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Three-Port Small Signal Admittance-Based
Model of VSCs for Studies of Multi-terminal
HVDC Hybrid AC/DC Transmission Grids

J. Pedra, Member IEEE, L. Sainz, and L1. Monjo

Abstract- Multi-terminal high voltage direct current (HVDC)
systems, together with AC transmission systems and voltage
source converters (VSCs), form hybrid AC/DC grids with
complex dynamic and transient interactions. VSCs
characterization taking into account DC- and AC-side dynamics
in order to study these interactions is not yet well solved. This
paper presents a three-port transfer admittance-based matrix
model of VSCs that can be applied for such purpose. It is derived
from dg-complex space vectors and characterizes both AC- and
DC-side dynamics by relating AC- and DC-side current and
voltages in a three-dimensional admittance transfer matrix which
considers the VSC outer control loops. The paper also proposes a
systematical procedure for studying multi-terminal HVDC
hybrid AC/DC transmission grids by the Norton admittance
method, where the proposed VSC model can be easily included in
the Norton admittance matrix. This procedure allows the study
of grid dynamics using impedance-based stability criteria. The
proposed model and procedure are applied to a stability study in
a multi-terminal HVDC hybrid AC/DC transmission grid.
PSCAD/EMTDC simulations are used to validate the application.

Index Terms— Impedance modeling, voltage source
converters, HVDC transmission.

I. INTRODUCTION

Multi—Terminal high voltage direct current (HVDC)
systems have emerged as a promising power
transmission technology because of their ability to increase
power transfer capability and improve power system operation
flexibility and energy source interconnection. These HVDC
systems are linked to AC transmission grids by means of line
commutated converters (LCCs), voltage source converters
(VSCs) and modular multilevel converters (MMCs), building
hybrid AC/DC grids with complex dynamic and transient
interactions [1],[2]. Novel phenomena such as oscillatory
instabilities appear in hybrid AC/DC systems with VSCs and
MMCs [2]. However, their assessment, prediction and
solution have not yet been well studied. State space [3], [4]
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and frequency domain [5]—[11] methods are common
approaches for analyzing instability phenomena in these
systems [12] — [15]. Frequency domain methods based on the
impedance-based characterization of power systems are also
widely used to assess system stability because they can be
applied from either analytical models or measurements and
with less computing effort than the state space method [14],
[15].

The AC- and DC-side admittance-based models of VSCs
are typically studied separately to include the VSC admittance
transfer function in AC- and DC-side stability studies,
respectively. These AC- and DC-side admittance-based
models are derived from dg-real transfer function-based
[5], [8]—[10], [12]—[15], dg-complex transfer function-
based [16], [17] and phasor-based [18] methods. DC-side
admittance-based models of VSCs considering AC-side
dynamics have recently been published [12], [13]. The dg-
complex approach is becoming a powerful tool for VSC
admittance modeling because it can be used to systematically
determine and program VSC admittance-based models, as
well as to characterize sequence-component coupling and
mirror frequency effect dynamics [7], [19], [20]. This is also
studied in [19], [21], where the modified sequence-domain
(MSD) impedance matrix model is proposed on the basis of
the Park (dg-real) and Ku (dg-complex) transformations [22],
[23]. The above methods are widely applied to single VSC
systems, but only a few works analyze stability in large-scale
AC and DC systems composed of multiple VSCs [15],
[24], [25]. The admittance matrix approach is used in these
studies as it provides a simple and accurate way to
characterize large-scale power system behavior in frequency
domain. Recently, a worthy AC-side stability study of multi-
terminal VSC power systems based on the nodal admittance
matrix approach and the AC-side 2x2 input admittance-based
matrix of VSCs has been presented in [26].

Hybrid AC/DC grid issues cannot be studied when AC- and
DC-side dynamics are modeled separately, as in the above
references. Moreover, although AC- and DC-side dynamics
could be included in these models, the AC-side admittance-
based model is a two-port model that only relates AC-side
voltages and currents, and the DC-side admittance-based
model is a single port model that only relates DC-side
voltages and currents. A three-port transfer admittance-based
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matrix model of VSCs relating AC- and DC-side voltages and
currents is necessary to study hybrid AC/DC HVDC grids
from the nodal admittance matrix approach. There are multi-
terminal HVDC hybrid AC/DC transmission grids which
cannot be reduced to the AC or DC side and must be studied
from the three-port transfer admittance-based matrix model of
VSCs and the nodal admittance matrix of the hybrid grid to
assess stability. A dg-real [27], [28] and of-domain [29]
three-port equivalent circuits of VSCs considering AC- and
DC-side dynamics are presented in the literature. However,
these equivalent circuits take into account the VSC
modulation function only. These equivalent circuits are used
to derive the AC-side admittance matrix model of VSCs
considering the phase-locked loop (PLL), VSC time delay and
current control [27], and to derive a block diagram of the
closed-loop small signal model for VSCs including AC- and
DC-side dynamics and considering the direct-voltage control
loop, PLL, VSC time delay and current control [28], [29].
Additionally, the AC-side admittance matrix model of VSCs
[28], [29] and the 1x2 gain matrix that relates AC- and DC-
side voltages [29] are derived from the block diagram. Three-
port transfer admittance-based matrix models that consider
AC and DC dynamics and can be applied in hybrid AC/DC
grid studies have recently been presented [14], [18], [20].
However, they neither consider all VSC control blocks nor are
applied to multi-terminal HVDC hybrid AC/DC transmission
grids. In [14], an MSD three-port AC/DC admittance-based
model is presented. This model considers the P — Q, V,.— O
and V — f operation modes of VSCs but does not include the
grid voltage feedforward low-pass filter of the VSC current
control loop and the VSC time delay. The grid voltage
feedforward low-pass filter bandwidth and VSC time delay
are the main parameters to achieve VSC passivity at harmonic
frequencies [9]. The grid voltage feedforward low-pass filter
bandwidth also affects the VSC non-passivity region caused
by outer control loops at near-synchronous frequencies [9],
[10]. The non-consideration of these parameters in the three-
port AC/DC admittance-based model is a drawback to
characterizing the VSC negative-damping region, which
defines near-synchronous and harmonic stability conditions
[9], [10]. A simple AC/DC coupled system is analyzed by
Kirchhoff laws in order to study the properties and impacts of
impedance rotation on the AC/DC coupled system in [14] but
no general methodology for assessing multi-terminal HVDC
hybrid AC/DC transmission grid stability based on the three-
port AC/DC admittance-based model is provided. The Norton
admittance methodology is used for comparing different
stability criteria but this methodology is applied to an AC
interconnected system with VSCs where DC-side dynamics
are not considered, i.e., no three-port AC/DC admittance-
based model is used in this study. In [18], the three-port
AC/DC matrix is modeled in dg, sequence and phasor
domains by considering only the inner current controller and
the PLL. A simple VSC HVDC link with an impedance
connected at the AC or DC side is analyzed. The VSC AC-
and DC-side impedance model is also derived from the three-
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Fig. 1. Grid-connected VSC circuit.

port matrix. In [20], the proposed three-port VSC model only
considers the direct-voltage control loop and is only applied to
study the stability of a point-to-point HVDC transmission
system from the control block diagram of the AC- and DC-
side system. As far as the authors know, stability of large-
scale hybrid VSC-HVDC grids has not yet been studied on the
basis of three-port transfer admittance-based matrix of VSCs
and the nodal admittance matrix approach.

This paper presents a novel VSC three-port admittance-
based model using dg-complex space vectors for multi-
terminal VSC-HVDC hybrid AC/DC transmission grid
studies. The model extends systematically and rigorously the
three-port transfer admittance-based matrix models in [14],
[18] and [20] by considering the grid voltage feedforward,
VSC time delay and main outer control loops (including the
control loops of the operation modes V,. — E,. and P — E,.).
Moreover, the VSC AC- and DC-side impedance models are
derived from the three-port matrix model. The paper also
extends the Norton admittance method used for AC-side
stability analysis of multi-terminal VSC power systems in [26]
to study AC- and DC-side stability of multi-terminal HVDC
hybrid AC/DC transmission grids, where the proposed three-
port admittance matrix model is easily included in the nodal
admittance matrix of large-scale hybrid AC/DC grids handling
VSCs as independent components. This methodology allows
the assessment of multi-terminal HVDC hybrid AC/DC
transmission grid stability using impedance-based stability
criteria (e.g., Generalized Nyquist Criterion, GNC). Stability
issues in a multi-terminal HVDC hybrid AC/DC grid are
studied to show the paper’s contribution. The results obtained
are validated with PSCAD/EMTDC simulations.

II. THREE-PORT GRID-CONNECTED VSC SYSTEM MODELING

The three-port small signal admittance-based model of the
grid-connected VSC in Fig. 1 is derived in this Section [9],
[10], [14]. The VSC control is represented by the inner current
controller (CC) and the following outer control loops:
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alternating-power control (APC), direct-voltage control
(DVC), reactive-power control (QPC) and alternating-voltage
control (AVC). These outer control loops make it possible to
characterize the main VSC operation modes (i.e., modes
P-Q, Vy—0Q, Vye—E,. and P—E,) [9], [10]. The PLL is
also considered in the control modeling, and the superscript
“c” denotes the converter dg-domain. No super index is used
on the grid dg-domain variables for simplicity. All the VSC
admittance-based models in this Section are numerically
validated but this is not shown for space reasons.

Complex transfer functions (see Appendix A) are used to
model grid-connected VSCs with dg-complex space vectors
from the dg-real small signal impedance model [16], [17] and
obtain the three-port small signal admittance-based model.
The dg-real small signal impedance model of VSCs is
summarized in Appendix B to follow clearly the three-port
small signal admittance-based model in the next Subsections.

A. AC grid relation

According to (30) and (32), the voltage balance across the
converter R.—L, filter is expressed with dg-complex space
vectors as

AEqq Z;  Z, ||Alag| |AVag
* = * * * + *
ABgq | [(Z) (Z¢) |[Alag | [AVag (1)
= AEg, =Z:Alg, +AVg,,

where  Eoq=(Eq+jEYN2,  Vag=VatjVON2,  Tgq=
(Id +]]q)/\/29 Z+c = Rc + LC(S +jwl)7 (Z+C)* = Rc + Lc(s _jwl)a
Z".=0 and o, = 2nf; is the fundamental angular frequency of
the grid.

B. AC-DC converter relations

According to (33), the VSC output voltage V,, can be
related to the DC voltage V,. by using the modulation function
mgy = [my mq]T and dg-complex space vectors (30) as the small
signal relation

AV, Am mgy,

il I e R P R R N
AV4q Amg, My )
= AVgq = Amg Vo +mgeoAVy.,

where myq = (my + jmq)/\/Z and V; and mgq are the steady-
state operating points of the DC voltage and the modulation
function, respectively.

According to (35), the small signal relation between the DC
current /;. and the AC current can be expressed by using the
dg-complex space vectors (30) as the small signal relation

Aqu . Amdq
mdq(] j| ® T |:qu0 qu0 :| *
Aqu Amdq 3)

= A]a’c = _(m:ian)H Algq - (ngO)H Amgq >

*
Al =— |:mdq0

where the superscript A indicates the transpose and complex
conjugate (Hermitian conjugate). Note that the three-phase set
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of modulation functions {mgy, mp, m.} =
M{cos(wt + ¢,,),cos(wt + ¢,, — 21/3), cos(awt + ¢, +21/3)} is
transformed  into the dg-complex space  vector
my, = (N3/2)MZ4,, by applying the normalized Ku (dg-
complex) transformation [16], [22], [23].

C. PLL relations

The AC current, AC voltage and modulation function in the
converter and grid dg-domains (36) can be expressed with dg-
complex space vectors from the following small signal
relations obtained by applying the complex transfer functions
(30):

Algy = Algy +G o AEg,

_ “)
G;lli ==Gpy =—G () Ly + quO)/Z:
AESI(I; = G;llvAEqu
G;]]v =1-G () (Egg + JE)/2 (5)
G];llv =1- G;nv >
Amgg' = Amgy +G oy AEG, , ©

G;llm ==Gpum =G (s) (myq +jmq0)/2:

where  Gpri(s) = Fpri(s)/(stEaqF pri(s)) and  Fpp(s)is the
transfer function of the PLL control (see (36) in Appendix B).
Note that the dg-complex space vectors in the converter dg-
domain have the superscript “c” whereas no super index is
used on the grid dg-domain variables.

D. Inner CC loop relations

The control law of the inner CC loop (37) is expressed with
dg-complex space vectors (30) as
AVga = —F (Alge — AIGH) - Zo, Alge+ HFAEGY , (7)
where  F'ee = D(5)Fe(s), Z'a=D(s);jLcen, H't=D(s)H(s),
Foe=7Z"o=H7+=0 and F.(s), D(s) and H(s) are the transfer
function of the CC, VSC time delay and grid voltage
feedforward low-pass filter (see (37) in Appendix B).
According to (33), the dg-complex space vector of the VSC
reference voltage is expressed as AV™yq » = VioAm™ g4

E. Outer control loop relations

The reference currents generated by the outer control loops
can be related to the DC voltage and the AC voltage and
current at the PCC with dg-complex space vectors as the

following general expression:
~ Y AE, ®)

where the complex transfer matrices F™,, G*, and Y*, depend
on the VSC outer control loops (see Appendix B).

Alge, = -F"AV, —G Al

F. Link between inner, PLL and outer control loop relations

The following relation is obtained by substituting the outer
control loop law (8) and the PLL relations (4), (5) and (6) in
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the control law of the inner current control loop (7):

A= (FARD AV, +(Z + FEGDALY, + HAEZ, |, 9)

cco
dc0
where
Hy = (Zpi +F.G3)G oy + (Hy +F Yo )Gy = VoG pim (10)
Zn. =Fe—Z,.

G. Three-port small signal admittance-based model

The DC voltage is related to the AC voltage and current at
the PCC by substituting (9) and (1) in (2):

A AV, =B ALy +C AEg
B, =-Z; -Z, -F,.G, (1)

A, =mg, + FIF™ :

ccro
C,=1,-H;

0°

where I, = diag(1, 1) is the 2x2 identity matrix.
The DC current is related to the DC voltage and the AC
voltage and current at the PCC by substituting (9) in (3):

Al = 4AV,, +BALy, +C,AER,

1 m m 1 m
A =———(Ug) " FeR G =——3)"Hy  (12)
Vch Vdc()

1
B; = ~(mgq)” —V—(Iﬁlqo)H (Zyi +FoGy)-
dc0

The relations between voltages and currents can be directly
obtained from (11) and (12):
Al = (4 + BB A AV, +(C; ~ BB 'C,)AEG,

(13)
ALy, =BJ'A AV, —B'C,AE},.

Considering that AI"g, =[Aly, Al'y)]" and AE™g, =
[AEqq AE*dq]T, (13) characterizes the three-port small signal
admittance matrix of VSCs, as follows:

Aldc ch ch ch AVdc
Ay |=| Ype Yop Yon || AEqq
Algg | [ Yoo Yop Yon || AE,
Y(AC/DC) (Y)
Y, =4+BBJA, [Y, Y,|=C-BB/'C, (14
YIZ
Y Y, Y
{ pc}:BlevAVdc PP M= _B'C,.
Y, Yip Y
L ne : -
Y Y,

According to [14], the non-consideration of the grid voltage
feedforward low-pass filter H(s) or VSC time delay leads to
D(s)=H/(s)=1 in (7) and simplifies the three-port small
signal admittance-based model (14). However, these
assumptions could also lead to inaccurate assessment of near-
synchronous and harmonic instabilities [9], [10].

Three-port small-signal

fl T Al [ Wwl¥m0AE W ciruitmodel of VSCs
AEq, 5 D Al
AV, 4q ' i Yoc($)AV4e Y o(5)AE ,dq 4’; 1o}
Zny(s —jor) i AVae==
—of :
+ Alw | You(s)|Yap()AEgq | | Yer()AEaq] Yoo v Za(s)
AE | :
AViag Yacl$)AVa |

Y2 L L7 R §

Fig. 2. Three-port small signal circuit model of VScs.

Fig. 2 shows the three-port small signal circuit model of
VSCs derived from (14).

H. AC- and DC-side small signal admittance-based model

The VSC AC- and DC-side equivalent admittance models
can be easily derived from (14). The AC-side equivalent
admittance Y*©)(s) is obtained by imposing in (14) the DC-
side relation Al = =Ygz AVye:

YAV ge | Y Y AV m _ v(AQ) m
= o | = A = YAO (9)AED,
Algy Yy Yy || AEg, (15)

Y49 (s) = Yy, — Yo Yy + Y )" Yi,-

The DC-side equivalent admittance Y®(s) is obtained by
imposing in (14) the following AC-side relation:

|:Aqu :| _ _|: YT+h Yr; :||:AEdq :l (16)
Algq (Yin)" (Yiy) |[AEdq
—_—

+
YTh

The DC-side equivalent admittance is expressed as

Al _ Y. Yp AV -
_Y”l:fh AE:inq Y21 Y22 AE:inq (17)
Al = y® ()AV,, Y®P9(s) = Y, =Yy (Yqy + Yoy )_1Y21-

1. Three-port small signal admittance-based model validation

The circuit in Fig. 3(a) and the data in Table I are used to
numerically validate the three-port small signal admittance-
based model (14) in Fig. 3(b), where the DC-side equivalent
impedance  Z9(s) = 1/Y""9(s) (17) is compared to
PSCAD/EMTDC simulations. The DC-side test is the simplest
procedure to validate the three-port small signal admittance
matrix because the determination of all the terms in this matrix
is avoided (note that ¥P9(s) (17) is derived from the three-
port small signal admittance-based model (14)). The AC grid
is characterized by an AC voltage source in series with an
R,.—L,. impedance and a shunt capacitor C; connected to the
VSC terminals (see Fig. 3(a)). The VSC operates in mode
Vie— Q. In the PSCAD/EMTDC simulations, a series
perturbation of voltage V. at frequency fis applied on the DC
side of the VSC while the 50 Hz AC-side voltage source is a
short-circuit at frequency f. The DC-side consumed current /.
is determined from the Fast Fourier Transform (FFT) of the

Page 4 of 12
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Fig. 3. DC test for model validation: a) Test circuit. b) DC-side equivalent
impedance ZP9(s)=1/ Y"9(s) [Lines: (17). Circles: PSCAD/EMTDC
simulations].
PSCAD/EMTDC simulation currents when they reach the
steady state. Subsequently, the value of the DC-side
equivalent impedance is calculated from the previous results
as Z°9(s)=V /I, and is represented versus frequency f
(circles in Fig. 3(b)). The accurate results provided by the
model are highlighted. Similar results are obtained with the
other VSC operation modes.

According to the circuit in Fig. 4(a) and the data in Table I,
the three-port small signal admittance-based model (14) is
also validated in Fig. 4(b), where the AC-side equivalent

admittance  matrix  YA9(s) (15) is  compared to
PSCAD/EMTDC simulations.
TABLE 1

MODEL VALIDATION DATA
BASE VALUES: Up ac = 220 KV, Ug, pc = 440 KV, Sz = 1000 MVA

Parameters Data
AC grid Rucs Lac 0.0025 pu, 0.05 pu
AC filter Cr 0.304 pu
DC load R, Ly 0.00051 pu, 0.0032 pu
DC filter Cuc 1.824 pu
VSC data P Ve, 1000 MW, 440 kV
S Ta, o 2 kHz, 0.3 ms, 106.8 rad/s
R., L. 0.025 pu, 0.25 pu
VSC control hpce s Kice I'pu, 0.031 pu
Ky pits K pit 0.48 pu, 0.031pu
kep,des Kide 0.15 pu, 0.058 pu
kp, ps Kip 0.15 pu, 0.058 pu
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Fig. 4. AC test for model validation: a) Test circuit. b) AC-side equivalent
admittances Y*(s) [Lines: (15). Circles: PSCAD/EMTDC simulations].

III. STABILITY OF HVDC HYBRID AC/DC GRIDS

The circuit of Fig. 5 shows the schematic diagram of multi-
terminal HVDC transmission grids linked to AC transmission
grids by VSCs. The incremental symbol A of the small signal
variables is omitted for the sake of simplicity. The multi-
terminal HVDC hybrid AC/DC transmission grid (i. e., AC
and HVDC transmission grids) is characterized by its
admittance matrix Yg(s) and the different components
connected at the AC and DC grid buses which are represented
by their equivalent circuits.

The AC grid components are the following:

o AC grids characterized by the current balance at their
Norton equivalent circuit buses:
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-l

{ldq} :{qu} _ Z; Z, l:qu} (i=1,...a), (18)
Lag |, |Taal,, [(Z)" 29| [Vaq),

Lda S

| ———
(AC) (AC)
i 0o v v

where Z' (s) = R, + Ly(s +je) and Z 7y = 0 [16].

e AC loads characterized by their dg-complex admittance
matrix  Y;{*“(s) (i=1,...b). These loads can be the
impedance loads whose admittance matrix is obtained from
their dg-real admittance matrix and transformation (30) or
VSC applications (e.g., in distributed generation), whose
admittance matrix is derived from the models (38) and (2)
in [9] and [10], respectively, and transformation (30).

e Terminals without any connected external components
represented as open-circuit buses characterized by zero
values of the current source and admittance of the Norton
equivalent circuit, i.e., A9=0,, and Y“9=0,,
(i=1,...0).

The DC grid components are the following:

e DC grids characterized by the current balance at their

Norton equivalent circuit buses:
DC DC DC DC .
1P9 =159 —y PO (5P (i =1,...d). (19)

e DC loads characterized by their admittance transfer
function Y, °(s) (i=1, ... e).

e Terminals without any connected external components
represented as open-circuit buses characterized by zero
values of the current source and admittance of the Norton
equivalent circuit, A9 =yA9 =0 (=1, ... g).

Note that the VSCs are modeled by their three-port small
signal admittance matrix Y, ““®(s) (i=1, ... k) in (14). VSC
models are locally evaluated in the dg- reference frame of
each VSC and a matrix rotation is required to refer all of them
to the same dg-global or common reference frame, which can
be arbitrarily chosen [14].

frequency domain methods such as the Nyquist stability
criterion to the impedance ratio of the source and load
equivalent systems (i.e., to the loop transfer function
L(S) = Zsource(8) Yioaa(s)) partitioned at some point of the
studied grid. However, it must be borne in mind that this
criterion is a local stability approach sensitive to system
partitions, which can lead to inaccurate stability predictions
[14]. If and only if the impedance ratio Z,,c.(s): Yiou(s) does
not have any right-half-plane (RHP) poles, stability of the
closed loop system can be assessed by encirclements of
Zsouree(8) Yioaa(s) in clockwise direction around the —1 point.
Otherwise, the number of RHP poles of Z,,c.(5)" Yioaa(s) must
also be considered. Commonly, these RHP poles are not
assessed in frequency domain studies and the encirclements of
Zsource(8) Yioad(s) are only checked when the Nyquist stability
criterion is applied. According to this, the criterion fails when
the source or the load equivalent systems are unstable (i.e.,
when Z,,c(s) or Yj,.4(s) have RHP poles). This instability can
occur when the source and load equivalent systems come from
a grid with VSCs due to the interaction between the VSC
controls and the passive components of the grid [14]. To avoid
the above issue and according to [26], system stability is
assessed by considering the whole system without any
partition.

Considering the rotation issue of VSC frames addressed,
the relations between voltages and currents at the multi-
terminal HVDC hybrid AC/DC transmission grid are
expressed as

i=Yg(s)v

p— _1‘
i:iE_YE(S)V} = v=(Ye(s)+ Yp () g, (20

where Yg(s) is admittance matrix of the multi-terminal HVDC
hybrid AC/DC transmission grid. The voltage v at the grid
terminals and the current source ig and the equivalent
admittance Yg(s) of the external components are

System stability is commonly assessed by applying

oeeoeo.. AC grid-connected components _______________________ AC grid-connected components

E AC grids AC loads Open buses DC loads Open buses 1

A A A A A !

i a0 7 A0 A0 (OC) 7 (O S

S i i i= i L=0 i

i I (AC) \sAC) (AC) (DC) (DC) '

; i a. i b, Vi c... i e g
Multi-terminal L —————— e e el m——
hybrid AC/DC | AC transmission grid HVDC transmission grid :
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Fig. 5. Schematic diagram of multi-terminal HVDC hybrid AC/DC transmission grids.
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1
2 7
3
4 System data | - \ iy, ) 23
5 s i 3 v ( +Zg(s) E(S)) c (9ig, (23)
6 Calculate Calculate Calculate where I is the identity matrix and Zg(s) = Y¢ '(s) is the grid
7 AC grid DC grid YAPO(5) (14) impedance matrix. Stability of the closed loop system in (23)
8 components components | is assessed by the GNC, which extends the traditional Nyquist
9 I f criterion to the Nyquist curves of the eigenvalues of the loop
10 v v transfer function L(s) = Z¢(s)Yg(s) [12], [18]. Although the
11 | Calculate Yg(s) | | Calculate Yg(s) (21) | absence of RHP poles in the loop transfer functions is a
12 ' s ' special case, the proposed approach ensures that L(s) does not
13 - have any RHP poles because the multi-terminal HVDC hybrid
14 | Build L(s) = Z(s)Ye(s) | AC/DC transmission grid Zg(s) is passive and the external
15 v components in the diagonal of Yg(s) are individual
16 | Apply GNC (stability assessment) | subsystems without any interaction with other grid
17 Fig. 6. Flowchart of the procedure. components (i.e., Zg(s) and Yg(s) do not have any RHP poles)
18 [14]. Therefore, system stability can be assessed by
19 _[I(Ag)l J | encirclements of the eigenvalues of L(s) around the —1 point.
20 “0) &1 o Fig. 6 shows the flowchart of the systematic procedure
;; |:‘]i:l,“,a+b+c Lxl [Oizl""bﬂ. ]M proposed for stability assessment.
holel .

23 vel Ve e=| 1859 4 IV. APPLICATION
24 [vaRen ] 0ict,.erg Stability problems in the multi-terminal AC/DC grid of
2 [0‘7 J (21) Fig. 7(a) are analyzed to show the paper’s contribution. The
26 L L=t 110 kV 50 Hz main AC grid supplies two 1000 MW 220 kV
;; |:Yi(£lC)sz+c:| 0 HVDC transmission grids through two step-up 110/220 kV

2x2 transformers and two VSCs operating in mode Vy — O at
29 Y (s) = : Y PO : unity power factor, which is common in normal operation
30 E i=l,...d+e+g ’ y p s o - P

(AC/DC) conditions [9], [10]. The HVDC transmission grids connect

31 0 [Yf:l,--»h J3X3 the main AC grid with two AC grids through the DC cables
32 . . and the VSC; and VSC,, which operate in mode P — Q. VSC,
gi where the voltage vector at the VSC terminals is and VSC, are characterized by their three-port small signal
35 y(DC-L) admittance matrices (14) while VSC; and VSC, are
36 Vi(AC/DC'L) = ’AC L ) (22) considered as constant power consumption P and Pi
37 [Vi( L) ]2):1 characterized by the fictive resistance Rj=—(Vy., O)Z/P,-o
38 (i=2, 3), which consumes a current AV,./R;, under the small

Stability can be analyzed in frequency domain by rewriting  gjonal voltage AV, [11]. These converters could also be
39 20 X ! . .
(20) as, modeled with their three-port small signal admittance

40 . . . . .
41 matrices, but a simpler model is used in the stability study for
42 ; _;_;_;_;_;C_ﬁ_;_;_;_;_;_-l |
43 able; | :
44 Rici L | !
45 | LI
Ce Coe Coe Cov

46 |—-|=_— II del del I BI: E
47 [Fs
48 Cable, : E
49 Rax Ly | :
50 : < | I S 4

. Cy Cuc Cie o I
51 G | VdL5||I 2—_|___ “ “—_l___ 4—_|___|: V_m S—ZA ) 9

N Lo iy . 1
HVDC transmission grid _”O\AHVDC hybrid AC/DC

53 @ @ l=m=msm———- e e ] transmission grid

54 b)

Fig. 7. Application: a) Multi-terminal HVDC hybrid AC/DC transmission system. b) HVDC hybrid AC/DC transmission grid.
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the sake of simplicity. The AC grid is chosen as the dg-global
reference frame of the multi-terminal HVDC hybrid AC/DC
transmission grid. VSC; and VSC, have the same data as in
Table I and the multi-terminal AC/DC grid data are in
Table II. In order to study stability, the relations between
voltages and currents at the multi-terminal HVDC hybrid
AC/DC transmission grid are expressed as (23) where

e Impedance matrix of the HVDC hybrid AC/DC

transmission grid in Fig. 7(b),

Bus# 1™ 2% 34 gl ym gl gm
Yy 0y 0y 0y -Yiy 0py Y 1
0o B 0y Yoy Oy Oy Oy
02 O B3 Oy Oy T35 O 24)
Zs=|0 Yy Oy Yy Oy Oy O |

Yiu Oy Oy 0y Y5 0y 0y
0y 0y Y35 Oy Oy Y5 Oy
__Ylis Ot O Op 0pp Oy Y5 ]

where
Y =(Zi) "+ Zgn) Yy =(Zg) T+ (2
Y =(Ziy) ' +(Z5)" Yia=Zig) Yis=(Zig)

Y2 = Ccv3s + Cdcls + (Rdcl + dels)_1

Yy = Copqs + Cuens + (Ryy + Ly s) ™ (25)
Y4 = Ccvls + Cdcls + (Rdcl + Lu!cls)_1
Yy = Cppp8+Cons + (Ryer + Lyens) ™!

- -
Yoy = (Ryer + Lgers) Yis = (Ryer + Lyers) s

and

- _{ Zi L } Zi_{ z, % }
tri = ook o fi = ok ok
(Ze) (Zeg) Z) (23)

Zoi =Ry + L (s+ jay) Zy;i =0 (26)
-1
R.+L:(s+]
zZ :(Cﬁ(s+ja)1)+MJ Z; =0.
RﬁLﬁ(s+ja)1)

¢ Admittance matrix of the external components,

Bus # m 2dc 3dc 4dc—m 5dc—m

Ygi 02x1 02x1 02x3 02x3 1"
01x2 R;()1 lel 01x3 01x3 ch
Ye=|0,, O, Ry 013 01,3 3%, @D

Y‘EAC/DC) 4dc—m

03 x3
YS(AC/DC) | 5dc—m

_03x2 03x1 03x1 03x3
Bus #

where Y, A9 and Y49 are the VSC, and VSC, three-
port small signal admittance matrices (14) and

8
TABLE II
HYBRID AC/DC TRANSMISSION GRID DATA
BASE VALUES: U, ac =220 KV, U, pc =440 KV, Sz = 1000 MVA
Parameters Data
Uy (1) 110 kV (50 Hz)
AC Main grid | SCR = S./(2°Pysi n) 20 pu
Xo/Ry 20 pu
Transformers Swi» Unt, i/ Una, i 1000 MVA, 110/220 kV
(=12 Eecis X/ Rur 2.5 %,20 pu
VSC AC filters Ci (i=1,2) 20 pF
VSCDC filters| C.;(i=1to4) 30 uF
DC cables Raci, Laci 10.8 mQ/km, 0.149 mH/km
(=12 Ciui, Length 0.145 pF/km, 25 km
-1
+ -
Y = Ze L Z,=0
g - -NF +\* g 28
(Zy) (Zg) (28)

Zy =R, +L,(s+jo) (Zg) =R, +L,(s— jo).

The example studies four cases:

e Case #1: this is the stable reference case, which
corresponds to the steady-state operating point with data in
Tables I and II, and with the power consumed by VSC; and
VSC, being half the nominal power (i.e., Py =500 MW
i=2,3).

e Case #2: the influence of VSC filter capacitors C and Cp,
on system harmonic stability is analyzed. Stability of the
steady-state ~ operating point of Case#l  with
Ch =Cp =10 uF is assessed.

e Case #3: the influence of the VSC; and VSC, consumed
powers on system harmonic stability is analyzed. Stability
of the steady-state operating point of Case#l with
P>y = P3y=1000 MW is assessed.

e Case #4: the influence of the short-circuit ratio (SCR) on
system subsynchronous stability is analyzed. Stability of the
steady-state operating point of Case #1 with SCR =1 pu is
assessed.

Small signal system stability around the previous steady-
state operating points is investigated from the GNC of the
loop transfer function L(s) = Zg(s)Yg(s) and PSCAD/EMTDC
time-domain simulations. In these simulations, the variables of
the AC/DC transmission grid of VSC; and VSC; are only
shown because the results are the same for the variables of the
AC/DC transmission grid of VSC, and VSC, due to the
symmetry of the circuit.

In Case #1, the GNC verifies system stability because the
curves of the eigenvalues of L(s) in Fig. 8 do not encircle the
—1 point (for the sake of clarity, only the curves of
eigenvalues related to system instability are plotted). In this
steady-state operating point, the resonance frequencies of the
system are damped by the system resistances.

In Case #2, the value of the filter capacitors C and Cp, is
reduced from 20 pF to 10 uF at 0.4s. According to the
PSCAD/EMTDC simulations in Fig. 9(a), the system becomes
unstable after the capacitor value ramp down. This is because
the frequencies of the system resonances are shifted and the

Page 8 of 12
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26 Fig. 8. Stability study: Case #1.

27 resonance at f~ 820 Hz (i.e., the frequency of the unstable
28 harmonic oscillations captured in the frequency spectrum in
29 Fig. 9(a)) is in the VSC negative-damping region which is not
30 compensated by the system resistances. This VSC negative-
31 damping region is mainly affected by the grid voltage
32 feedforward low-pass filter bandwidth and VSC time delay,
33 which could be modified to achieve VSC passivity at this
34 frequency. The GNC verifies the instability results because the
35 curves of one eigenvalue intersect the unit circle
36 approximately at 813 Hz, enclosing the —1 point in clockwise
37 direction, Fig. 10(a). The frequency of the intersection points
38 is verified in the Bode plot of this eigenvalue (middle and
39 bottom plots in Fig. 10(a)).

40 In Case #3, the VSC; and VSC, consumed active powers
41 are raised from 500 MW (P = P3p = 500 MW) to the nominal
42 value (P = P3;=1000 MW) at 0.1 s. According to the
43 PSCAD/EMTDC simulations in Fig. 9(b), the system becomes
44 unstable after the active power consumptions are ramp up.
45 This is because the value of the fictive resistance Rj3, is
46 modified and the DC resonance at f~ 630 Hz (i.e., the
47 frequency of the unstable harmonic oscillations captured in
48 the frequency spectrum in Fig. 9(b)) is not damped by the
49 system resistances. The GNC verifies the instability results
50 because the curve of two eigenvalues intersects the unit circle
51 approximately at 638 and 641 Hz, enclosing the —1 point in
52 clockwise direction, Fig. 10(b). The frequency of the
53 intersection point is verified in the Bode plot of these
>4 eigenvalues (middle and bottom plots in Fig. 10(b)).

55 In Case #4, the short-circuit ratio SCR is reduced from
56 20 puto 1 pu at 0.3 s (i.e., VSC, and VSC, are connected to a
57 very weak AC grid at 0.3s). According to the
gg PSCAD/EMTDC simulations in Fig. 9(c), the system becomes

unstable after the SCR value is stepped down. This is because
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Fig. 9. PSCAD simulations (time-domain waveforms on the left and frequency
spectrum on the right): a) Case #2. b) Case #3. ¢) Case #4.

the weak AC grid shifts the system resonance to the
subsynchronous frequency f~ 15 Hz (i.e., the frequency of the
unstable subsynchronous oscillations captured in the
frequency spectrum in Fig. 9(c)), where the VSCs have a
negative resistance due to the PLL and the outer loops. A
small grid voltage feedforward low-pass filter bandwidth
could be used to keep as narrow as possible the VSC non-
passivity region caused by outer control loops at near-
synchronous frequencies [4], [9]. The GNC verifies the
instability results because the curve of one eigenvalue
intersects the unit circle approximately at 15.2 Hz, enclosing
the —1 point in clockwise direction, Fig. 10(c). The frequency
of the intersection point is verified in the Bode plot of this
eigenvalue (middle and bottom plots in Fig. 10(c)).

V. CONCLUSIONS

The paper presents two contributions to the study of multi-
terminal HVDC hybrid AC/DC transmission grid stability: (i)
a new VSC three-port admittance-based model, which extends
the VSC models in the literature, and (ii) a systematic
procedure based on the Norton admittance method for
modeling these grids. The proposed model characterizes both
the AC- and DC-side dynamics by relating the AC- and DC-
side currents and voltages from a three-port admittance
transfer matrix (one port for the DC-side and two dg-complex
ports for the AC-side) independent of the AC and DC grids



oNOYTULT D WN =

IEEE PES Transactions on Power Systems

Page 10 of 12

a)
=
E
3
>
g
3
£
- 2 T RetaLgo - " RetaLio) 1
€A [0) €A [0)
10 T T T T T 40 T T T T
[
—_ 0 /
@ 0\
2 -50
>
= —40
<
o
~10 \ s 38 Hz —80
5 0 -150
> ] $=—194°
= |-100 4= _201°
> -200
3100 1200
¥ _
<
_ I I I 1 I =300 I I I I I I J_300 I I 1 1 1 1 1
300 500 700 900 1200 300 500 700 900 1200 5 15 25 35 45 50
f(Hz) S (Hz) f(Hz)
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connected to these ports. The proposed procedure is rigorous,
understandable and easy to program and can be used to Zt(s)= Zaa (S)+qu (s) +j Zqa (s )_qu (5)
analyze multi-terminal HVDC hybrid AC/DC transmission 2 2 G1)
grid stability using impedance-based stability criteria. Both Z (5) = Z4q (8)=Z,, (s) Y Zya (8)+Z4,(5)
contributions are shown in a multi-terminal HVDC hybrid - P J ) :
AC/DC transmission grid application.
The dg-complex space vectors are defined as

APPENDIX

A. Complex Transfer Functions

Complex transfer functions are used in Section II to model
grid-connected VSC systems with dg-complex space vectors
[14], [16], [17].

A dg-domain impedance matrix of dg-real space vectors,

|:Ud:| _ {de (s) Zy4 (S)H[d}
Y, Zua(8) Zyg(s) |14 )
can be transformed into another dg-frame matrix based on dg-
complex space vectors as [16], [17], [19]

|l 2 e ]

[qu}{ Z'(s)  Z7(s) Hldq}
Us | |z ) @ (s) || Tag |
L da] L

(29)

(30)

uy, 75 (s) Taq

where

Ugq = (Ug+ qu)/\/2 and Igq=(y+ jlq)/\/2. Transformation
(31) is also true for any dg-domain matrix of dg-real space
vectors, €. g., admittance matrices.

B. VSC Modeling

The dg-real small signal impedance-based model of the
VSC in Fig. 1 is briefly reviewed in this Section [9], [10],
[12]. The VSC control is characterized by the inner current
controller (CC) and the outer control loops, which make it
possible to characterize the main VSC operation modes (i.e.,
mode P — Q, mode V,.— O, mode V,. — E,. and mode P — E,.)
[9], [10]. The PLL is also considered in the control modeling
and the superscript “c” indicates the converter dg-domain
variables whereas no superscript is used on the grid dg-
domain variables.

1) AC grid relation

According to Fig. 1, the small signal voltage balance in grid
dg-domain across the converter R.— L. filter is

AEd Rc -l-SLC —Lca)l Md AVd
= + s 32)
AE, L. R.+sL, || Al, AV,
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where @, = 2nf| is the fundamental angular frequency of the
grid, Vg =1[Vy I/q]T is the VSC output voltage and
E4=[E,E,]" and I,,= [I,1,]" are the voltage and the current
at the point of common coupling.

2) AC-DC converter relations

The modulation function mg, = [m,m,]" is used to relate the
VSC output voltage V,, and the DC voltage V. as [12]

= Ve = Vico + AV, (33)
{Vq m, AV, Am, L

where V. and mgy are the steady-state operating points of the
DC voltage and the modulation function, respectively.

Assuming a lossless VSC and disregarding the homopolar
component, the instantaneous power balance between the AC
and DC sides of the VSC in Fig. 1 and (33) impose the
following relation between the DC current I, and the AC
current [12]:

Id
Pdc :RJC = Vdc[dc :_[md mq:|Vdc I (34)
q

which can be expressed as the small signal relation,

Al A
Al g :—[mdo mqo]{Md}—[ldo Iqu{AZd
q q

_ T T
= Aldc = —mquA]dq - quoAmdq N

} (3%)

where I is the steady-state operating point of the AC
current.

3) PLL relations

The AC current and voltage and the modulation function in
the converter (I4, Eq, and m‘,,) and grid (I, E4 and my,)
dg-domains are related as [12]

Al _| Al +{O GPLL(S)Iq0i| AE,
_AI; Al, 0 —Gpy ()1, || AE,

AE _ {1 Gpr ($)E o } AE, (36)
AE; | [0 1=Gp(9)Eq || AE,

Amy _ |:Amd:|+{0 Gppr (s)myg }|:AEd:|
| Am; Am, 0 —Gpr(s)my || AE, ’
where Gpri(s) = Fpri(8)/(sTEaF pri(s)), Fppi(s) =

ky, pritki pri/s and k, pry; and k; py; are the proportional and
integral gains of the PLL control.

4) Inner CC loop relations

The small signal control law of the inner CC loop in the
converter dg-domain is [9], [12]

IEEE PES Transactions on Power Systems

11
AV ALG, — Al
r1__p(s) |:F'cc(s) 0 } ar=Ma|_
AV, 0 F(s)]| ALS, -AL

{ 0o - Ca)l} AI;] {H,. (s) o HAEdH

+| ,
Loy 0 | AL 0 Hy(s)]| AES
Where Vcdq, r= [Vd,r Vq,r]T = Vch[md mq]T and ]qu,r = [ch,r Icq,r]T
are the reference voltage and current, D(s) = ¢™*'? is the VSC
time delay transfer function, F..(s)= k, .tk /s and
H(s) = oy/(s + &), with k, . and k; .. being the proportional
and integral gains of the inner CC, ay the low-pass filter
bandwidth and 7, the VSC time delay.

37

5) Outer control loop relations

According to Fig. 1, the following outer control loops are
characterized in the VSC modeling [9], [10], [14]:

Direct-voltage control (DVC) loop: The control law of the
DVC is considered as

c AI;‘*" ch(s)
Id,r :ch(s)(Vdc,r_Vdc) = ¢ == AVdcﬂ(38)
AIL, 0

which is expressed with dg-complex space vectors (30) as

1 | Fu(s)
Alfiltlll,r =—FopvcAVy oDVC = E{F C(S) , (39
de

where Fy(s) =k, act ki als, with k, ;. and k; ;. being the
proportional and integral gains of the DVC.

Alternating-power control (APC) loop: Since E, =0, the
control law of the APC is considered as

E =0
I(;,r :Fp(s)(ljr(;f _(Edld +quq)) =

Alg, | E, 0][AlL Liy I,][AE,
{M;J]__FP(S){O O}{MJ_FP(S){O 0 || aE, |

which is expressed with dg-complex space vectors (30) as

(40)

cm + cm + cm
Aqu,r - _Go,APCAqu _Yo,APCAEdq

+ :Fp(S)EdO L1 v :Fp(s) I:;q() quo (41)
0,APC —2 11 0,APC \/5 )

where F,(s)=k, ,+k; /s, with k,, and k;, being the
proportional and integral gains of the APC.

Alternating-voltage control (AVC) loop: The control law of
the DVC is considered as

*
quO quO

ch,r = FV(S)(Ed’ref _Ed) =

Alg, | { 0 O}PE[,} (42)
ALS, | LERG) 0| AE, |

which is expressed with dg-complex space vectors (30) as
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cm
A dq,r

_ + cm + _
- _Yo,AVCA dq Yo,AVC -

Fv(s){j j
2 |-j —J

}, (43)

where F\(s) =k, ,* k; /s, with k,, and £k, being the
proportional and integral gains of the AVC.

Reactive-power control (QPC) loop: Since E, =0, the

control law of the QPC is considered as

Ej=0

I, ==F () Qry —(Eq —Egl)) =

Al F(){o 0 HA@} F(){o 0 }{Md}
=-F, (s -F, (s ,
AI¢ 1 0 Ey || Al 1 L,y —140 || AE,

q.r

which is expressed with dg-complex space vectors (30) as

A fil;,r = _G:,QPCA (cir; —Y:,QPCA cdl:]l
F (S)Edo 1 -1
G:opc = —+—— 45
0,QPC 2 -1 1 ( )
Yeope = F,(s)| ~lago  lago
0,QPC — * >
\/E quO _quO

where Fys)=k,,+k /s, with k,, and £k, being the
proportional and integral gains of the QPC.

The complex transfer matrices F™,, G*, and Y=, in (8) are

the sum of the above complex transfer matrices depending on
the VSC operation mode.
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