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Abstract

Nanoparticles (NPs) exhibit remarkable photothermal conversion efficiency under op-

tical illumination. This light-induced heating on NPs is interesting in many different

applications, such as solar radiation absorption in nanofluids, which the present work fo-

cuses on. Consequently, mastering the temperature increase undergone by NPs and the

surrounding media is extremely relevant today. As nanothermometry measurements of a

single NP are hard to obtain, numerical simulations can contribute to better understand

the physical phenomena involved in light-induced heating. In this vein, the current work

presents theoretical and numerical formulations to predict the heating of optically ex-

cited NPs. Theoretically, a thermodynamic approach is conducted to obtain balance and

constitutive equations. These equations are numerically discretised in the finite element

method and implemented into a research code. The main novelty of the present work

lies in developing, from a multiphysics perspective, a time domain formulation capable

of modelling instantaneous dissipation that can be easily extended to account for more

physical phenomena. Finally, the numerical model is validated by comparing analytical

and numerical results, and maximum values of 0.0014 (%) of relative error between them

are reached. Then some different analysis are performed for gold, silver and graphite

NPs of 20 (nm) in diameter to characterise the temperature increase they produce in the

surrounding medium (water) when optically excited at a wavelength of 400 (nm) and a

laser intensity of 5×104(W/cm2) –silver NPs exhibiting the most significant temperature

increase. The influence of NP concentration on the increase of temperature in nanofluids
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is numerically assessed as well by testing values of NP concentration up to a maximum of

0.052 (%), which considerably enhances temperature increase. In conclusion, the present

numerical tool could be used to predict light-induced heating in NPs, which could com-

plement and reduce the number of experiments for optimising the photothermal efficiency

of solar nanofluids.

Keywords: Finite Element Method, Energy conversion, Light-to-heat, Multiphysics,

Nanoparticles

1. Introduction

Nowadays, society’s development is directly related to consumption of energy: gen-

erating and supplying energy are vital for human current lifestyle. However, producing

that energy sustainably is of key importance to stop climate change and to preserve our

natural environment for future generations. For this reason, use of renewable energies is

increasing to take advantage of natural resources (inexhaustible on the human timescale)

to produce clean energy. Of the wide variety of renewable energies, solar energy is par-

ticularly interesting for its enormous potential; for instance, it is estimated that around

30 minutes of solar irradiation on Earth equals one-year of the world’s energy demand

[1]. Although there are several solar energy technologies [2], the current work focuses on

solar thermal energy.

Solar thermal energy is the name given to the thermal energy obtained from solar

radiation. Its working principle consists of capturing the energy of light on an absorbing

surface to transfer that energy to a heat carrier fluid [3]. One of the most widely used

technologies to harness solar energy by converting light into thermal energy is solar

collectors, for which two main collector configurations exist [4]:

� Tube-in-plate collectors, composed of selective absorbing surfaces that transfer

solar-radiated heat to the working fluid. However, this technology has one main
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drawback: the maximum temperature is reached on the collector’s surface, which

increases thermal losses [3]. Then the configuration of this collector cannot be

optimal because the biggest differences in temperature appear between the sur-

face collector and the carrier fluid flowing inside the tubes beneath. Therefore,

tube-in-plate collectors present low thermal conversion efficiency.

� Volumetric collectors [5], which absorb solar energy directly within the fluid itself.

For this purpose, thermal trapping tubes [6] are designed to allow light to pass

through them but to prevent radiation from leaving them. Thus better thermal

efficiencies can be achieved with this configuration due to less thermal losses.

Recently, nanoparticles (NPs) in dispersion in a base fluid have been used as the

effective absorption media in Direct Absorption Solar Collectors (DASC) [7]. More pre-

cisely, remarkable photothermal conversion efficiency has been observed for gold [8–10]

and silver [11–13] NPs owing to their surface plasmon resonance [11, 14]. Other non-

metallic materials, such as carbon, are also used as NPs as well because they present

good light absorbance throughout the solar spectrum [15].

This dispersion of nanoparticles in a base fluid receives the name of nanofluids [16],

which are one of the technologies being investigated in DASC systems. Commonly,

conventional base fluids (water and oils) are transparent, and hence, present low light

absorption. For this reason, NPs are dispersed inside fluid to enhance the mixture’s

optical properties. Currently, a specific branch of nanofluids, solar nanofluids [17, 18],

in which low concentrations of NPs absorb solar radiation, is being investigated for

DASC applications. Further details of using nanofluids in solar collectors are reported

in [15, 19–24].

Briefly, light-to-heat conversion in NPs may contribute to increase the efficiency of

volumetric collectors, and presently constitutes an active research line. Yet, despite

the fact that different nanoscale thermometry techniques are reported in the literature

[25–27], the light-induced heat transfer of a single NP cannot be easily measured exper-

imentally given the complexity of isolating a single NP and measuring the heat transfer
3



produced by light irradiation [28]. Therefore, numerical simulations can contribute to

predict the temperature increase generated by the incident radiation on NPs and its

surroundings to obtain the optimal solar nanofluid in volumetric collector applications.

Accordingly, the present work aims to state both theoretical and numerical formula-

tions to study and understand light-to-heat energy conversion.

Light-to-heat conversion in NPs appears to be governed by the same physics that

govern electromagnetic heating [29–31]. In this context, a sensible amount of the liter-

ature on light-to-heat conversion addresses the solution of this problem by adopting a

frequency-domain approach, as is often the case with electrical engineering and telecom-

munication communities.

The expression of power dissipation, Pd, produced by light-to-heat in the frequency

domain and usually found in the literature reads [29, 32–34]:

Pd =
1

2

[
γ

ωε0
+ ε′′

]
ωε0

∣∣∣Ê0

∣∣∣2, (1)

where γ, ω, ε′′ and
∣∣∣Ê0

∣∣∣ denote electric conductivity, excitation pulsation, imaginary

part of the complex relative permittivity and modulus of the complex amplitude of the

sinusoidal electric field, respectively. Parameter ε0 = 8.854 · 10−12 (F/m) is vacuum

permittivity. Note that: i) this expression is valid only for sinusoidal excitations; ii) the

term corresponding to Joule’s dissipation [35] is often omitted from the literature but

is added in the present work for the sake of completeness. In fact, equation (1) is the

root mean square (RMS) value of the power dissipation for sinusoidal excitation and,

consequently, provides a term-averaged dissipation instead of an instantaneous one.

Although both temporal and frequency domain approaches are valid, only one of

both formalisms should be used for the sake of consistency in coupled problems. Con-

sequently, the novelty of the present work lies in developing a thermodynamically con-

sistent framework in the time domain from a multiphysics perspective to account for

time-instantaneous dissipation. Therefore, the present formalism can be extended easily
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to include more phenomena.

Three approaches exist in the literature to derive the source term in the energy balance

responsible for light-to-heat conversion, often referred to as power loss term:

� The electrodynamic approach [34], which considers that the total current displace-

ment stems from two different contributions: one due to the electric field and the

other resulting from the remnant displacement current. The latter accounts for

both partial energy storage in the medium and the power loss term behind mi-

crowave heating.

� The equivalent circuit approach [34], which is mainly used by the electric engineer-

ing community and establishes an analogy between the energy of an electric field

and that of an electric circuit composed of capacitors and a resistor. The latter

stands for the dissipation term in light-to-heat conversion.

� Non-equilibrium thermodynamic (NET) formalism, for which two different tech-

niques can be contemplated:

– The standard NET [36–38], based on the local equilibrium assumption and

the formulation of the entropy balance to derive transport equations.

– The hidden variable technique [39, 40], which consists of enlarging the set of

thermodynamic variables of the problem to include further irreversible con-

tributions in the formalism at the expense of increasing the number of phe-

nomenological coefficients to be experimentally measured.

The standard NET approach is retained in this work; more precisely, the Debye model

[41] is used to describe the source of irreversibilities associated with the time lag between

polarisation and the electric field and, thus, responsible for light-to-heat conversion.

From a theoretical point of view, a robust thermodynamically consistent formulation

based on both the Equilibrium Thermodynamics (ET) [42] and the NET formalisms is

herein developed. In particular, the electric charge balance is obtained from Maxwell’s
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Mathematical operators Description

˙( ) First time derivative

(̈ ) Second time derivative

( ) First-order tensor

( ) Second-order tensor

( ) · ( ) Dot product

Table 1: Mathematical notation through the work.

laws and, afterwards, energy and entropy balances are stated to obtain transport (also

called constitutive) equations.

In numerical terms, the set of two coupled partial differential equations is discretised

in the Finite Element (FE) method [43]. Indeed, a three-dimensional, monolithic and

non-linear formulation based on residuals is developed by using eight-noded brick ele-

ments with two degrees of freedom per node, namely voltage and temperature. Then the

non-linearities due to quadratic dependence on the electric field are solved by the Newton-

Raphson algorithm and the time integration by the standard Newmark-β scheme.

Finally, the numerical formulation is implemented into the research code FEAP [44]

and is validated against one-dimensional closed solutions. Then, a three-dimensional

model of a single gold, a silver and a graphite nanoparticle (Au, Ag and G NP) is

studied to demonstrate the capabilities of the present formulation for studying light-to-

heat energy conversion.

The present work considers the following assumptions: i) NPs are poor light emit-

ters, namely the quantity of light-induced heat in the NP is generated mainly by light

absorption, as argued in [9]; ii) the scattering of incident light on NPs is negligible as

long as the size of NPs is small compared to the incident light wavelength [45]; iii) lack

of magnetic fields.
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2. Theoretical formulation

For the theoretical formulation, a material that couples thermal and electrical energies

and fills a body of domain Ω and boundary Γ, with its outward normal n is considered.

Light-to-heat energy conversion is described by a set of two coupled differential equations,

which are obtained from electromagnetism and thermodynamics formalisms. Table 1

summarises the mathematical notation used throughout.

2.1. Electromagnetism

Electromagnetism studies the interaction between electric E and magnetic H fields

with their sources and is grounded on a set of four empirical equations called Maxwell’s

laws, from which the following two are needed to establish the present formalism:

∇× E = −Ḃ, ∇×H = j + Ḋ. (2)

From left to right, the first and second equations (Faraday’s and Ampère’s laws)

relate the corresponding physical field to their vector sources: magnetic induction B,

free electric currents j and electric displacement D.

The electromagnetic formalism is completed by introducing three new equations,

which can be directly obtained from (2):

� Despite the fact that the electric field may derive from either vectorial or scalar

potentials, as argued in [46], the present work uses the scalar potential, –commonly

called voltage– V . This potential is obtained by applying the fundamental theorem

of vector calculus to Faraday’s law of (2) when magnetic fields are absent:

∇× E = 0⇒ E = −∇V. (3)

� Polarisation vector P , which takes into account the average of the electric dipolar
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momentum in polarisable media, reads:

P = D − ε0E. (4)

� The electric charge balance, which is obtained from Ampère’s law and by using a

vector calculus relation, which states that the divergence of the curl is always zero

for any vector field:

∇ ·
(
j + Ḋ

)
= 0. (5)

Note that, despite term Ḋ often being called displacement current, its physical

nature is not that of an electric current, but merely represents a time-varying

electric field.

2.2. Thermodynamics

Within the continuum thermodynamics framework, light-to-heat energy conversion

is a coupled interaction that deals with both reversible and irreversible processes; con-

sequently, both ET and NET formalisms are herein used.

In this context, electric displacement is decomposed as the sum of its reversible (su-

perscript r) and irreversible (superscript i) contributions: D = Dr +Di.

2.2.1. Equilibrium thermodynamics (ET)

Within the ET framework, the differential form of the energy balance reads:

dU = TdS + dW, (6)

where U , T , S and W denote internal energy, temperature, entropy and work, respect-

ively.

According to [46], dW may be expressed as the product between intensive variable
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E and its conjugate extensive variable Dr so that (6) becomes:

dU(S,Dr) = T dS + E · dDr. (7)

In order to obtain an amenable displacement-based FE formulation, a Legendre trans-

formation is applied to (7) and the Gibbs-like energy G becomes [47]:

dG(T,E) = −S dT −Dr · dE. (8)

In a first and good approximation, the explicit expression of G(T,E) may be obtained

by Taylor’s expansion as in [46] to give:

G (T,E) = −1

2
E · εr · E − C

[
T ln

(
T

T0

)
− (T − T0)

]
, (9)

where C, T0 and εr denote heat capacity, reference temperature and the reversible part of

the permittivity of the medium, respectively. Note that pyroelectric coupling is neglected

in the present study.

Finally, the reversible constitutive equations are calculated from (8) and (9) by using

standard ET procedures to give:

S = −∂G (T,E)

∂T

∣∣∣∣
E

= C ln

(
T

T0

)
, Dr = −∂G (T,E)

∂E

∣∣∣∣
T

= εr · E. (10)

2.2.2. Non-equilibrium thermodynamics (NET)

The NET formalism deals with irreversible processes and, consequently, the energy

rate balance of (7) becomes:

d

dt
U = T

d

dt
S +

d

dt
(Wr +Wi), (11)

where t denotes time. Furthermore, NET works with continuum equations and the three

terms of (11) must be expressed in continuum forms:
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� The term on the left-hand side of (11) reads:

d

dt
U =

∫
Ω

ρ u̇dΩ, (12)

where ρ and u̇ denote mass density and the specific internal energy rate, respect-

ively.

� The first term on the right-hand side of (11) may be expressed in a continuum form

by introducing heat flux q to give:

T
d

dt
S = −

∫
Γ

q · n dΓ = −
∫

Ω

∇ · q dΩ, (13)

where the divergence theorem has been used. Note that this equation represents

the reversible entropy, which is the heat flux exchanged through the boundary Γ.

� The second term on the right-hand side of (11) becomes:

d

dt

(
Wr +Wi

)
= −

∫
Γ

S · ndΓ +

∫
Ω

r dΩ, (14)

where S = E ×H is the Poynting vector and r is the heat source/sink term. By

applying the divergence theorem to the term on the right-hand side of (14) and

taking into account the vector identity ∇· (E×H) = H · (∇×E)−E · (∇×H) and

Ampère’s law of (2), the electromagnetic power, the first term on the right-hand

side of (14), reads when magnetic field is absent:

∫
Γ

S · ndΓ = −
∫

Ω

[
j · E + Ḋ · E

]
dΩ. (15)

As observed, the reversible power is given by Ḋ
r · E, while the irreversible one is

due to two contributions: Joule’s heating, mathematically represented by j ·E, and

polarisation heating, Ḋ
i · E.

By combining (15), (14), (13), (12) and (11), the NET energy balance when magnetic
10



fields are lacking becomes:

∫
Ω

ρu̇dΩ = −
∫

Ω

(
∇ · q − j · E − Ḋ · E − r

)
dΩ. (16)

The energy balance is expressed in terms of temperature for its numerical implement-

ation by substituting the rate of (7) and (10) (left) into (16):

∫
Ω

ρcṪ dΩ = −
∫

Ω

∇ · q dΩ +

∫
Ω

(
j + Ḋ

i
)
· E dΩ +

∫
Ω

r dΩ, (17)

where c represents the specific heat capacity.

At this point, the entropy balance must be calculated to obtain the material consti-

tution. For this purpose, the reversible energy rate given in (7) is inserted into (16) to

obtain:

∫
Ω

ρṡdΩ = −
∫

Ω

∇ ·
( q
T

)
dΩ +

∫
Ω

[
−q ·

(∇T
T 2

)
+
j · E
T

+
Ḋ

i · E
T

+
r

T

]
dΩ, (18)

where s refers to specific entropy and the chain rule is used for convenience to rewrite

the heat flux term.

According to [36, 37], the entropy balance in the NET context reads:

∫
Ω

ρṡdΩ = −
∫

Ω

∇ · js dΩ +

∫
Ω

σs dΩ, (19)

consequently, by comparing (18) and (19), entropy flux js and entropy production σs

may be explicitly expressed as:

js =
q

T
, σs = −q ·

(∇T
T 2

)
+
j · E
T

+
Ḋ

i · E
T

+
r

T
≥ 0. (20)

From σs of (20), it is concluded that entropy sources are due to three irreversible pro-

cesses:
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� Heat conduction, the first term on the right-hand side of the second equation

� Joule’s heating, the second term

� Polarisation heating, the third term

Finally, to obtain the material constitution (known as transport equations in the NET

context), the entropy production of (20) may be expressed in a first good and reasonable

approximation as a linear combination of fluxes and driving forces [36, 37]:

j = γ · E, q = −κ · ∇T, Ḋ
i

= εi · Ë, (21)

where γ and κ denote electrical and thermal conductivity, respectively. Coefficient εi

represents the irreversible part of the permittivity of the medium. This irreversible

permittivity depends on εs and ε∞, which are known as static and high-frequency relative

permittivity, respectively. In turn these two parameters are directly related to complex

relative permittivity εr (λ), which is the measurement generally provided in the material

databases. The relation among εs, ε∞ and εr (λ) is explicitly reported in Appendix A.

The detail of the derivation of the Debye relaxation law in the time domain in (21) (right)

and the definition of εr and εi are explicitly reported in Appendix B.

Solving coupled physical phenomena of different nature in a numerical and monolithic

approach, which is the intention of this work, could lead to accuracy issues given the

very different orders of magnitude of the involved physical quantities. Some numerical

problems regarding accuracy arise in the present formulation if (21) (right) is directly

used. Therefore, for the sake of numerical accuracy, this equation is re-expressed to avoid

such errors.

As the excitation electric field is assumed to be harmonic, the following relation

between the electric field and its second-time derivative holds:

Ë = −ω2E. (22)

12



By substituting (22) in (21) (right), the Debye relaxation law can be re-expressed as:

Ḋ
i

= −ω2εi · E = εi∗ · E, (23)

where the new coefficient εi∗ is defined for the sake of compactness in the notation as:

εi∗ = ε0
εs − ε∞
1 + ω2τ2

τω2I, (24)

where I is the identity tensor.

Hence, equation (23) proves more convenient numerically and will be henceforth used

even though, in essence, both (21) (right) and (23) describe the same physical phe-

nomenon.

2.3. Boundary conditions

The boundary conditions for the two degrees of freedom, namely T and V , are com-

posed of Dirichlet and Neumann expressions:

Dirichlet: T = T , V = V ,

Neumann: q · n = q, j · n = j, D · n = D,

(25)

where T , V , q, j and D are the prescribed temperature, voltage, thermal flux, electric

flux and electric displacement, respectively.

3. Finite element formulation

This section presents a variational approach in the FE context [43] to numerically

express the governing equations of light-to-heat conversion. For this purpose: i) the

balance equations are multiplied by test functions; ii) isoparametric discretisations are

introduced; iii) a residual-based formulation is obtained to solve the problem’s non-
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linearity (thermal sources quadratically depend on the electric field); iv) tangent matrices

are calculated.

3.1. Weak forms

As previously mentioned, weak forms are obtained by multiplying (5) and (17) by test

functions (δT, δV ) respectively, and by applying the divergence theorem and introducing

the Neumann boundary conditions of (25):

∫
Ω

∇δT · q dΩ−
∫

Ω

δTρcṪ dΩ−
∫

Γ

δT q · n dΓ +

∫
Ω

δT
(
j + Ḋ

i
)
· E dΩ

+

∫
Ω

δT r dΩ = 0,

∫
Ω

∇δV · (j + Ḋ) dΩ−
∫

Γ

δV
(
j + Ḋ

)
· ndΓ = 0.

(26)

3.2. Discretisations

At this point, continuum domain Ω with boundary Γ is discretised by using n elements

of domain Ωe and boundary Γe. For this purpose, the present work uses eight-noded brick

elements with standard Lagrange-type shape functions N to interpolate the degrees of

freedom and spatial coordinates.

T ≈ Nb a
T
b , δT ≈ Nb δa

T
b , ∇T ≈ Bb aTb , ∇δT ≈ Bb δaTb ,

V ≈ Nb a
V
b , δV ≈ Nb δa

V
b , ∇V ≈ Bb aVb , ∇δV ≈ Bb δaVb ,

(27)

where the Einstein summation convention is used, B represents the shape function gradi-

ent matrix, and ajb denotes the nodal values in a generic node b for each degree of freedom

j = {T, V }.
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3.3. Residuals

The discretisations of (27) are introduced into (26) to obtain the residuals in a generic

node a:

RT
a =

∫
Ωe

Ba q dΩe −
∫

Ωe

Na ρcNi ȧ
T
i dΩe −

∫
Γe

Na q ndΓe

−
∫

Ωe

Na

(
j + Ḋ

i
)
· Bi aVi dΩe +

∫
Ωe

Na r dΩe,

RV
a =

∫
Ωe

Ba ·
(
j + Ḋ

)
dΩe −

∫
Γe

Na

(
j + Ḋ

)
· ndΓe,

(28)

where q = −κ · BiaTi , j = −γ · BiaVi and Ḋ = Ḋ
r

+ Ḋ
i
, where Ḋ

r
= −εr · BiȧVi and

Ḋ
i

= −εi∗ · BiaVi .

3.4. Tangent matrices

Tangent matrices are obtained by standard FE procedures:

Kij
ab = −∂R

i
a

∂ajb
, Cijab = −∂R

i
a

∂ȧjb
,Mij

ab = −∂R
i
a

∂äjb
, (29)

where K, C andM denote the tangent stiffness, capacity and mass matrices, respectively.

Indices i and j refer to degrees of freedom and a and b to two generic nodes.

For the sake of clarity, tangent matrices are explicitly reported in Appendix C. Finally,

the monolithic assembled matrix becomes:
KT T

ab + c2 CT T
ab KT V

ab

0 KV V
ab + c2 CV V

ab




daTb

daVb

 =


RT

b

RV
b

 , (30)

where coefficient c2 is a scalar involving the parameters of the time integration scheme

as reported in [48].
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The present FE formulation is implemented into the research code FEAP [48], which

belongs to the University of California at Berkeley (USA). This software holds dummy

subroutines to add elements, while non-linear solvers and time integration algorithms are

already implemented. In particular, the present work uses the standard Newton-Raphson

algorithm to solve non-linearities and backward differences for the time integration.

4. Results

This section presents a validation of the present formulation to ensure proper imple-

mentation and, in addition, several study scenarios are presented to provide profounder

physical insight into the comprehension of light-to-heat conversion in solar nanofluids.

4.1. One-dimensional validation

In this section, the numerical code is compared to a simple one-dimensional, time-

independent excitation and steady-state analytical solution developed by the authors and

reported in Appendix D. The one-dimensional domain and its boundary conditions are

shown in Figure 1:

� The length of the domain is L = 0.1 (m).

� T1 = 303.15 (K) and V1 = 0 (V) denote prescribed values on the left-end.

� T2 = 353.15 (K) and V2 = {0.05, 0.1, 0.2} (V) on the right-end.

T1

x

T2

V1 V2

L

Figure 1: Geometry and boundary conditions of the one-dimensional domain used for the validation of
the numerical model.

For the validation, gold (Au) is considered because it is one of the most frequently used

materials for light-to-heat conversion in NPs. The material properties of Au are obtained
16



from [49–53] and summarised in Table 2. Note that the relative permittivity values

εr (λ) = ε/ε0 provided in Table 2 are expressed in complex form, as in the literature, at

a wavelength λ = 400 (nm) and i represents the imaginary unit.

Material Properties Value Units

Gold (Au)

ρ 19320 kg/m3

c 131.4 J/ (kg ·K)

κ 312 W/ (m ·K)

γ 3.17 · 107 (Ω ·m)−1

εr (λ) −1.4421− 6.3962 i -

n (λ) 1.5992 + 1.9998 i -

Silver (Ag)

ρ 10490 kg/m3

c 240.49 J/ (kg ·K)

κ 420 W/ (m ·K)

γ 4.42 · 107 (Ω ·m)−1

εr (λ) −3.3668− 0.7122 i -

n (λ) 0.1930 + 1.8450 i -

Graphite (G)

ρ 2100 kg/m3

c 1041.36 J/ (kg ·K)

κ 390 W/ (m ·K)

γ 2 · 103 (Ω ·m)−1

εr (λ) 2.2285− 3.1024 i -

n (λ) 1.7390 + 0.8920 i -

Water (H2O)

ρ 988.037 kg/m3

c 4176.84 J/ (kg ·K)

κ 0.645 W/ (m ·K)

γ 5.5 · 10−6 (Ω ·m)−1

εr (λ) 1.7929− 5 · 10−9 i -

n (λ) 1.3390 + 1.9 · 10−9 i -

Table 2: Material properties for different materials.

Figure 2 compares the analytical (solid lines) and numerical solutions (solid circles)

for T and V distributions in the study domain. As observed, an excellent agreement

is reached between the analytical and numerical solutions for this simple validation; the
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maximum relative error is 0.0014 (%). In addition, the non-linearity due to the quadratic

dependence of Joule’s heating is solved by 3 iterations of the Newton-Raphson algorithm.

This non-linearity can be observed in the quadratic distribution of temperature shown

in Figure 2 (left).

0 0.02 0.04 0.06 0.08 0.1

400

600

800

x(m)

T
(K

)

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

x(m)

V
(V

)

Analytical; V2 = 0.05 (V ) Analytical; V2 = 0.1 (V )

Analytical; V2 = 0.2 (V ) Numerical

Figure 2: Comparison of the steady-state analytical and numerical distributions of temperature (left)
and voltage (right) along the one-dimensional domain shown in Figure 1 for three different values of
prescribed voltage V2 = {0.05, 0.1, 0.2} (V) at the right end of the geometry.

4.2. Three-dimensional simulation

This section presents a three-dimensional simulation of an Au NP surrounded by water

and irradiated by a laser beam to determine the instantaneous heat dissipation in the

surroundings of a single NP. Figure 3 shows the domain with its boundary conditions:

the voltage reference is set at V0 = 0 (V) at x = L/2 and a time-dependent voltage

V (t) = V0 sin(ωt), with V0 denoting voltage amplitude, is prescribed at x = −L/2.

Temperature boundary conditions are set at a constant fixed value for each side of the

cube in Figure 3. The centre of the NP is located at the origin of the reference system.

The Au NP is excited by a laser beam at 400 (nm) and amplitude V0 is computed
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Figure 3: Geometry and boundary conditions of the three-dimensional simulation.

from the definition of the RMS value of laser intensity ([9]) as follows:

V0 =

√
2Ilaser

clight ε0‖nH2O (λ)‖L, (31)

where Ilaser, clight and ‖nH2O (λ)‖ denote the RMS value of the laser flux, speed of

light and the norm of the wavelength-dependent complex refractive index of water, re-

spectively. Note that the laser flux considered for the simulations is obtained from the

literature [9]: Ilaser = 5× 104(W/cm2).

Excitation pulsation ω can be determined from wavelength λ of incident excitation

as follows:

ω =
2πclight
λ‖n (λ)‖ , (32)

where ‖n (λ)‖ denotes the norm of the complex refractive index.

For the sake of completeness for the parameter calibration in the present model,

relaxation time τ is necessary for the Debye law and is computed as follows ([54]):

τ =
λc‖n (λc)‖

2πclight
, (33)
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where subscript c denotes the critical point in the wavelength spectrum at which the

relaxation phenomenon occurs. According to [55], this critical point can be determined

as the intersection between the real and imaginary part functions of the complex relative

permittivity. Once the critical point is found, the optical material properties at the

critical wavelength such as the refractive index can be determined.

For the geometrical dimensions, the diameter of the Au NP is 20 (nm) and the length

of the surrounding medium, controlled by L, is chosen to be large enough to avoid edge

effects. For this first study, L is taken to be 10-fold bigger than the diameter of the NP.

Finally, the material properties of gold and water, which are obtained from [49, 53, 56, 57]

for water, are reported in Table 2.

The increase in temperature, namely, light-to-heat conversion, is shown in Figure 4

for the different sinusoidal excitation function values at four different times. As expec-

ted, the parabolic temperature increase profiles are obtained around the NPs, where the

maximum temperature increase is reached at the centre of the NP and is directly pro-

portional to the amplitude of the prescribed voltage. Note also that although sinusoidal

excitation may take negative values as in Figure 4, as the dissipation due to polarisation

phenomena responds to a quadratic effect, the sinusoidal excitation sign has no influence

on dissipation.

For dissipation terms in the energy balance (17), two main terms contribute to light-

to-heat conversion: Joule’s and polarisation effects. The former is governed by the

material’s electrical conductivity, and the latter by the irreversible part of relative per-

mittivity.

Concerning Joule’s heating, this source is relevant for low-frequency excitations, but

not for high-frequencies, which are those at which light-to-heat conversion takes place;

at approximately 560 (THz) for the simulations presented in this Section. Note that

electrodynamics can be approximated to quasi-static phenomena until frequency of the

order of 10 (GHz) or lower is reached, as indicated in [58].

Regarding polarisation heating and by considering high-frequencies, it is numerically
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Figure 4: Temperature increase across the diameter of a gold nanoparticle centred at x = 0 (see Figure
3) for four different values of amplitude of sinusoidal excitation sin (ωt) = {0.31,−0.60, 0.82,−0.96} at
four different times t = {20, 40, 60, 80}(ns). The nanoparticle is 20 (nm) in diameter and is irradiated
by a laser flux of 5× 104 (W/cm2) at a wavelength λ = 400 (nm).

verified that the temperature increase produced by Joule’s heating is much lower than

that generated by polarisation heating. Therefore, the effects of Joule’s heating are

included in the theoretical formulation for the sake of framework’s generality but are

omitted from the subsequent examples to study light-to-heat conversion in NPs.

4.3. Light-to-heat conversion for different NPs

This section compares heating in nanofluids due to the light-to-heat conversion for

different materials used as NPs; namely gold (Au), silver (Ag) and graphite (G). The

properties of Ag are taken from [49–51, 53, 59] and those of G are obtained from [49, 53,

60, 61]. Both are reported in Table 2 along with properties of Au and H2O.

Studying a model that considers fluid dynamics is beyond the scope of the present

work. However, the model introduced in this work (see Figure 3) permits the simulation
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of the medium surrounding a NP. Similarly, by considering that the surrounding medium

(or base fluid in the nanofluids context) can be assumed to behave as a liquid at rest, this

model can be used to simulate light-to-heat in nanofluids. Hence different concentrations

of NPs in suspension in the base fluid can be reproduced by varying the volume ratio

of the sphere representing the NP and the cube representing the base fluid. Hence

volumetric concentration φ used henceforth in this work is defined as follows:

φ =
vsphere
vcube

, (34)

where vsphere and vcube represent the volume of the sphere and the cube of our model,

respectively.

Figure 5 shows the progressive temperature increase with time for water only, and

for the Au, Ag and G NPs dispersed in water, to compare the different evolution of

temperature increase of nanofluids. Note that the diameter considered for the simulation

of the different NPs is 20 (nm). Four different concentration values are retained: φ =

{0.0034, 0.0065, 0.016, 0.052} (%) and, as experimentally confirmed, temperature increase

is related to the concentration of the NPs in the base fluid.

Unlike the simulation presented in Section 4.2, the boundary conditions on temper-

ature are not set at a fixed constant value, but are left unconstrained so that the tem-

perature increase in the surrounding medium (water) can evolve with time. Note also

that a unitary sinusoidal amplitude value is adopted for the simulations in this Section

and that temperature increase is predicted on the outer surface of the NP that comes

into contact with the base fluid.

Figure 5 depicts that for an excitation wavelength λ = 400 (nm), the temperature

increase numerically predicted for the Ag NPs is greater than that for G NPs, and the

latter is still larger than that predicted for the Au NPs. This trend coincides with the

literature [62–65] because for λ = 400 (nm), the absorption coefficient (directly related

to light-to-heat conversion) of the Ag NPs dispersed in water is higher than that of the

G and Au NPs dispersed in water. This heating enhancement in the Ag NPs versus the
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Figure 5: Time evolution of the temperature increase of different nanofluids for a laser flux Ilaser =
5 × 104 (W/cm2) at a wavelength λ = 400 (nm) for four different volumetric concentrations φ =
{0.0034, 0.0065, 0.016, 0.052} (%). The media considered for simulation are only water (H2O) and three
different nanofluids composed of: gold nanoparticles dispersed in water (Au+H2O), silver nanoparticles
dispersed in water (Ag +H2O) and graphite nanoparticles dispersed in water (G+H2O).

other NPs occurs because they are irradiated with an excitation wavelength λ = 400

(nm), which matches the surface plasmon resonance of Ag.
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4.4. Evolution of temperature increase with concentration

This section presents a study on the influence of concentration on the temperature

increase of nanofluids. For this purpose, a new metric that eliminates the effect of heating

of the base fluid (water in this case) is defined in line with the dimensionless temperature

increase below:

∆Tdl =

∆TNF

∆tNF

∆TH2O

∆tH2O

, (35)

where the numerator in (35) represents the slope of the temperature increase in the

nanofluid and the denominator denotes the slope of the temperature increase in the base

fluid.

Several numerical simulations are performed for different nanofluids, namely Au, Ag

and G NPs in suspension in water, to assess the influence of different volumetric concen-

trations on the predicted temperature increase. Figure 6 shows this evolution.

The trend observed in Figure 6 is that the higher the NPs concentration in the nano-

fluid, the more marked the predicted temperature increase. However in real applications,

increasing the NPs concentration is not exempt of drawbacks as such a choice entails an

upsurge in viscosity [66] and, consequently, more difficulty to pump the nanofluid in flow

system applications. Another inconvenience of incrementing concentration is that the

colloidal stability of the nanofluid is not guaranteed [67, 68], thus it is more likely to

precipitate and then lose the working principle of the nanofluid. Moreover, continuously

increasing the NPs concentration in the base fluid does not guarantee better light ab-

sorption as light-to-heat conversion is limited to top layers in solar nanofluids with high

NPs concentrations [69].

Therefore, Figure 6 can be used by the experimental community to select the most

convenient combination of NPs and their concentration for a desired application.
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Figure 6: Evolution of the dimensionless temperature increase in relation to the volumetric concentration
of the NPs in the nanofluid for three different nanofluids composed of: gold nanoparticles dispersed in
water (Au + H2O), silver nanoparticles dispersed in water (Ag + H2O) and graphite nanoparticles
dispersed in water (G+H2O) for a laser flux Ilaser = 5× 104 (W/cm2) at a wavelength λ = 400 (nm).

5. Conclusions

This article presents a non-linear, three-dimensional, dynamic and thermodynamic-

ally consistent formulation applied to light-to-heat conversion for optically excited NPs.

Theoretically, equilibrium and non-equilibrium thermodynamic formalisms are used to

obtain the set of two coupled governing equations. Numerically, a finite element formu-

lation for a light-to-heat problem is developed by using residuals due to the problems’

non-linearities. Note that heat sources quadratically depend on the electric field. Fi-

nally, the numerical formulation is coded in a research software, is validated against a

one-dimensional simulation and is used to perform several studies on light-to-heat con-

version in solar nanofluids.

A good agreement is reached between the one-dimensional analytical solution and

the numerical results, which permits to validate the present formulation. Furthermore,

different numerical analyses are conducted for light-to-heat conversion in solar nano-
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fluids. Firstly, the temperature increase around a single Au NP is obtained to verify the

parabolic distribution of temperature for the different sinusoidal excitation values of a

laser. Afterwards, the time evolution of the temperature increase for water and three

different nanofluids is analysed: Au NPs dispersed in water, Ag NPs dispersed in water

and graphite (G) NPs dispersed in water. The numerical simulations predict a major

heating enhancement for the Ag NPs than for the G and Au NPs, respectively, which

agrees with the experimental trends when these nanofluids are excited at a wavelength of

400 (nm) because this wavelength matches the surface plasmon resonance of Ag. Finally,

a study on the influence of NP concentration in nanofluids is performed. It is concluded

that the temperature increase due to light-to-heat conversion depends on the charge of

NPs in the nanofluids but the concentration cannot be increased indefinitely as other

practical issues, such as the lack of stability, the incremented viscosity of the nanofluid

or the limitation of light absorption to top nanofluid layers become apparent.

In short, this numerical model can be used as a virtual laboratory to better understand

the physical phenomena involved in light-to-heat conversion in NPs due to the complexity

of measuring the temperature increase in a single NP from an experimental point of view.

Therefore, this numerical tool can be used to make predictions to help select a certain

combination of base fluid, NPs and their concentration in the nanofluid for a desired

application by reducing the number of experiments to be conducted and consequently

their cost.
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Appendix A. Static and high-frequency relative permittivity

This appendix provides the relation between the measured complex relative permit-

tivity εr (λ) and parameters εs and ε∞, used in the present work for the Debye relaxation

model.

Pulsation-dependent relative permittivity can be written in the form of a complex

number:

εr (λ) = ε′ + iε′′, (A.1)

where ε′ and ε′′ denote the real and imaginary part of complex permittivity, respectively.

The real and imaginary parts of complex relative permittivity in (B.1) are separated

and the obtained expression is:

εr (λ) = ε∞ +
εs − ε∞
1 + ω2τ2

− (εs − ε∞) iωτ

1 + ω2τ2
, (A.2)

where τ represents the relaxation time.

By equalling the real and imaginary parts from (A.1) and (A.2), explicit algebraic ex-

pressions of εs and ε∞ are obtained in terms of the experimentally measured coefficients:

εs = ε′ − ε′′ωτ, ε∞ = ε′ +
ε′′

ωτ
. (A.3)

Appendix B. Debye relaxation law

The Debye relaxation law is usually provided in the frequency domain in literature

[33, 34, 70] as follows:

D (ω) = ε0

(
ε∞ +

εs − ε∞
1 + iωτ

)
I · E (ω) . (B.1)
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As a multiphysics time domain formulation is intended in the present work, and as

the electric-field excitation is assumed to be monochromatic and harmonic to behave like

a laser, the Debye relaxation model can be re-expressed analytically in the time domain

by the inverse Fourier transform. More specifically, the following transforms are needed:

i) Rational function of pulsation

1

2π

∫ +∞

−∞

1

a+ iω
eiωtdω = e−ath (t) , (B.2)

where a is a constant so that Re(a) > 0 and h (t) represents the Heaviside step function.

ii) Convolution in time

1

2π

∫ +∞

−∞
f̂ (ω) ĝ (ω) eiωtdω = (f ∗ g) (t) , (B.3)

where symbol ∗ represents the convolution product.

By using properties (B.2) and (B.3), and by enforcing the sinusoidal electric field

condition, the time domain expression of the Debye relaxation model is finally derived:

D = ε0

[(
ε∞ +

εs − ε∞
1 + ω2τ2

)
I · E − εs − ε∞

1 + ω2τ2
τI · Ė

]
. (B.4)

Thus the reversible and irreversible parts of electric displacement and permittivity

can be identified as:

Dr = ε0

(
ε∞ +

εs − ε∞
1 + ω2τ2

)
I · E = εr · E,

Di = −ε0
εs − ε∞
1 + ω2τ2

τI · Ė = εi · Ė.

(B.5)
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Appendix C. Tangent matrices

This appendix reports the explicit form of tangent matrices.

KT T
ab = −∂R

T
a

∂aTb
=

∫
Ωe

Ba κBb dΩe,

KT V
ab = −∂R

T
a

∂aVb
= −

∫
Ωe

Na 2
(
γ + εi

)
Bi aVi Bb dΩe,

CT T
ab = −∂R

T
a

∂ȧTb
=

∫
Ωe

Na ρ cNb dΩe,

KV V
ab = −∂R

V
a

∂aVb
=

∫
Ωe

Ba
(
γ + εi

)
Bb dΩe,

CV V
ab = −∂R

V
a

∂ȧVb
=

∫
Ωe

Ba εr Bb dΩe.

(C.1)

Appendix D. One-dimensional analytical solution

This appendix reports the steady-state, time-independent excitation and one-dimensional

analytical solution used to validate the numerical code. For this purpose, balance equa-

tion (5) in the absence of transient terms and constitutive law (21) (left) are expressed

in one-dimensional form:

∂jx
∂x

= 0 , jx = −γ ∂V
∂x

. (D.1)

Now by considering the boundary conditions shown in Figure 1 , the voltage distribution

reads:

V =
V2 − V1

L
x+ V1, (D.2)

where L denotes the length of the one-dimensional geometry.
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For the thermal field, balance equation (17) in the absence of transient terms and

constitutive law (21) (middle) are expressed in one-dimensional form as:

∂qx
∂x

= −jx
∂V

∂x
, qx = −κ∂T

∂x
. (D.3)

Finally, by enforcing the boundary conditions shown in Figure 1, the temperature distri-

bution becomes:

T = −γ
κ

(
V2 − V1

L

)2
x2

2
+

1

L

[
T2 − T1 +

γ

κ

(
V2 − V1

L

)2
L2

2

]
x+ T1. (D.4)
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