using circular statistics to analyse time patterns in crime inci-
dence. Computers, Environment and Urban Systems. 2006;30(3):300 – 319.

76. Kubiak T, Jonas C. Applying circular statistics to the analysis of monitoring data. Euro-
pean Journal of Psychological Assessment. 2007;23(4):227–237.

77. Franco C, Demongeot J, Villemazet C, Vuillerme N. Behavioral telemonitoring of the
elderly at home: Detection of nycthemeral rhythms drifts from location data. In: 2010 IEEE
24th International Conference on Advanced Information Networking and Applications
Workshops. IEEE; 2010. p. 759–766.

78. Jammalamadaka SR, Sengupta A. Topics in circular statistics. vol. 5. World Scientific;
2001.

79. Yin X, Shen W, Samarabandu J, Wang X. Human activity detection based on multiple
smart phone sensors and machine learning algorithms. In: 2015 IEEE 19th International
Conference on Computer Supported Cooperative Work in Design (CSCWD); 2015. p.
582–587.

80. Yin J, Yang Q, Pan JJ. Sensor-Based Abnormal Human-Activity Detection. IEEE Trans-
actions on Knowledge and Data Engineering. 2008 Aug;20(8):1082–1090.

81. van Kasteren. Datasets for Activity Recognition; accessed 10/26/2017. Available from:
https://sites.google.com/site/tim0306/datasets.



Anomaly detection on Activities of Daily Living with Linear Drift 27

82. Forkan ARM, Khalil I, Tari Z, Foufou S, Bouras A. A context-aware approach for long-
term behavioural change detection and abnormality prediction in ambient assisted living.
Pattern Recognition. 2015;48(3):628 – 641.

83. Zhu C, Sheng W, Liu M. Wearable Sensor-Based Behavioral Anomaly Detection in Smart
Assisted Living Systems. IEEE Transactions on Automation Science and Engineering.
2015;12:1225–1234.

84. Duong TV, Bui HH, Phung DQ, Venkatesh S. Activity Recognition and Abnormality De-
tection with the Switching Hidden Semi-Markov Model. In: Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) -
Volume 1 - Volume 01. CVPR ’05. Washington, DC, USA: IEEE Computer Society; 2005.
p. 838–845.

85. Shin JH, Lee B, Park KS. Detection of Abnormal Living Patterns for Elderly Living Alone
Using Support Vector Data Description. IEEE Transactions on Information Technology
in Biomedicine. 2011 May;15(3):438–448.

86. Palaniappan A, Bhargavi R, Vaidehi V. Abnormal human activity recognition using SVM
based approach. In: 2012 International Conference on Recent Trends in Information Tech-
nology; 2012. p. 97–102.

87. Riboni D, Bettini C, Civitarese G, Janjua ZH, Helaoui R. SmartFABER: Recognizing fine-
grained abnormal behaviors for early detection of mild cognitive impairment. Artificial
Intelligence in Medicine. 2016;67(Supplement C):57 – 74.

88. Virone G, Noury N, Demongeot J. A system for automatic measurement of circa-
dian activity deviations in telemedicine. IEEE Transactions on Biomedical Engineering.
2002;49(12):1463–1469.

89. Fahad LG, Rajarajan M. Anomalies detection in smart-home activities. In: Machine
Learning and Applications (ICMLA), 2015 IEEE 14th International Conference on. IEEE;
2015. p. 419–422.

90. Fisher NI. Statistical analysis of circular data. Cambridge University Press; 1995.
91. Cook DJ, Schmitter-Edgecombe M. Assessing the quality of activities in a smart environ-

ment. Methods of information in medicine. 2009;48(05):480–485.
92. Cook DJ. Learning setting-generalized activity models for smart spaces. IEEE intelligent

systems. 2010;2010(99):1.
93. Hornik K, Grün B. movMF: an R package for fitting mixtures of von Mises-Fisher distri-

butions. Journal of Statistical Software. 2014;58(10):1–31.
94. Kullback S, Leibler RA. On Information and Sufficiency. The Annals of Mathematical

Statistics. 1951;22(1):79–86.
95. Dawadi PN, Cook DJ, Schmitter-Edgecombe M, Parsey C. Automated assessment of

cognitive health using smart home technologies. Technology and Health Care. 2013
jan;21(4):323–343.

96. Brookmeyer R, Corrada MM, Curriero FC, Kawas C. Survival following a diagnosis of
Alzheimer disease. Archives of neurology. 2002;59(11):1764–1767.

97. Belmonte-Fernández Ó, Puertas-Cabedo A, Torres-Sospedra J, Montoliu-Colás R, Trilles-
Oliver S. An indoor positioning system based on wearables for ambient-assisted living.
Sensors. 2017;17(1):36.


