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Abstract

We consider the class Ψd of continuous functions that define isotropic covariance

functions in the d-dimensional sphere Sd. We provide a new recurrence formula

for the solution of Problem 1 in Gneiting (2013b), solved by Fiedler (2013). In

addition, we have improved the current bounds for the curvature at the origin

of locally supported covariances (Problem 3 in Gneiting (2013b)), which is of

applied interest at least for d = 2.
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1. Introduction

There has been a fervent research activity around positive definite functions

on spheres in the last five years Barbosa and Menegatto (2015); Beatson and

zu Castell (2017); Castro et al. (2012); Estrade et al. (2019); Fiedler (2013);

Gneiting (2013a); Guella and Menegatto (2016, 2018); Guella et al. (2016a,b,5

2018); Massa et al. (2017); Menegatto (2014); Porcu et al. (2016); Trubner

and Ziegel (2017); Xu (2018); Ziegel (2014). In Gneiting (2013a), T. Gneiting
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offers an impressive overview of the problem as well as a number of connections

between mathematical, complex and harmonic analysis tools, approximation

theory, and the theory of stochastic processes, Gaussian random fields, and10

geostatistics.

Schoenberg’s theorem (Schoenberg, 1942, Thm. 2), in concert with the or-

thonormality properties of spherical harmonics, characterises positive definite

functions over d-dimensional spheres of Rd+1 that depend on the geodesic (great

circle) distance. Such an assumption is termed geodesic isotropy by Porcu et al.15

(2018), and it is the building block for more sophisticated constructions, such as

in Berg and Porcu (2017); Estrade et al. (2019) and Porcu et al. (2016). More

technical approaches based on complex spheres and locally compact groups have

been proposed in Berg et al. (2017).

Gneiting (2013b) provides a collection of open problems that have inspired20

mathematicians and statisticians, as it can be seen, for instance, from Fiedler

(2013); Berg and Porcu (2017); Massa et al. (2017); Ziegel (2014) as well as from

the tour de force in Beatson et al. (2013).

This paper faces two important problems, the former being related to the

representation of d-Schoenberg’s coefficients (see Section 2 below) in terms of25

1-Schoenberg coefficients. Such a problem is parenthetical to celebrated Math-

eron’s turning bands operator Matheron (1963) proposed in Euclidean spaces

only. In particular, a representation of d-Schoenberg coefficients in terms of 1-

Schoenberg’s coefficients was provided by Fiedler (2013) when d is odd, and in

terms of 2-Schoenberg’s coefficients when d is even. The case of even dimension30

d and a representation in terms of 1-Schoenberg’s coefficients is still elusive, and

constitutes one of the challenges and achievements of the present paper.

The latter problem finds instead motivation in atmospheric data assimila-

tion where, quoting Gneiting (2013b), “locally supported isotropic correlation

functions are used for the distance-dependent reduction of global scale covari-35

ance estimates in ensemble Kalman filter settings Buehner and Charron (2007);

Hamill et al. (2001).” Our contribution, in this regard, provides sharper bounds

related to the minimum curvature at the origin of compactly supported positive
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definite functions.

The plan of the paper is the following. Section 2 provides the necessary40

concepts, notation and theoretical tools. Section 3 introduces the statements

of Problems 1 and 3 of Gneiting (2013b) and follows with our improvements to

their current solutions.

2. The class Ψd and d-Schoenberg coefficients

Let d be a positive integer. We consider the d-dimensional sphere Sd with45

unit radius, embedded in Rd+1 so that Sd = {x ∈ Rd+1 : ‖x‖ = 1}. We

define the geodesic or great circle distance as the mapping θ : Sd × Sd → [0, π]

defined through θ(ξ, η) = arccos(〈ξ, η〉), with 〈·, ·〉 denoting the classical dot

product. Throughout, we use the abuse of notation θ for θ(ξ, η) whenever

there is no confusion. We also consider the Hilbert sphere S∞ = {x ∈ RN :50

‖x‖ = 1}. We say that the function C : Sd × Sd → R is positive definite if∑n
i,j=1 αiαjC(xi,xj) ≥ 0, for any α1, . . . , αn ∈ R and for every x1, . . . ,xn ∈ Sd.

We denote by Cλn the n-th Gegenbauer polynomial of order λ > 0, uniquely

identified through the intrinsic relation

1

(1 + r2 − 2r cos θ)
λ

=

∞∑
n=0

rnCλn(cos θ), θ ∈ [0, π],

where r ∈ (−1, 1) (DLMF, Eq. 18.12.4). The first three polynomials are Cλ0 (x) =

1, Cλ1 (x) = 2λx and Cλ2 (x) = 2λ(λ+1)x2−λ, for x ∈ [−1, 1] (DLMF, Eq. 19.8.1).

It is of fundamental importance that (DLMF, Eq. 18.14.4)

|Cλn(x)| ≤ Γ(n+ 2λ)

n!Γ(2λ)
= Cλn(1), x ∈ [−1, 1]. (1)

The trigonometric expansion in the following lemma is crucial for the solution55

of our first problem. We recall the notation of the rising factorial (x)m :=

x(x + 1) · · · (x + m − 1) for any real number x and any non negative integer

length m, with the convention (x)0 = 1.
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Lemma 1. Let n ≥ 1 be an integer, λ > 0 and 0 < θ < π. Then the expansion

(sin θ)2λ−1Cλn(cos θ) =
22−2λΓ(n+ 2λ)

Γ(λ)Γ(n+ λ+ 1)

∞∑
µ=0

(1− λ)µ(n+ 1)µ
µ!(n+ λ+ 1)µ

sin(n+ 2µ+ 1)θ

(2)

holds, and reduces to a finite sum (up to µ = λ− 1) whenever λ is an integer.

This result is given in (Szegő, 1939, p. 93, Eq. 4.9.22) and proved for λ > 0,60

λ 6= 1, 2, 3, . . . and 0 < θ < π. The remaining case can be proved by induction

on λ ∈ {1, 2, . . .}.

Let Ψd be the class of continuous mappings ψ : [0, π] → R with ψ(0) = 1

such that the continuous functions C : Sd × Sd → R defined through C(ξ, η) =

ψ(θ(ξ, η)) are positive definite. The dimension d and the parameter λ in Eq. 165

are related by λ := (d − 1)/2, and in the sequel, for ease of notation, we use

one or the other interchangeably. Schoenberg (1942) characterised the positive

definite functions defined on the spheres of any dimension.

Theorem 2.1. Schoenberg (1942) A necessary and sufficient condition for a

continuous mapping ψ : [0, π] → R, with ψ(0) = 1 to belong to the class Ψd is

that the ultraspherical expansion

∞∑
n=0

{
(n+ λ)Γ(λ)

Γ(λ+ 1
2 )Γ( 1

2 )

Γ(n+ 1)Γ(2λ)

Γ(n+ 2λ)
·
∫ π

0

Cλn(cos θ′)ψ(θ′) sin2λ θ′dθ′
}
Cλn(cos θ)

(3)

has non-negative coefficients and converges absolutely and uniformly to ψ(θ)

throughout 0 ≤ θ ≤ π.70

Gneiting (2013a) used Theorem 2.1 to characterise the members of class Ψd

through the representation

ψ(θ) =

∞∑
n=0

bn,d
Cλn(cos θ)

Cλn(1)
, θ ∈ [0, π], (4)

with {bn,d}∞n=0 being a uniquely identified probability mass system. We follow

Daley and Porcu (2014) and Ziegel (2014) when referring to bn,d as d-Schoenberg

coefficients.
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The classes Ψd are nested, with the inclusion relation Ψ1 ⊃ Ψ2 ⊃ · · · ⊃

Ψ∞ :=
⋂
d≥1 Ψd being strict, and where Ψ∞ has a direct relation to the Hilbert75

sphere as previously defined.

Gneiting (2013a) and Beatson et al. (2013) obtain recurrence formulae that

allow to write any coefficient bn,d as a linear combination of bn,d−2 and bn+2,d−2.

By applying recursivity, each coefficient bn,d can be finally written, when d is

odd, as a linear combination of 1-Schoenberg coefficients {bn+2k,1}bd/2ck=0 , and80

when d is even, as a linear combination of 2-Schoenberg coefficients {bn+2k,2}d/2k=0.

Using the orthogonality of Gegenbauer polynomials, we can identify coeffi-

cients of Eq. (3) and (4) and get (Gneiting, 2013a, Cor. 2)

bn,d =
(n+ λ)Γ(λ)

Γ(λ+ 1/2)Γ(1/2)

∫ π

0

Cλn(cos θ)ψ(θ)(sin θ)2λdθ. (5)

where as usual λ := (d− 1)/2.

We recall that the 1-Schoenberg coefficients are the Fourier coefficients for

even functions:

b0,1 :=
1

π

∫ π

0

ψ(θ)dθ, bn,1 :=
2

π

∫ π

0

ψ(θ) cos(nθ)dθ, (n ≥ 1). (6)

3. Gneiting’s problems and current solutions

3.1. Statements of the problems

We now expose the problems faced in the paper together with their partial85

solutions.

Problem 1. (Gneiting, 2013b, Problem 1) Let n ≥ 0 and k ≥ 1 be integers.

Find the coefficients an,1, . . . , an,k in the expansion bn,2k+1 =
∑k
i=0 an,ibn+2i,1

associated to the (2k+1)-Schoenberg coefficients in terms of Fourier coefficients

bn,1, . . ., bn+2k,1. Similarly, find the (2k+ 2)-Schoenberg coefficients in terms of90

the 2-Schoenberg coefficients bn,2, bn+2,2, . . . , bn+2k,2.

In order to state Problem 2, we follow Gneiting (2013a) when calling Ψc
d the

subclass of Ψd having members ψ that vanish for any θ ≥ c, with c ∈ (0, π].

When c < π, then any member of Ψc
d is called locally supported, otherwise it is

called globally supported.95
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Problem 2. (Gneiting, 2013b, Problem 3) For an integer d ≥ 1, and for a

given c ∈ (0, π], find

acd := inf
ψ∈Ψcd

(
−ψ

′′
(0)
)
. (7)

The application on atmospheric data motivates the search of a member of

the class Ψc
2 with minimal curvature at the origin.

Some comments are in order. The solution of Problem 1 requires the use of

recursive formulae for the Gegenbauer polynomials and a constructive argument

that will be exposed subsequently. For Problem 2, we assume the existence of100

ψ′′(0) (considered in the one-sided sense), which is equivalent to the convergence

of
∑
n n

2bn,d, as shown in (Trubner and Ziegel, 2017, Lemm. 2.1). Our approach

relies on considering Ψ̃c
d, the subclass of Ψd given by those members ψ ∈ Ψd

such that ψ(c) = 0.

Another relevant comment is that Theorems 2 and 3 in Gneiting (2013a)105

provide the upper bound acd ≤ 1
c2

4
dj

2
d−2
2

, where jν denotes the first positive zero

of the Bessel function Jν .

According to Ehm et al. (2004) the constant acd in Euclidean spaces depend

on Boas-Kac roots, but Ziegel (2014) claims that the construction of these roots

for positive definite functions on spheres remains an open problem. This makes110

the problem mathematically more interesting, and certainly tricky.

3.2. Main results

The next proposition gives a general expression of d-Schoenberg coefficients

bn,d as a linear combination of the Fourier (cosine) coefficients for arbitrary di-

mension d. It is necessary to mention that Problem 2 of Gneiting (2013b) was115

completely solved for the first time by J. Fiedler in (Fiedler, 2013, Thms. 2.1&2.4),

using induction on the dimension d. He determined the weights of the combi-

nation of the Fourier cosine coefficients for odd d, and found the weights of

the combination of the Legendre coefficients for even d. Our result only covers

the odd dimension case, and gives an equivalent expression. However, it con-120

tributes a combination as an infinite series of Fourier cosine coefficients for the

even dimension case.
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Proposition 1. Let d > 1 be an integer, and let λ = (d− 1)/2. Then,

bn,d =

√
πΓ(n+ 2λ)

22λΓ(λ+ 1/2)Γ(n+ λ)

[
b∗n,1

−λ
∞∑
µ=1

(1− λ)µ−1(n+ 1)µ−1(n+ 2µ)

µ!(n+ λ+ 1)µ
bn+2µ,1

]
, (8)

for n ≥ 0, where b∗n,1 = bn,1 when n ≥ 1 and b∗0,1 = 2b0,1. If d is odd, the expres-

sion involves only a finite number of coefficients, i.e., b∗n,1, bn+2,1, . . . , bn+2λ,1.

Proof. By plugging Eq. (2) into Eq. (5), taking into account Eq. (1), and using

again the product-to-sum trigonometric identities, we get

bn,d = αλ,n

∫ π

0

[ ∞∑
µ=0

βλ,n,µ sin(n+ 2µ+ 1)θ sin θ

]
ψ(θ)dθ

=
αλ,n

2

∫ π

0

[
βλ,n,0 cos(nθ) +

∞∑
µ=1

[βλ,n,µ − βλ,n,µ−1] cos(n+ 2µ)θ

]
ψ(θ)dθ,

(9)

where

αλ,n :=
22−2λΓ(n+ 2λ)

Γ(λ+ 1/2)Γ(1/2)Γ(n+ λ)
and βλ,n,µ :=

(1− λ)µ(n+ 1)µ
µ!(n+ λ+ 1)µ

.

If λ is an integer (i.e. d is odd), the series is a finite sum (up to index125

µ = λ− 1). Otherwise, we need to verify the uniform convergence of the series

in (0, π), in order to exchange the integral and the series signs in (9).

On the one hand, it is easy to check that βλ,n,0 = 1, and

βλ,n,µ − βλ,n,µ−1 =
−λ(n+ 2µ)

µ(n+ λ+ µ)
βλ,n,µ−1, (10)

for all n and λ, and µ = 1, 2, 3, . . . On the other hand, if λ is not an integer, and

µ is larger than n,

βλ,n,µ−1 =
(1− λ)(2− λ) · · · (n− λ)

1 · 2 · · ·n
· µ(µ+ 1) · · · (µ+ n− 1)

(µ− λ)(µ− λ+ 1) · · · (µ+ n+ λ− 1)

(just expand the rising factorials in the definition of βλ,n,µ−1 and cancel factors
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appropriately). Now,∣∣∣∣∣
∞∑
µ=1

[βλ,n,µ − βλ,n,µ−1] cos(n+ 2µ)θ

∣∣∣∣∣ ≤
∞∑
µ=1

|βλ,n,µ − βλ,n,µ−1|

=

∞∑
µ=1

λ(n+ 2µ)

µ(n+ λ+ µ)
βλ,n,µ−1,

where the last series involves a quotient of polynomials in µ (for each fixed λ

and n) of respective degrees n + 1 and n + 2λ + 2(= n + d + 1). Hence the

uniform convergence of the function series.130

After exchanging series and integral in (9), we use the definitions of 1-

Schoenberg coefficients (6): for n > 0 we get

bn,d =
παλ,n

4

[
bn,1 +

∞∑
µ=1

[βλ,n,µ − βλ,n,µ−1]bn+2µ,1

]
,

while for the special case n = 0 we have

b0,d =
παλ,0

4

[
2b0,1 +

∞∑
µ=1

[βλ,0,µ − βλ,0,µ−1]b2µ,1

]
,

Finally, plugging (10) into these expressions, and making use of notation b∗n,1 =

bn,1 when n ≥ 1 and b∗0,1 = 2b0,1, we get the final result.

We are now able to face Problem 2, where a formal statement for a partial

solution is exposed in the following.

Proposition 2. Let d > 1 be an integer. Then:135

(i) acd ≥
1

1− cos c
if c ∈ [π/2, π].

(ii) acd ≥
(d+ 1)(cos c)(2− cos c) + 1

(1− cos c)((d+ 1) cos c+ 1)
if c ∈ [arccos

√
1
d+1 , π/2].

Proof. It is easy to check Beatson et al. (2013) that −ψ′′(0) = 1
d

∑∞
n=1 n(n+d−

1)bn,d for any ψ ∈ Ψd with associated d-Schoenberg coefficients {bn,d}∞n=0 and

holding
∑
n n

2bn,d <∞. Since the sequence {bn,d}∞n=0 forms a probability mass140

system, −ψ′′(0) shall be smaller for functions ψ whose mass is concentrated

in lower index coefficients. The search of these functions shall provide sharper

bounds for the infimum acd in Equation (7).
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The set Ψc
d is difficult to tackle, because locally supported functions have

an infinite number of non null d-Schoenberg coefficients. In view of this, we

consider Ψc
d as a subset of the more amenable set Ψ̃c

d := {ψ ∈ Ψd : ψ(c) = 0}, of

functions having at least one zero at the fixed value θ = c. Now, let us denote

ãcd := infψ∈Ψ̃cd
[−ψ′′(0)]. Obviously, we have acd ≥ ãcd since Ψc

d ⊂ Ψ̃c
d, and the

latter value is attainable at a known function for a range of values of c, as we

shall show. In order to get ãcd we need to solve the pair of equations

∞∑
n=0

bn,d = 1 and

∞∑
n=0

bn,d
Cλn(cos c)

Cλn(1)
= 0 (11)

subject to the restriction {bn,d}∞n=0 ⊂ [0,∞). As already stated, we shall check

the values for functions with mass concentrated into the first coefficients. The

constant function (i.e., bn,d = 0 for n ≥ 1) is clearly out of Ψ̃c
d. Thus, we check

functions with bn,d = 0 for n ≥ 2. Using Eq. 11) we get the single function

ψc(θ) =
− cos c

1− cos c
+

1

1− cos c
cos θ, θ ∈ [0, π],

and a sufficient condition for ψc to belong to the class Ψ̃c
d is that c ∈ [π/2, π],

with −ψ′′c (0) = 1
1−cos c . Hence, for c ∈ [π/2, π] we have that ψc ∈ Ψ̃c

d, leading145

to ãcd = 1/(1− cos c).

For c ∈ [0, π/2], we have no members of Ψ̃c
d with bn,d = 0 for n ≥ 2, and we

shall look for functions with bn,d = 0 for n ≥ 3. Using again the system (11),

we get the set of functions that can be written as

ψβ(θ) = − cos c

1− cos c
+

(d+ 1) cos c+ 1

d
β

+

(
1

1− cos c
− (d+ 1)(1 + cos c)

d
β

)
cos θ + β

(d+ 1) cos2 θ − 1

d
,

θ ∈ [0, π], indexed by a parameter β := b2,d. The non negativity restriction of

their coefficients turns into the inequality

d cos c

(1− cos c)((d+ 1) cos c+ 1)
≤ β ≤ d

(d+ 1) sin2 c
, (12)

which leads to a non empty set of values only if c ≥ arccos
√

1
d+1 , and ãcd is

attained for ψβ when β attaches to the left-hand side of inequality (12). This

completes the proof.
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This strategy might lead to values of ãcd for a wider range of values c, by using150

functions with bn,d = 0 for n ≥ 4, and so on, but we have not explored further

this line because of the complexity of equations. Another way (yet unexplored)

of improving the lower bounds is using slightly more complex auxiliary sets

Ψ
(c,c′)
d of functions having at least two zeros, or even more. We could find no

examples of members of this subclass.155

Finally, we show formulae for the 2-Schoenberg coefficients of the exponential

and Askey families, whose derivation requires simple techniques, but persever-

ance, and that, up to our knowledge, are not yet published.

Example 1. The 2-Schoenberg coefficients of the exponential family, given by

functions ψα(θ) = exp
(
− θ
α

)
, θ ∈ [0, π], and parameter α > 0, are given by

bn,2 =
2n+ 1

21−n


n∑

m≡0(mod2)

[(
n

m

)(n+m−1
2

n

) (
1 + e−

π
α

)
(m+ 1)2m

·

2m −
m
2∑

k=0

1

(2k + 1)2α2 + 1

(
m+ 1
m−2k

2

)+

n∑
m≡1(mod2)

[(
n

m

)(n+m−1
2

n

)

·
(
1− e−

π
α

)
(m+ 1)2m

·

2m − 1

2

(
m+ 1
m+1

2

)
−

m+1
2∑

k=1

1

4k2α2 + 1

(
m+ 1
m−2k+1

2

) .

Example 2. The Askey family Askey (1973) is given by functions ψα,τ (θ) =(
1− θ

α

)τ
+

for θ ∈ [0, π], and parameters α, τ > 0. For α > 0 and τ ≥ (d +160

1)/2, fuctions ψα,τ belong to the class Ψd Gneiting (2013a). The 2-Schoenberg

coefficients of ψα,2 are given by:

bn,2 = (2n+1) 2n−1


n∑

m≡0(mod2)

[(
n

m

)(n+m−1
2

n

)(
1

m+ 1
+

1

(m+ 1)α22m−1
·

m
2∑

k=0

(
m+ 1

k

)
cos(m− 2k + 1)α− 1

(m− 2k + 1)2

+

n∑
m≡1(mod2)

(
n

m

)(n+m−1
2

n

)[
1

m+ 1

− 1

(m+ 1)2m+1

(
m+ 1
m+1

2

)
+

1

(m+ 1)α22m−1

m−1
2∑

k=0

(
m+ 1

k

)[
cos(m− 2k + 1)α− 1

(m− 2k + 1)2

] .
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