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Abstract

GPS has been a de-facto standard for outdoor positioning. For indoor positioning differ-
ent systems exist. But there is no general solution to fit all situations. A popular choice
among service provider is BLE-based IPS. BLE-has low cost, low power consumption,
and tit is are compatible with newer smartphones. These factors make it suitable for mass
market applications with an estimated market of 10 billion USD by 2020. Although, BLE-
based IPS have advantages over its counterparts, it has not solved the position accuracy
problem yet. More research is needed to meet the position accuracy required for indoor
LBS. In this thesis, two ways for accuracy improvement were tested i) a new algorithm for
BLE-based IPS was proposed and ii) fusion of BLE position estimates with IMU position
estimates was implemented. The first way exploits a concept from control survey called
well-conditioned triangle. Theoretically, a well-conditioned triangle is an equilateral tri-
angle but for in practice, triangles whose angles are greater than 30° and less than 120°
are considered well-conditioned. Triangles which do not satisfy well-condition are ill-
conditioned. An estimated position has the least error if the geometry from which it is es-
timated satisfy well-condition. Ill-conditioned triangle should not be used for position es-
timation. The proposed algorithm checked for well-condition among the closest detected
beacons and output estimates only when the beacons geometry satisfied well-condition.
The proposed algorithm was compared with weighted centroid (WC) algorithm. Proposed
algorithm did not improve on the accuracy but the variance in error was highly reduced.
The second way tested was fusion of BLE and IMU using Kálmán filter. Fusion generally
gives better results but a noteworthy result from fusion was that the position estimates
during turns were accurate. When used separately, both BLE and IMU estimates showed
errors in turns. Fusion with IMU improved the accuracy. More research is required to im-
prove accuracy of BLE-based IPS. Reproducibility self-assessment (https://osf.io/j97zp/):
2, 2, 2, 1, 2 (input data, prepossessing, methods, computational environment, results).





vii

KEYWORDS

Sensor Fusion
Kalman Filter
BLE positioning
Indoor Positioning
Smartphone





ix

List of Abbreviations

ACCE Accelerometer
AoA Angle of Arrival
AP Access Point
BLE Bluetooth Low Energy
ETRI Electronics and Telecommunications Research Institute
EvAAL Evaluating Ambient Assistant Living
GNSS Global Navigation Satellite System
GPS Global Positioning System
GYRO GYROscope
IMU Inertial Measurement Unit
INS Inertial Navigation System
IPS Inertial Positioning System
IPIN Indoor Positioning and Indoor Navigation
k-NN k Nearest Neighbor
LBS Location Based Services
MAC Media Access Control
PDR Pedestrian Distance Reckoning
RFID Radio Frequency IDentification
RSS Received Signal Strength
ToA Time of Arrival
TDoA Time Difference of Arrival
USD United States Dollar
UWB Ultra Wide Band
WC Weighted Centroid
Wi-Fi Wireless Fidility
WSN Wireless Sensor Network
ZUPT Zero Velocity UPdaTe





xi

Contents

Acknowledgements iii

Abstract v

KEYWORDS vii

List of Abbreviations ix

Contents xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 General Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 7
2.1 Indoor Positioning System . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Network-based systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Inertial based systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Theoretical background 15
3.1 Resection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Well-conditioned triangle . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Delaunay condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Methods and Data-sets 19
4.1 Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



xii

4.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Wi-Fi positioning . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2 BLE positioning . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Discrete Time Window . . . . . . . . . . . . . . . . . . . . . . . 25
Continuous Time Window . . . . . . . . . . . . . . . . . . . . . 25
Weighted Centroid for BLE . . . . . . . . . . . . . . . . . . . . 26
Proposed method for BLE . . . . . . . . . . . . . . . . . . . . . 26
Stride-Length and Heading for IMU . . . . . . . . . . . . . . . . 29
Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.3 How to measure the positioning error . . . . . . . . . . . . . . . 30

5 Results and Discussion 33
5.1 Wi-Fi position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 BLE position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 IMU position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Conclusion and Future Works 43
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A BLE positions 3
A.1 BLE positions using Discrete time window and Weighted centroid algorithm 3
A.2 BLE positions using Continuous time window and Weighted centroid al-

gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
A.3 BLE positions using Discrete time window and Proposed algorithm . . . 6
A.4 BLE positions using Continuous time window and Proposed algorithm . . 8

Bibliography 11



xiii

List of Figures

3.1 Error for same change in weights for different triangle geometry . . . . . 16
3.2 Possible triangulation mesh with four points . . . . . . . . . . . . . . . . 18

4.2 GetSensordata Application and log-file: c shows output from GetSen-
sorData app and b shows, depending on the sensor, how each row in c
should be interpreted . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Wi-Fi Fingerprint generation from data. a RSS data collected at certain
time, b Order of MAC in fingerprint database, c Resultant fingerprint. . . 24

4.4 Bucket in Discrete and Continuous grouping technique . . . . . . . . . . 25
4.5 Effect of farther beacons on position estimate . . . . . . . . . . . . . . . 27

5.1 Distribution of error in Wi-Fi estimates . . . . . . . . . . . . . . . . . . . 34
5.2 Position estimates from k-NN fingerprinting . . . . . . . . . . . . . . . . 35
5.3 Unique advertisement recorded in different window sizes. Lower right

plot shows percentage of windows that detected 3 or more and 4 or more
unique advertisements respectively . . . . . . . . . . . . . . . . . . . . . 36

5.4 Example of position estimate with discrete window and WC method . . . 37
5.5 Error distribution for each factor . . . . . . . . . . . . . . . . . . . . . . 38
5.6 Error distribution due to each factor. Distribution is separated by window

size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.7 Error distribution due to window size on each factor. . . . . . . . . . . . 40
5.8 Position estimates with discrete Stride-length and heading method . . . . 40
5.9 Position estimates with fusion of IMU and BLE . . . . . . . . . . . . . . 41

A.1 Last of redundant advertisements . . . . . . . . . . . . . . . . . . . . . . 3
A.2 Average of redundant advertisements . . . . . . . . . . . . . . . . . . . . 4
A.3 Highest of redundant advertisements . . . . . . . . . . . . . . . . . . . . 4
A.4 Last of redundant advertisements . . . . . . . . . . . . . . . . . . . . . . 5
A.5 Average of redundant advertisements . . . . . . . . . . . . . . . . . . . . 5
A.6 Highest of redundant advertisements . . . . . . . . . . . . . . . . . . . . 6



xiv

A.7 Last of redundant advertisements . . . . . . . . . . . . . . . . . . . . . . 6
A.8 Average of redundant advertisements . . . . . . . . . . . . . . . . . . . . 7
A.9 Highest of redundant advertisements . . . . . . . . . . . . . . . . . . . . 7
A.10 Last of redundant advertisements . . . . . . . . . . . . . . . . . . . . . . 8
A.11 Average of redundant advertisements . . . . . . . . . . . . . . . . . . . . 8
A.12 Highest of redundant advertisements . . . . . . . . . . . . . . . . . . . . 9



xv

List of Tables

4.1 Snapshot of Wi-Fi Fingerprint database . . . . . . . . . . . . . . . . . . 22

5.1 Overview of errors at different k values for k-NN fingerprinting . . . . . . 33
5.2 Overview of errors on all combination of factors. . . . . . . . . . . . . . 42





1

Chapter 1

Introduction

People spend about 80 percent of their time indoors [30]. In large offices and houses,
people often feel the need for accurate positioning of the entities like employees cham-
bers, restrooms, archive rooms etc. Even if people do have adequate knowledge of his/er
surrounding, the provision of accurate positioning is always beneficial to have at the time
of emergencies. Additionally in places like airports, libraries, museums, malls, and ware-
houses it is not possible to know every corner, especially for visitors and newcomers.
The available positioning devices in present scenario i.e GPS/GNSS are primarily used in
outdoor settings. Unfavorably in indoor environments, the accuracy of 4-5m provided by
GPS is not enough as indoor activities require accuracy within the extent of a meter. GPS
is not enough and even misleading in some cases as highlighted by [30]. Due to advance-
ment in technologies several other systems have emerged which can provide position in
buildings, or places where GNSS signals are weak or unavailable.

Indoor positioning is the process of positioning in indoor environments, where GNSS
signals are not strong enough for positioning [14]. Indoor Positioning Systems (IPS) are
systems devoted to provide indoor positioning. For example, Robotic vacuum cleaners
use an IPS system to navigate around in a room. Novel uses of indoor positioning have
appeared in health care where proximity interaction between individuals was studied to
track the spread of influenza [39]. More indoor positioning applications are being devel-
oped [41, 42] and the indoor positioning market is predicted to be 10 billion USD by 2020
[9]. IPS can be highly accurate. For example, the Cricket’s IPS could get centimetre level
accuracy [36]. IPS utilizing Light, Sound, Ultra Wide Band (UWB), Artificial Magnetic
Fields and Computer vision technologies achieve high accuracy [30]. However, accuracy
is not the only determinant factor to assess an IPS system. Cost and scalability are sig-
nificant factors too [10, 30] IPS that utilize already available Wi-Fi networks or cellular
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networks are cost effective and scalable, though they have lower accuracy than the tech-
nologies like Light or UWB. Researchers suggest smartphone based low cost, scalable
solution with reasonable accuracy as a practical solution and demand for such a solution
is high. Smartphones are seen as the best platform for mass market indoor positioning
due to their ubiquity and convenience [44].

The past decade witnessed major developments in smartphone technology. Smartphones
came with wide array of sensors. These sensors can be leveraged for position estimation.
An example is the Mozilla’s location service, which is “an open service which lets de-
vices determine their location based on network infrastructures like Wi-Fi access points,
cell towers and Bluetooth beacons." [32]. The Skyhook company provides "Precision Lo-
cation" service using Wi-Fi, GNSS and Cellular network signals [38]. The composition
of sensors in a smartphones vary by manufacturer and model. The precision of sensors
also vary according to device. Nonetheless, smartphone sensors example Wi-Fi, Blue-
tooth, accelerometer, gyroscope, magnetometer, light sensor, proximity sensor have been
researched for positioning [14]. Wang et al. [44] identifies dead reckoning, fingerprinting,
trilateration, proximity estimation and visual localization as applicable methods for IPS
in a smartphone. One or more of these methods can be used in combination as they are
independent as well as complementary to each other.

IPS solutions based on only one technology are more prone to inaccuracies due to the
sensor noise than those based on two or more technologies [45, 11]. Combining results
from two or more technologies deliver better results than single ones [45, 48, 18, 23,
7]. It is common to see systems that combine network-based systems with inertial-based
ones. Network-based IPS utilize Wi-Fi, Bluetooth, and Geo-magnetic field to provide
position estimates. For all of them, new estimates are independent of the previous ones,
which means that the error in one estimate does not affect subsequent estimates. Un-
like Network-based IPS, Inertial systems utilize inertial measurements (acceleration and
gyroscope readings) and are based on principle of dead reckoning. This means that the
new estimates are based on previous ones. The error in a prior estimate is transferred
to next estimate. This is known as drift error. Inertial systems can provide fast results
continuously and consistently which is a desirable characteristic for real time systems.
However, on long run, drift error accumulates and degrades accuracy of inertial systems.
In network-based IPS, on long run, the system gets more data and positioning error is
reduced. A hybrid system is able to utilize this contrasting feature to maximize accuracy
of a combined system.

Many research proposals combine Wi-Fi or BLE with PDR to improve accuracy [48, 20,



1.1. Research Gap 3

37, 23]. Fingerprinting and trilateration are popular methods among network based sys-
tems. Wi-Fi is the most common IPS because Wi-Fi networks are easily available in most
indoor environments and Wi-Fi fingerprinting provides good accuracy. But in practice,
Wi-Fi networks are configured mainly to facilitate communication and not for position-
ing. Torres-Sospedra et al. [40] identified common alteration in AP infrastructure and
showed that these changes have considerable impact on accuracy. Wi-Fi scan rate lim-
itations imposed by newer smartphones also discourages Wi-Fi IPS. On the other hand,
BLE is suitable alternative to Wi-Fi. BLE works similar to Wi-Fi and it is more accu-
rate [15] with 1 to 2m accuracy [31]. BLE beacons need to be deployed in the service
area. They are cheap, small, configurable devices with low power consumption that can
last for months. Position of BLE beacons are known in advance and can be configured
for positioning. BLE beacons may be deployed in high density network which helps in
increasing accuracy. Due to these advantages [15], BLE is popular among IPS service
providers and used for proximity application or relatively cheap positioning. Accuracy of
the combined system is increased when accuracy of the individual system is increased.
Proposed solutions or accuracy improvement for network based systems include creating
high density fingerprint database, applying signal propagation model or using regression
to enrich radio map [31].

1.1 Research Gap

For improving accuracy of BLE systems researchers have investigated diverse techniques.
Linearizing non-linear beacon readings [23], applying stigmergy [34], channel diversity,
Kálmán filtering and weighted triangulation [6] have been explored. Still, huge potential
exists for further research because existing solutions are not flawless. For range-based
BLE positioning, removing distant beacons from computation helps with accuracy [20,
30]. In range-based positioning methods, choice of beacons used for position estimation
has direct influence on accuracy. It is known that RSS values suffer from some errors
during transmission. This error in RSS causes error in computed distance. Weaker signal
from a nearer beacons causes the beacons to be interpreted as being farther. This may
contribute to error in final estimate. On the other hand, positioning usually requires more
than one beacon to work with. Since, the positions of beacons are known in advance,
closeness of each beacon is to other beacons can be known in advance. In a group of
beacons, it is possible to know which beacons are closer to each other and which ones are
farther. Farther beacons can be eliminated from position estimation. Since this elimination
process depends on the actual distance between the beacons and not the RSS distance,
one potential source of error is removed. In a beacons group, many permutations of
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beacons are possible but it is possible to choose a beacons permutation which provides the
least possible error in the position estimate. According to a surveying concept, position
estimation based on a well-conditioned triangle ensures least error[4]. To the author’s
knowledge this concept has not been explored so far in IPS. So, one of the goals of this
thesis is to implement the concept of well-conditioned triangle for choosing beacons used
in BLE position estimation.

1.2 Research Objectives

The research primarily aims to improve the accuracy of BLE-based positioning system.

To fulfil this objective, the specific objectives are

• To study and analyse factors affecting BLE positioning

• To design and implement a positioning algorithm based on well-conditioned trian-
gle for BLE positioning and and study its effects.

• To implement an integration of BLE positioning and inertial method.

1.3 General Methodology

The thesis is divided into four stages namely; i) review and learning; ii) positioning using
individual technologies, and analysis of new algorithm for BLE-based positioning; iii)
sensor fusion; iv) comparison with existing methods.

In the first stage, several reviews of the IPS systems were studied. The focus of study
was to gain overview of the current landscape of IPS. Given a broad field and numerous
researches, Reviews of smartphone based and inertial based systems were prioritized.
Existing BLE based and Inertial-based IPS systems along with combined systems were
reviewed with focus on accuracy and implementation. Existing datasets and code were
studied and reproduced to understand the working of different algorithms. Drawbacks
of existing methods were identified and solution was conceptualized. The findings are
discussed in chapter 2. Chapter 3 explains terminologies from control surveying which is
a broad field related with computing precise horizontal and vertical coordinates

Second stage involved implementation of WiFi, BLE and IMU positioning estimates. A
new algorithm for BLE positioning was also tested. A test track was designed to resemble
a moving person. Tracking data were collected using GetSensorData mobile applica-
tion. For Wi-Fi positioning, fingerprinting method was used. Training database for Wi-Fi
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fingerprinting were collected using another application. Test data was generated from
the data collected during tracking. For BLE positioning, four factors that affect position
estimate were studied. BLE observations were grouped by time windows. Size of the
window and grouping technique would affect the position estimates. Different window
sizes and different grouping techniques were studied. Moreover, each window may con-
tain redundant advertisements. Strategies to handle redundant advertisements were also
studied. A new algorithm for BLE positioning was designed and implemented. For IMU
positioning, Stride-length and heading method was used. Stride-lengths were computed
from accelerometer data and headings from gyroscope data. IMU estimates were sensitive
to sensor bias and step detection threshold. Several test were conducted for fine-tuning.
Explanation of the test environment, collected datasets and the mentioned methods are
included in chapter 4. Chapter 5 elaborates the results and experiences and provides dis-
cussion on the obtained results.

Third stage is the sensor fusion stage. Kálmán filter was used to combine the BLE position
estimates with IMU estimates. Kalman filter works on alternating sequence of predict and
update phases. IMU position estimates were used for prediction phase and BLE position
estimates were used for update phase. Since, IMU outputs are faster than BLE. Many IMU
outputs occur between any two BLE outputs. This sequence was handled by creating a
event-trigger list. This is a sorted list on timestamps of position estimate outputs. It diverts
the Kalman Filter to predict or update phase depending on the source of position estimate.
Chapter 4 contains brief explanation of the method and chapter 5 presents the result from
fusion.

Fourth and final step is comparing the results with existing methods. Average error and
75th percentilele are computed as some literature report average error while the EvAAL-
ETRI framework uses 3rd quartile. For uniformity, all combination of parameters are
designed to output estimates at pre-configured time intervals. Comparative analysis and
findings are discussed in chapter 5.
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Chapter 2

Literature Review

This chapter presents a brief overview of existing indoor positioning systems in the con-
text of network-based and inertial-based systems. The first section deals with the re-
searches on indoor positioning techniques along-with their pros and cons. Second section
discusses network-based positioning system. Reviews are focused on BLE-based IPS.
Third section contains reviews of Inertial-based positioning system.

2.1 Indoor Positioning System

Large efforts have been dedicated to find new solutions for indoor positioning in the last
decade. Meta-review [30] of IPS provides comprehensive insight into current IPS works
and positioning techniques. More than 3900 unique works with doi numbers were found,
but the real numbers is much larger as the review did not include papers without doi num-
bers. Light, computer vision, sound, magnetic fields, UWB, Wi-Fi, BLE, RFID, IMU,
temperature, proximity [44] have been explored for positioning. High accuracy were
achieved with Light, Sound, UWB, Artificial Magnetic Fields and Computer vision tech-
nologies [30]. Various surveys shed light on state of art techniques in specific domains.
Correa et al. [10] focus on mass market applications, Dhobale et al. [12] reviews from
user prospect, Diaz, Ahmed, and Kaiser [13] narrows down on inertial sensors, Basiri
et al. [3] study usability and requirements. Wi-Fi was the most prevalent technology fol-
lowed by light and Wi-Fi is predicted to remain dominant unless cheaper solution are
found [30, 10]. But newer smartphones (android 9.0 and ios) have restricted Wi-Fi scan.
This might cause decline in Wi-Fi IPS [30, 15]. Smartphones are seen as the perfect de-
vice for mass market positioning systems. Low cost and smartphone based solution have
high demand[48]. Light and BLE based IPS are currently runner-up in terms of research,
but BLE is popular among IPS providers [30]. Accuracy is not the only important factor
for choosing an IPS. Infrastructure cost and scalability to all environments are significant
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too [10]. Coverage, Complexity, robustness, privacy and power consumption are also
considered [30]. Due to many parameters, there is no clear winner, many solutions have
been proposed adhering to different environment and applications.

Dead reckoning, fingerprinting, trilateration, triangulation, proximity estimation, visual
localization are popular techniques for indoor positioning. Combination of one or more
of these techniques is also possible. Such systems are called hybrid systems or fusion
systems. LearnLoc [35], Kailos [17], Surround Sense [2] are some hybrid methods. A
comprehensive discussion on hybrid systems is provided by Easson [14]. Each of these
techniques have advantages and disadvantages. Dead reckoning is accurate but drift error
accumulation is a major challenge [47, 13]. Fingerprinting is a widely used method but
radio sensor error and maintenance of fingerprint database makes it labour-intensive and
cumbersome [11]. Battery capacity of a smartphone has been a major consideration in
development of smartphone based IPS [14]. Many systems perform computations in re-
mote server instead of the smartphones [22]. Visual recognition based approaches suffer
most as camera takes up considerable resource. This presents challenges for a resource
constraint smartphone but its applications can be seen in robotics example is robotic vac-
uum cleaners. Visual odometers perform better than wheel odometers or low cost inertial
sensors [1] hence they are suitable for robots. Proximity estimation are good for rough es-
timates but fail when accurate positioning is required. Limited range of proximity sensors
reduce their usability [14]. In real world, IPS systems find uses in positioning systems,
tracking systems and/or navigation systems.Positioning means to find a point with refer-
ence to a known reference frame. Example usage of positioning is to find the location of a
product in a warehouse. Tracking systems involve positioning over time. It requires a dy-
namic process model and measurements of the tracked object [45]. Tracking is effective
for objects which can make turns and for situations when positioning estimates are uncer-
tain. Navigation system on the other hand suggest a path from an origin to destination.
Suggestions are usually based in underlying data, navigation algorithm and system con-
figuration. Navigation system actively suggests a path whereas, tracking system records
previous path. Potential uses of these systems contribute to rise in demand and research
for IPS. Research landscape is focused on experimentation with different combinations of
technologies. Target of research is seen on increasing accuracy and lowering cost.

2.2 Network-based systems

Wi-Fi, BLE, UWB, Cellular network, WSN, Geo-magnetic field are examples of network-
based systems. Only Wi-Fi and BLE based systems ave been reviewed for this work.
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Network-based method can further be classified into range based method and range free
methods. Range based methods, example trilateration and triangulation, determine angle
or distance from network signals and use geometric computations to find position [10].
Range free methods, example fingerprinting and proximity estimation, exploit patterns
that are position dependent. Fingerprinting is a widely used range-free positioning tech-
nique and provides accurate results [30]. A fingerprint is the collection of RSS values
from different APs at any point. This fingerprint is different at different points. It is char-
acteristic of the place where it was collected and it can be exploited to determine position.
In fingerprinting, RSS fingerprint observed at some point is compared with a database
of previously collected fingerprints to find a match or closest match/es and using them
to determine position. It is performed in two steps: firstly some selected positions with
known coordinates are marked with unique ids, fingerprints at those positions is captured
and stored in a database. In the second step the positions is unknown but the device can
capture RSS and generate a fingerprint. This fingerprint is compared with the database
collected in previous step to find the closest match/es. Denser the database, higher the po-
sition accuracy. Creating, maintaining and updating dense database has been challenging
part for fingerprinting applications.

Trilateration is a range-based positioning technique that can work with fewer number of
APs than fingerprinting. It involves more computation but it can work with three APs.
Depending on method of distance estimation trilateration can further be divided as RSS
distance estimation, Time of Arrival (ToA) or Time Difference of Arrival (TDoA). If the
transmitted power is known, RSS value can be used to estimate distance [26]. Signal
attenuation models facilitate distance estimation but signal propagation in indoor envi-
ronment is not ideal. However, empirical model which use RSS value as log-normally
distributed random variable are supported by empirical evidence [26]. Using empirical
model, a maximum likelihood estimation of distance for a given RSS measurement can
be computed. ToA and TDoA require smartphone to send signal to AP and estimate dis-
tances using round trip time. They are more accurate than fingerprinting but are more
affected by time delays. Newer research employ Angle of Arrival (AoA) method. Ye et
al. [48] proposed a single AP based system using multiple antennas. It used Angle of Ar-
rival (AoA) and gives high accuracy at low cost. Trilateration techniques although more
accurate are not popular because of complexity in angular measurements, distance and
time delays [15]. Weighted Centroid (WC) is another technique for positioning. WC re-
quires prior knowledge on positions of the signal sources and a way to identify them from
RSS signals. WC computes weighted average of positions of the detected sources [33].
The algorithm is explained in the datasets and methods chapter. The BLE research works
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found weighted centroid better but more sensitive to disconnections than fingerprinting
[31, 25].

Wi-Fi is in the forefront of indoor positioning but newer changes make further progress
challenging. Faragher and Harle [15] identify five challenges:

1. increasing passive scan duration,

2. buffered aggregate reporting,

3. increase in network traffic due to active scans,

4. non-compatibility in all mobile platforms

5. lack of standard unit for reporting signal strength

Newer smartphones (android 9.0 and ios) have restricted Wi-Fi scans to 4 scans every 2
minutes which is too low for positioning [30]. Wi-Fi sensor buffers received signals and
outputs a single aggregate report. If user is moving during buffer period, the aggregate
is smeared with multiple positions. Long scan duration further increase the smearing
effect. Active scans engage APs and increase network traffic, hence the total throughput
of network is reduced. Apple devices do not allow RSS reading of APs except the one
to which it is connected. It also cannot connect to more than one AP at a time. Hence,
fingerprinting in Apple devices is not possible. Wi-Fi specification does not specify a
unit for reporting signal strength value. Systems configured in one unit may not perform
or perform in unexpected manners with devices using other unit. No survey covering
BLE based IPS are available [30] but it is seen as the suitable positioning technology for
smartphones [10]. Identified advantages of using BLE are:

1. Advertisements are reported immediately

2. Standard unit for reporting is specified as dBm [5]

3. Lower power consumption almost half of Wi-Fi [24]

4. Low cost per beacon

5. Short setup time compared to fingerprint collection

Selection of signal source is known to have influence on the accuracy of the system. In
EZ system [8], found selecting correct AP, selecting subset of location and dividing wall
problem as major issues in the system. LocSelect [8] showed selecting subset of location
based on some design example RSS information overlap provided better result. Kang
et al. [20] proposed a hybrid method where distant beacons are filtered out to improve
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accuracy. Mendoza-Silva, Torres-Sospedra, and Huerta [30] also agrees on deteriorated
accuracy when distant emitters are used.

2.3 Inertial based systems

Accelerometer, magnetometer gyroscope comprises the inertial sensors. The sensors are
tri-axial i.e. they report in x,y and z axis. Note that the axes are relative to the device and
not to the earth axes. A data that combines accelerometer and gyroscope is said to have
6 degrees of freedom and addition of magnetometer is said of have 9 degrees of freedom.
The accelerometer is used to compute distances and velocity of the device and gyroscope
and magnetometer are used find orientation, heading and rotation of device. Once initial
position is known, an inertial system can track without external influences. There is high
interest in this method as these sensors are readily available in smartphones. The process
most used by inertial sensors is Pedestrian Dead Reckoning (PDR). Easson [14] recognize
it as excellent strategy. PDR has shown sufficient accuracy but its major drawback is
the drift error. Most errors occur due to biases, bias stability and thermo mechanical
noise [47]. Woodman [47] define bias as measured average value of the acceleration and
turn rate when neither acceleration not rotation is undergoing. It can be compensated
by averaging values from sensors in static mode and subtracting averaged value from
measured values. This is also known as calibration. Bias stability is how biases change
over time under stable conditions at constant temperature. This causes non-systematic
error which is difficult to compensate as biases change over time. Thermo-mechanical
noise introduces random noise which has no correlation to the sensors.

In PDR displacement and direction from a known position is used to compute new posi-
tion. A position can be estimated using two approaches: Strap-down method and Stride-
length and heading method. Strap-down methods filter the incoming accelerometer and
magnetometer data and use double integration of acceleration to compute positions. An
example of strap-down method is Zero-velocity UPdaTe(ZUPT) algorithm. It is common
in shoe-mounted IPS. Shoe mounted systems can accurately detect step and re-calibrate
in each step [13]. This in turn helps to limit drift error. In inertial systems drift error
accumulation is cubic with time [21]. ZUPT algorithm was able to convert the cubic error
growth to linear [13]. This reduced the drift error in ZUPT systems but the linear error ac-
cumulation was still found to be challenging. Despite lower error, shoe mounted systems
require additional sensors to be mounted in shoes. Due to this their practical applications
are somewhat restricted. Stride-length and heading method employ some key stages: i)
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Step detection, ii) Stride-length estimation, iii) Heading estimation and iv) Position Com-
putation. Computed stride-length and heading are applied on previous position to get new
position estimate. There are many variations of stride-length method. Vezočnik and Juric
[43] evaluated 13 different models of stride-length and heading method. Models were
evaluated on different walking speed (slow , normal and fast), position of device (Pocket,
bag, hand-reading and hand-swinging) and model parameters (personalized and univer-
sal). Most modals performed better for fast walking speed for personalized parameters.
Weinberg model performed overall best when personalized set of parameters were used.
IPS solution that can function with Smartphone but without external sensors are of high
interest. ZUPT systems are not practical for smartphone only IPS. ZUPT require detecting
zero-velocity for which it needs an external foot-mounted sensor. Instead, stride-length
and heading algorithm are feasible solutions for smartphone only systems.

2.4 Sensor Fusion

Sensor fusion enables to control drift error in an IPS [48, 23, 45, 7, 49, 50]. IPS systems
are complementary to each other. Wang et al.[45] found Tracking of moving target was
better with fusion and recommends adding another sensor for better performance. Zihaje-
hzadeh et al. [50] states that fused system can maintain tracking during GPS outrages for
5 second with error less than 2 m. Chen et al. Chen et al. [7] fused Wi-Fi and inertial sen-
sors and improved them using landmarks. This shows that fusion is not limited to sensors.
Combination is possible with many technologies. Map matching is a powerful technique
if the layout of place is already known. Popular techniques for fusion are Kálmán Filter
and Particle Filter.

Kálmán filter are based on Gaussian filtering. The system at any state is represented by
state variables for example the position. The next state can be reached using two meth-
ods, a theoretical model whose uncertainties can be computed and another is observation
model which can determine the state within certain error. Both of these models contain
uncertainties, Kálmán filter is method of combining both of these uncertainties to generate
a result with higher precision than each of them.

The first step is prediction step, where the filter estimates new position with and its un-
certainty measures. Next step is update step, where observed state is taken and compared
with the estimates from previous step. The observed state also has uncertainties. Weights
for each model are updated based on uncertainty with higher certainty getting higher
weight. At the start one of the model is taken as accurate (usually observation model) and
assigned full weight. This weight is updated in each update step.
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Particles filters are based on solution of Bayesian filtering [16]. A set of weighted ran-
dom samples or particles is used to represent the initial condition. These particles are
distributed over the building. Constraints like walls, forbidden places are used to filter
out particles. Stairs and lifts can transition particles to other levels. Particles that collide
with walls are excluded from the simulation. The simulation is recursively solved for fi-
nal position. User location is weighted mean of remaining particles. It can be represented
in four steps 1) Prediction 2) Application of constraints 3) Update and 4) Re-sampling.
Particle filter are natural and intuitive ways of including map layouts and applying con-
straints directly on the particle. The map can be represented as Rooms, Stairs and Ladders
/ Elevators. Addition of constraints improve the results, but it is difficult to modal large
open areas as number of particles required is more. Particle filter was popular in track 1
of IPIN conference 2018 [37].
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Chapter 3

Theoretical background

This chapter introduces terminologies borrowed from the domain of surveying specifically
control surveying. Control surveying deals with determination of precise position using
distance and angular measurements. Trilateration, the principle on which GPS/GNSS is
based one of the technique control survey. This work implements some concepts from
surveying, so they are explained here.

3.1 Resection

Resection is a method of determining an unknown position using measurements to three
known positions. Angles or distances or their combination can be measured. Example
every point on a line segment can be determined if the distance to the end vertex are
known or the ratio of distances from each vertex is known. Similarly, for a triangle any
point within and on the plane of the triangle can be determined if the distance from each
vertex or ratio of distances from each vertex are known. Similarly, the concept can be
extended to higher geometries. In real life, true value of a distance or an angle can not be
accurately measured. All measurements include some error. Even careful measurement
using precise devices and observers still contains some error. This error inflicts more error
during computation. Given this fact, in resection it is accepted that the accuracy of the
unknown point is higher if the geometry from which it is derived is well-conditioned.

There seems to be confusion when using the term triangulation, trilateration and resection.
In triangulation and trilateration, measurements are undertaken from known positions to
unknown positions. In resection, measurements are carried out from unknown position
to known positions. For distance measurements, distance from unknown to known and
known to unknown are theoretically same so the term trilateration and resection can be
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used interchangeably as the computation technique will remain same. For angle measure-
ment though, angle from known to unknown and from unknown to known is different
in value. So use of the terms triangulation or resection is different. Example in beam-
forming [28], angle is measured at antenna array. The position of antenna array is known
but position of target is unknown. this corresponds to case of triangulation. If target
position is unknown and the measurements are made from the unknown position, it cor-
responds to resection. Literature on IPS have not used the term resection so far to the
author’s knowledge. Some literature have used the term trilateration to mean position
computation using distance to three known points and multi-lateration to mean computa-
tion using distance to more than three known points. For consistency with existing IPS
terminologies, this document uses the term trilateration but it can be interpreted to mean
resection where suitable.

3.2 Well-conditioned triangle

In trilateration error in position computation depends on the geometry formed by the three
known points. The shape of triangle formed by those three points affect the accuracy [4].

FIGURE 3.1: Error for same change in weights for different triangle ge-
ometry

In figure 3.1 Consider the known points (example BLE beacons) are represented by blue
stars. Two of the sides are of unit 2 and length of the third side is dependent on geometry.
Suppose that in ideal condition with no multipath and ideal path loss, the readings can
be equally trusted so they are given weights of [1,1,1] respectively (in practice in second
figure the vertex on bottom-right should have more weight as it is nearer, but we assign
same weight for simpler computation). The unknown position is calculated as weighted
average of the known points. The calculated position from the above weights is shown in
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diamond. Now suppose due to some error in signal from the upper point, it is trusted a bit
less. Now the weights become [1,1,0.9]. Position computed with these weights are shown
in cross. From the figure it is evident that the error in position due to change in weight
is least for an equilateral triangle and the position error increases as the triangle deviates
towards scalene.

Theoretically in an isosceles triangle with two angles of 56° 14’, change in any measure-
ment (distance or angle) to unknown point will have least effect on the resulting position.
Such a triangle is known as a well-conditioned triangle [4]. This value takes one side as
base for computation. But a triangle can be solved from other sides as well so the best
geometry is an equilateral triangle. The worst geometry is a straight line. A straight line
formed by 3 points will make a triangle with angles of 0°, 0° and 180°. In practice equi-
lateral triangles are rare, so a well conditioned triangle is defined as a triangle in which
no angle is less than 30°. Triangles having angles less than 30° are considered to be
ill-conditioned and should not be used for computations.

3.3 Delaunay condition

A Delaunay triangulation is a set of lines joining a set of points together such that each
point is joined to its nearest neighbors. The set of lines form a triangular mesh. In this
triangular mesh every circum-circle of a triangle does not contain any other points of
the set within it. Delaunay condition states that the circum-circle of any triangle should
not contain any other point inside it. Circum-circle is the circle that passes through the
vertices of a triangle. A triangular mesh satisfying delaunay condition is called delaunay
triangulation. For example, from a set of four points it is possible to form four different
triangles. Among the four triangles only two triangles will satisfy Delaunay condition.
It is a property of delaunay condition that the triangles are selected in such way that the
minimum internal angles of the selected triangles are as large as possible. Due to this
property, the member triangles are considered well shaped. This is important property as
maximizing the minimum angle favors well-condition.
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(A) Triangles satisfying Delaunay Condition [27]
(B) Triangles not satisfying Delaunay Condition [27]

FIGURE 3.2: Possible triangulation mesh with four points

In figure 3.2a, the triangles satisfy the Delaunay condition as the circle does not have any
points in them. In contrast to previous one, the circum-circles of the triangles in figure
3.2b have points in them and hence these triangles do not satisfy the Delaunay condition.
It can be observed that these triangles have sharper angles nodes V2 and V4 than the
previous ones. There is always the possibility to convert this triangulation into Delaunay
by replacing the edge V2-V4 with V1-V3 as this would increase the minimum internal
angles and fulfillment of the Delaunay condition can be expected. Another important
property of Delaunay condition is it uses nearest-neighbor relation to connect the points.
This enhances the implications of Delaunay triangulation in data interpolation as well.
The concept of Delaunay triangulation for 3D is also similar, only the circum-circle is
replaced by circum-sphere and triangulation by tetrahedrons.

This chapter explained the new terminologies, it shed light on a naming confusion be-
tween IPS field and surveying field. The concept of well-conditioned triangle and it’s
effect on position error has been shown. Delaunay condition has been discussed for get-
ting well-conditioned triangles.
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Chapter 4

Methods and Data-sets

This chapter discusses the Data-sets and methods used. It describes the experiment area
and setup, data collection process, collected datasets and how they are processed. Meth-
ods for determining position form Wi-Fi, BLE and IMU are presented. Proposed method
for BLE is described. Sensor fusion approach used to combine the position estimates is
presented in current context. Finally, method used to compute error is described.

4.1 Test Environment

The experiment area is a wing of a university library. Measurements are carried out in the
5th floor of the library where the BLE beacons had been deployed. This area is among
bookshelves which can block RSS signals. The area of experiment is about 176 sq. m.
and height of the floor ceiling is around 2.65 m and height of shelves is 2.35 m. Shelves
cover 68.73 sq. m. The Wi-Fi APs are installed on the ceiling [29]. The beacons were
placed in the top of the book shelves. They are not visible from outside. 22 BLE beacons
were deployed in the area. The deployment resembles a dense distribution (1 beacon per
7.86 sq. m.). It had been designed with the goal of supporting a positioning service. The
area covered by the beacons is 172.9 sq. m. and covers all the book shelves [31]. The
area and device settings are same from [29] and [31].

BLE beacons used are Accent Systems’ IBIK 105. They can broadcast iBeacon TM and
Eddystone TM advertisements concurrently over different emission slots. In this work
they have been configured to use one iBeacon slot with advertisement period of 200ms.
Advertisements broadcast on three channels in quick succession.
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(A) Plan of shelves, beacons and test track in Experiment Area

(B) Beacons placed
on the top of book

shelves [31]

4.2 Data Collection

Wi-Fi fingerprints training dataset were collected specifically for this work. The dataset
was collected by the author using an existing fingerprint collecting software specific for
the test environment. The collection occured at predetermined points, wherein the collec-
tor had to face a specific direction while holding the collection device in front of his chest.
The software was setup with a 260 points grouped into 5 campaigns. Each campaign was
an ordered list of points in forward and reverse direction. 6 fingerprints were collected at
each point facing forward direction and 6 more were collected facing opposite direction.
The software stores raw data in json format. Listing 1 shows a sample of the collected
raw data. Raw measurements were uploaded to server which created final dataset. Wi-Fi
fingerprints training data collection process is described in detail in the Long term Wi-Fi
fingerprinting dataset paper [29]. The newly collected training dataset consisted of 180
unique Wi-Fi APs and 3120 fingerprints. Table 4.1 shows a snapshot of the database. The
first row is the mac address of the detected APs. Mac address have been replaced by an
identifier in the figure. Only four columns are presented in the figure due to display space
constraint. Subsequent rows list the RSS value detected from corresponding AP and its
position. APs not detected in fingerprint are given value of 100 [29].

The test data is captured with Samsung s6 smartphone (Model: SM-G920F) running on
android version 7.0 and API Android version 24. The application used for data collection
is GetSensorData version 2.1 which is also used by IPIN conference since 2016 [19].



4.2. Data Collection 21

1 [
2 {
3 "campaignPointDetails": { "id": "1" },
4 "fingerprints": [
5 {
6 "androidVersion": "7.0",
7 "dateCaptured": "20191031153734798",
8 "dateStored": "20191031153734798",
9 "listOfRSS": [

10 {
11 "channel": 5220,
12 "intensity": -57,
13 "mac": "06:18:d6:03:27:aa",
14 "position": 0,
15 "ssid": "UJI"
16 },
17 {
18 "channel": 2412,
19 "intensity": -61,
20 "mac": "04:18:d6:04:27:aa",
21 "position": 1,
22 "ssid": "eduroam"
23 }]
24 :
25 :
26 :
27 :

LISTING 1: Raw data captured during Wi-Fi fingerprint collection

The application captures data from android smartphone sensors and outputs them in a
log-file. It supports capturing internal sensors accelerometer, gyroscope, magnetometer
atmospheric pressure, ambient light, proximity, humidity.etc as well as from attached
external devices example RFID reader, XSsens IMU or LPMS-B IMU devices [19]. Since
IMU measurements suffer from sensor bias, usually a calibration step is required where
measurements are collected when the device is static and bias values are determined.
GetSensorData app does not have a calibration option. But it has option to mark locations.
A workaround devised was to stand still for some seconds before starting to walk.

Data collection proceeds in this way. At the start of the test track and the device is static.
First, button to start saving a log-file is pressed but movement is not started immediately.
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mac1 mac2 . . . mac179 mac180 X Y floor timestamp
-61 -92 . . . 100 100 -7746.9613 4865057.377 3 2.0191E+16
-63 -89 . . . 100 100 -7746.9613 4865057.377 3 2.0191E+16
-62 -89 . . . 100 100 -7746.9613 4865057.377 3 2.0191E+16
-61 100 . . . 100 100 -7746.9613 4865057.377 3 2.0191E+16
-61 100 . . . 100 100 -7746.9613 4865057.377 3 2.0191E+16
-61 -92 . . . 100 100 -7746.9613 4865057.377 3 2.0191E+16
-55 -87 . . . 100 100 -7751.6529 4865060.127 3 2.0191E+16
-55 -87 . . . 100 100 -7751.6529 4865060.127 3 2.0191E+16
-59 -83 . . . 100 100 -7751.6529 4865060.127 3 2.0191E+16
-59 -90 . . . 100 100 -7751.6529 4865060.127 3 2.0191E+16
-59 -88 . . . 100 100 -7751.6529 4865060.127 3 2.0191E+16
-59 -85 . . . 100 100 -7751.6529 4865060.127 3 2.0191E+16
-60 -81 . . . 100 100 -7756.5313 4865062.868 3 2.0191E+16
-59 -83 . . . 100 100 -7756.5313 4865062.868 3 2.0191E+16
-60 -82 . . . 100 100 -7756.5313 4865062.868 3 2.0191E+16
-59 -82 . . . 100 100 -7756.5313 4865062.868 3 2.0191E+16
-60 -82 . . . 100 100 -7756.5313 4865062.868 3 2.0191E+16
-61 -83 . . . 100 100 -7756.5313 4865062.868 3 2.0191E+16
-70 100 . . . 100 100 -7748.1303 4865055.303 3 2.0191E+16
-72 100 . . . 100 100 -7748.1303 4865055.303 3 2.0191E+16
-74 -91 . . . 100 100 -7748.1303 4865055.303 3 2.0191E+16
-73 -91 . . . 100 100 -7748.1303 4865055.303 3 2.0191E+16
-75 100 . . . 100 100 -7748.1303 4865055.303 3 2.0191E+16
-71 -91 . . . 100 100 -7748.1303 4865055.303 3 2.0191E+16
-66 100 . . . 100 100 -7752.7494 4865058.019 3 2.0191E+16

TABLE 4.1: Snapshot of Wi-Fi Fingerprint database

Instead, the device is kept static for few seconds. This is to collect calibration data for
IMU. After few seconds, button to mark position is pressed and movement is started. In
the log-file first mark would signal start of movement. Measurements before first mark
are considered static and used for determining sensor bias. Afterwards, while moving
positions are marked at pre-determined points. At end of track, button to stop saving log-
file is pressed. An experiment was set up to simulate a moving user. A test track was used
as a reference in the library. The track is shown in figure 4.1a in green. It would describe
the path of a person moving in the library between bookshelves. The collecting device
was held in hand in front of the chest all time during data collection. The movement starts
from the upper end of the track in Figure 4.1a).
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(A) Application Interface (B) Data Format (C) Sample data

FIGURE 4.2: GetSensordata Application and log-file: c shows output
from GetSensorData app and b shows, depending on the sensor, how

each row in c should be interpreted

A format of the log-file is presented in figure 4.2b and a sample of the data captured in
figure 4.2c. The log-file stores data from particular sensor and in a particular time in a
separate row in a sequential order. First four character of each row is a code for sensor
example ACCE for accelerometer, AHRS for rotation vector, BLE4 for Bluetooth low en-
ergy. It should be noted that BLUE is for classic Bluetooth while BLE4 is for Bluetooth
Low Energy. Classic Bluetooth is not captured in this experiment. After the four charac-
ters, remaining line is the data. Each value is separated by a semi-colon. The values are in
the order described in the format. For example, first value of first row ’GYRO’ means the
subsequent values in first row are AppTimeStamp (1.931), SensorTimeStamp (517.471),
Gyr_x (0.02557), Gyr_y (0.07563), Gyr_z (-0.25779) and accuracy (3). The units are
specified in the format. A Matlab parser is also provided by the application developers to
process the log-file and separate entries by source sensors.

4.3 Methods

4.3.1 Wi-Fi positioning

K Nearest Neighbors (k-NN) fingerprinting algorithm was applied for position estimation.
New collected fingerprint database was used for position estimation. Collection process
of this database has been described in data collection section. During the experiment,
sensor data are captured by GetSensorData app in a log-file. The log-file was transferred
to a computer where data processing and analysis was done. Wi-Fi data are separated out
from the log-file in matlab using the provided data parser. The data looks as in figure
4.3a. It consisted of AppTimeStamp, SensorTimeStamp, mac, frequency and RSS values
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for each row. For position estimation a fingerprint has to be generated from this data.
Here, a fingerprint is an ordered collection of RSS values arranged in the same order of
mac address as the database. This is because the order refers to the value captured for a
specific AP. The RSS values should be from same timestamp. The order of mac address
was retrieved from the database. Wi-Fi sensor outputs aggregate report so, the values
output in a report has same AppTimeStamp. This AppTimeStamp was used to group
RSS values into a fingerprint. All rows having same AppTimeStamp are kept in one
group. AppTimeStamp is used instead of SensorTimeStamp as SensorTimeStamp shows
fluctuations. The group is then ordered into a vector matching the order of the database.
Corresponding fingerprint of data in figure 4.3a is shown in figure 4.3c.

(A) Wi-Fi RSS group
(B) Database Mac

Order
(C) Wi-Fi Fingerprint

FIGURE 4.3: Wi-Fi Fingerprint generation from data. a RSS data col-
lected at certain time, b Order of MAC in fingerprint database, c Resul-

tant fingerprint.

This fingerprint was matched with other fingerprints from the database collected in pre-
vious step. K Nearest Neighbours (k-NN) algorithm was applied for match finding. In
k-NN method, k nearest fingerprints are selected from the database based on distance in
fingerprint space. If the captured fingerprint exactly matches with any fingerprint then lo-
cation of the match was used. Else the average of the positions of the selected fingerprints
were used.

4.3.2 BLE positioning

Wi-Fi sensor aggregate RSS from all the APs but BLE sensor registers advertisements
anytime an advertisement is detected. Wi-Fi advertisements could be grouped by same
timestamp value but BLE advertisements do not have a common timestamp. Each BLE
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advertisement has its own timestamp value. Positioning requires analysing a group of
advertisements that are closer in time. This made it necessary to group advertisements
by time window. Two techniques of grouping window have been used namely i) Discrete
Time Window and ii) Continuous Time Window. In a window, it is possible to detect ad-
vertisements from the same beacon more than once. Such redundant advertisements were
handled to give only one value. Handling of redundant advertisements could be carried
out by any of these three methods (a) last of advertisements, (b) average of advertisements
or (c) highest of advertisements.

Discrete Time Window

Advertisements were collected in buckets for certain time. The time was set by the win-
dow size example 1 second, 2 seconds, 1.5 seconds. Advertisements detected within a
time window were grouped in same bucket. Then the advertisements in the bucket were
used to compute position. After the time for a bucket expires, new bucket was created
and the process was repeated. It is possible that more than one advertisement from same
beacon are observed in same window. In such case, those redundant advertisements need
to be processed. This technique uses lower computing resources but the position in mid
of a window is unknown.

(A) Discrete Window (B) Continuous Window

FIGURE 4.4: Bucket in Discrete and Continuous grouping technique

Continuous Time Window

In the discrete time window technique, advertisements at 0.1 second and 0.9 seconds
group into same bucket whereas advertisements at 0.9 and at 1.1 would be separated into
different buckets (if window size is 1s). This creates a problem as the two latter advertise-
ment are closer in time than the former two. This problem was solved using continuous
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time window technique. Continuous window technique features an extra update interval
parameter on top of discrete window technique. The update interval parameter dictates
how often position is computed. In this technique, a bucket is created at set intervals e.g
every 0.1 second or 0.5 second. Each bucket will collect advertisements for a certain time
set by window size. Update interval is kept lower than window size so buckets overlap
each other. An advertisement may fall in many buckets. When a bucket expires, position
is computed from the advertisements collected in that bucket. In continuous time window
technique the two latter advertisements get grouped into same window more times than
the former two. This way simultaneous advertisements have more effect. This makes
continuous window more sensitive than the discrete method. Disadvantage is that this
technique runs more frequently and processes the same advertisement multiple times. It
requires more computation resources than discrete technique so it may not be suitable for
low end processors.

Weighted Centroid for BLE

Weighted centroid method [33] is applicable where beacon positions (xi, yi) are known
beforehand. The position estimate is given by the equation 4.1, using weights calculate
by equation 4.2.

(x, y) =
k

∑
i=1

ωi(xi, yi) (4.1)

ωi =
ω
′
i

∑k
j=1 ω

′
j

(4.2)

where:

ω
′
i = weighting factor

The weighing factor was computed using an existing empirical model for the test environ-
ment. The model exploits the reduction of signal strength during transmission. It converts
an RSS value to a weight value. Higher signal strength get higher weight and lower signal
strength get lower weights.

Proposed method for BLE

A new method was proposed to select beacons used in positioning. Due to the error in
the RSS value, any calculations that use RSS values are prone to transfer the error. This
method is based on the beacons layout. Known distance between beacons were more pre-
cise than distances computed using RSS values. Calculations based on precise distances
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should be more reliable than those based on less precise distances. The method works in
following way. First, list of detected beacons in a window were arranged in descending
order of RSS value. This was to arrange beacons in order of proximity. Signal strength
decreases with increasing distance so higher RSS value correspond to closer source. Af-
ter that, 3 nearest beacons were selected and checked for well-condition. If they satisfied
well-condition then position was estimated as weighted average of the selected beacons.
If the 3 selected beacons did not satisfy well-condition, next proximal beacon was added
to selection. It is possible to form four different triangle using combination of four points
(4C3 = 6). With five points number of combination increases to 10 (5C3 = 10). An effi-
cient way is required to reduce computation. Delaunay triangulation creates a triangular
network that maximizes the minimum angle of any triangles in the network and the trian-
gles do not overlap each other. This method is suitable to get well-conditioned triangles
and reduce number of combinations. When multiple well-conditioned triangles were de-
tected, weighted average of beacons in well-conditioned triangles was used as estimate.
If no well-conditioned triangle are detected, next closest beacon is added.

FIGURE 4.5: Effect of farther beacons on position estimate

Figure 4.5 shows an example for the proposed algorithm. In this figure, green stars are
beacon positions. Blue circle is true position. Dotted blue line connects the true positions
to beacons in descending order of RSS. Red diamond is the position output using WC
method using all detected beacons (k = n). Solid blue line represents a well-conditioned
triangle. The black plus sign represents the position computed using proposed method.
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Position estimate using 3 closest beacon is better than estimates using farther beacons.

Algorithm 1: Selection of beacons using well-conditioned triangle
Input: BLEBeacons = table of beacon’s ID, location(X, Y), major and minor values

BLEscan = BLEfingerprint
Output: Well-conditioned triangle
Start;
sort BLEscan in descending order of RSS;
if number of detected beacons < 3 then

output null;
break;

else
selection = select first 3 beacons from BLEscan;
/* Set list of well-conditioned triangles to empty */

WCTlist = [];
while WCTlist is empty do

DT = DelaunayTriangulation(selection.location);
// generate triangulation network from selected beacons

location

for triangle in DT do
if triangle satisfy well-condition then

add triangle to WCTlist;
break;

end
end
if number of triangles in WCTlist = 1 then

compute position estimate;
else

if number of triangles in WCTlist > 1 then
compute position estimate for each triangle;
average position estimate;

else
if all beacons used then

output null;
break;

else
add next beacon to selection

end
end

end
end

end
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Stride-Length and Heading for IMU

This method is based on the algorithm proposed by Weinberg [46]. When people move,
there is vertical movement of body in each step. Weinberg [46] used vertical accelera-
tion to detect step events and Stride-length for each step was computed by an empirical
formula given in equation 4.3. Gyroscope was used to estimate heading at each step.

SL = 2K ∗ (max(accmagstep)−min(accmagstep))
1/4 (4.3)

Algorithm 2: Stride-length and Heading Algorithm
Input: acc = Accelerometer data and gyr = Gyroscope Data
Output: Stride-Lengths and Headings
Start;
/* Compute Stride-Lengths */
Compute magnitude of acceleration from all the components and store it -> accmag;
Perform low-pass filter on the computed magnitude ;
set lower and upper acceleration threshold;
for each accmag do

if accmag > lower threshold and accmag < upper threshold then
mark as motion start

else
if accmag < - lower threshold then

if previous state is in motion then
mark as motion

else
mark as motion stop

end
else

mark as in motion
end

end
end
for each motion start do

Estimate Stride-length using Weinberg expression given by 4.3
end
/* Compute Headings */
Calculate initial row, pitch and yaw values Create device to global rotation matrix for each

gyr do
Update rotation matrix with gyr values

end
for each motion start do

compute heading from rotation matrix
end
Output Computed Stride-Lengths and headings
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Sensor Fusion

Kálmán filter is a popular method for sensor fusion. System variables for example posi-
tions are modelled as state variables. Real observations of those variables are modelled as
observation state. Kálmán filter works in two phases i) Predict Phase and ii) Update Phase.
Predict phase applies a transition model to push one state to another state. This phase also
computes the predicted co-variance in new state. In the update phase, newly computed
states are combined with observation state using Kálmán gain to output a filtered estimate.
Kálmán gain is a weighting factor calculated on basis of error co-variance of the transi-
tion model and the observation model. It tells how much to change the predicted state to
reflect an observed state.

Position estimate from stride-length and heading are suitable for prediction phase as a
new estimate is calculated from old estimate. Wi-Fi and BLE estimates are independent
to previous estimates hence a transition model is not possible. This makes it unfit for pre-
diction phase. On the other hand, Position estimates from Wi-Fi and BLE are suitable for
observation state as they provide a stable way to constraint error from prediction phase.
The GetSensorData app collects IMU data in higher frequency than BLE and Wi-Fi data
combined. This means that between two estimates from either of the network-based so-
lutions, there are many position estimates provided by inertial-based solution. Hence,
multiple prediction phases occur between two update phases. Kálmán filter allows this
but a mechanism to detect which phase to execute is required. A mechanism based on
timestamp was devised to trigger correct phase execution.

4.3.3 How to measure the positioning error

Although, Fréchet distance is popular measure to compare similarity between two tracks.
It was not used. The reasons are i) Fréchet distance uses minimum distance between the
tracks and ii) there is no one point to one point association between the compared tracks.
This is not preferable as error in each prediction is required for analysis. Association
of prediction position with multiple true positions makes the result ambiguous. Hence,
another way for comparison was produced. Error is the euclidean distance between posi-
tion estimate and true position. Position estimates are obtained from positioning methods
described above. True positions are interpolated from the test track. At start of track. Get-
SensorData app starts recording but there is some wait time before walking start. At the
end the app records some extra readings due to the delay in finishing track and pressing
stop button. However, exact start time, direction change and exact end time are marked
and all the readings have associated timestamp value. Using the marks it is possible to
interpolate true position at any intermediate timestamp. A script was made which take
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list of timestamps as input and output coordinates at those timestamps. Wi-Fi sensor gave
exact timestamp for each fingerprint, for BLE timestamps were derived from the window
size and update interval values, for IMU timestamps of step detection were used. Now
that estimated position and true position were known, error was calculated.

This chapter details on the experiment environment, software used for data collection,
procedure followed during collection and format of collected data. Generating fingerprint
from RSS data is also shown. For BLE, two methods of using window is discussed along
with three techniques for handling redundant BLE advertisements. Proposed method of
selecting a well-conditioned triangle for BLE positioning is described in detail. Imple-
mentation of weighted centroid for position estimation is explained in brief. Stride-length
and heading estimation method for IMU positioning is comprehensively described. Sen-
sor fusion technique using Kálmán filter is stated. Application details of Kálmán filter
in current context is described without going in depth on mechanism of Kálmán filter.
Finally, method used for calculating error is described highlighting the unsuitability of
popular Fréchet distance method.
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Chapter 5

Results and Discussion

This chapter deals with the obtained results and discussion on those results. First sec-
tion presents results obtained from Wi-Fi Fingerprinting. second section discusses the
outcomes and effects of the studied factors on BLE positioning. Third section delineates
about the results from IMU positioning and finally last section draws up the results of
fusion.

5.1 Wi-Fi position

Thought there are numerous Wi-Fi positioning methods available, k-NN based finger-
printing method was used for this work. k-NN comprises k as value and nn as nearest
neighbour meaning the fingerprints value of the nearest neighbour used for position esti-
mation. In this work, positioning results were tested for k values ranging 3 through 10.
Figure 5.2 shows results of Wi-Fi Positioning (for k = 4 and 7). The Lowest average error
was observed at k-value 4 and highest average error was observed at k-value 7. Table 5.1
presents an overview of errors obtained at different k-values. No significant changes in

K Value Average Error Standard Deviation 75 percentile Count Standard Error
3 3.806 1.806 5.506 31 0.324
4 3.608 1.841 5.059 31 0.330
5 3.709 1.813 5.125 31 0.325
6 3.746 1.824 5.154 31 0.327
7 3.834 1.853 4.973 31 0.332
8 3.732 1.825 5.233 31 0.327
9 3.629 1.874 5.059 31 0.336
10 3.627 1.866 5.049 31 0.335

TABLE 5.1: Overview of errors at different k values for k-NN finger-
printing
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errors at different k-values was found. The average error was above 3.5 m in all cases.
CDF plot 5.1b of errors shows that k-value did not significantly affect error in individual
estimates. In figure 5.2, the green lines show the test track and the blue dots represent

(A) Error distribution by k value (B) CDF of Error at different k value

FIGURE 5.1: Distribution of error in Wi-Fi estimates

the estimated positions. The red line represent the estimated track. It joins the position
estimates in ascending order of time. It can be inferred from figure 5.2 that Wi-Fi es-
timates were not able to satisfactorily represent the test track. The number of positions
estimated (count), average of the errors in each estimation, 75th percentile of the errors
from each estimation (P75 error), standard deviation(std.) and standard error of the mean
(SE) are available in the figure. Whereas the standard deviation provides the degree to
which individuals recordings deviate from the mean value. SE is an estimate of deviation
of sample mean from the population mean. SE tends to zero with increase in sample size,
as large sample size improves the estimate of the population mean, It is computed by the
formula 5.1.

SEx =
s√
n

(5.1)

where:

s = Standard Deviation
n = Number of estimates

5.2 BLE position

Unlike Wi-Fi sensor, BLE sensor can provide output after each advertisement is detected.
This is beneficial for accuracy enhancement but comes with own issues. Positioning is
not feasible with a single advertisement. So, BLE advertisements need to be evaluated in
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FIGURE 5.2: Position estimates from k-NN fingerprinting

a group. Two techniques for grouping advertisements have been tested: (a) Discrete Time
Window and (b) Continuous Time Window. The methods are described in Methods and
data-sets chapter. Once advertisements are grouped, another issue arises. A window may
contain more than one advertisement from same beacon. Three strategies for handling
such redundant advertisements are tested: selecting either the i) last, ii) average or iii)
highest of redundant advertisements. Result of BLE position estimate was studied on
four factors.

1. Choice of window size (1,2 or 3 seconds)

2. Choice of window technique (Discrete or Continuous)

3. Choice of redundant advertisement handling strategy (Last, Average or Highest)

4. Choice of positioning algorithm (Weighted Centroid or Proposed method)

Window size was a significant factor affecting positioning. In smaller window sizes,
enough advertisements may not be collected. Large size smears the position estimate [15].
To understand the advertisements collection over time, unique advertisements were plot-
ted against time. Unique advertisements are plotted instead of all advertisements because,
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the redundant advertisements were combined using one of the redundant advertisement
handling strategies. Position estimation requires at least 3 unique advertisements (an ex-
ception to this is proximity estimation which can work with one advertisement). Sizes
should be selected where at least 3 unique advertisements are available in the majority of
the windows.

(A) Discrete windows (B) Continuous windows

FIGURE 5.3: Unique advertisement recorded in different window sizes.
Lower right plot shows percentage of windows that detected 3 or more

and 4 or more unique advertisements respectively

Figure 5.3a shows the number of unique advertisements detected in each discrete window.
A discrete window start after previous window expires, and they do not overlap each other.
Size less than 1 second had single advertisements in the majority of windows. For 1-
second window size, about 70% of windows had more than 3 unique advertisements. The
percentage rose to 93% for 2-second window size and 100% for 3-second window size.
Similarly, percentage of 4 or more unique advertisements were 34%, 63% and 84% in
window sizes 1,2 and 3 seconds respectively. Continuous windows start at regular interval.
The interval is kept smaller than the window size, due to this continuous windows overlap
each other. Interval for continuous window was set at 0.5 second in all window sizes.
Intervals smaller than 0.5 seconds took high computation time but result were similar.
Result of advertisement detection using continuous window grouping technique showed
similar percentage of detection as discrete window technique.

Figure 5.4 presents the positioning estimates with discrete window and weighted centroid
method (k-value 3) using last of redundant advertisements. From the figure it was evident
that the predicted path was more similar to the original path than the path predicted by
Wi-Fi. Average error in BLE estimates is lower than that of Wi-Fi. Number of estimates
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from BLE were also higher than from Wi-Fi. Table 5.2 display overview of error with
BLE position on different combinations of the four factors listed before. The proposed
algorithm used 3 beacons for position estimation so k-value for WC method was also set
as 3 in all WC estimations.

FIGURE 5.4: Example of position estimate with discrete window and
WC method

Figure 5.5 shows error distribution of the studied factors. On analysing the effect of
each factor, it was observed that the choice of window technique had no drastic effect on
accuracy. The average difference of average error was found to be 0.005m. Among the
strategies for advertisement repeats, highest of the BLE repeats had the least error. It was
followed by average of repeats. Last of the repeats had higher average error. Except on
window size 3 using discrete window, error from highest of BLE was lower than other
techniques. Proposed positioning method had similar result but lower variance than WC
method. One-second window size fared higher errors than it’s counterparts. Window sizes
of 2 and 3 seconds had improved results than 1 second. Window size influences effect
of other factors on the error. It is reasonable to study affect of the factors independent
to window size. Figure 5.6 visualizes the error distribution of the factors segregated
by window size. Effect of grouping advertisements in continuous window or discrete
window varied by window size. Discrete technique show lower variance in larger window
sizes. Continuous window technique create double the number of windows than discrete
method (because update interval is set at 0.5). This could be the cause of large variance
in continuous window technique as it has more samples to work with. The average error
were similar in both techniques. Among the different repeat handling strategy, highest
of repeats was better than other strategies. The effect of different strategies was more
profound in window size 2 seconds. Average of repeats and Last of repeats decrease
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FIGURE 5.5: Error distribution for each factor

error with increasing window size but highest of BLE shows anomaly. Error is least in
window size 2 seconds. Increase in error from 2 second to 3 second suggests smearing
of position space meaning the device had moved considerably in 3 seconds. Hence, it
can be inferred that the use of the highest repeats is not suitable in window sizes larger
than 2 second. The proposed algorithm had lower variance in error distribution than
WC method although the average error was larger. On comparison of the algorithms for
one second and two seconds window. It seems that the proposed algorithm was able
to reduce larger error. However, it seemed to be missing out on those windows where
WC algorithm was getting smaller error. In three-second windows, the distribution was
similar for both proposes and WC algorithms but errors for WC algorithm was lower.
Proposed algorithm rejects windows when only two beacons are detected. WC algorithm
is capable of estimating position with two beacons but the proposed algorithm requires at
least three. Further investigation revealed that percentage of windows with exactly two
unique beacons detected in discrete technique was 20%, 6.7% and 0% respectively in one
second, two seconds and three seconds window. In continuous window technique it was
19.4%, 6.3% and 1.2% respectively i.e. the percentages were similar in both techniques.
If WC algorithm was getting smaller error due to positioning with two beacons, error
in one-second window should have been smaller than in two-second windows because
percentage of exactly two beacons detected is higher in one-second window. Hence, it can
be concluded that WC algorithms ability to estimate position with only two beacons did



5.3. IMU position 39

FIGURE 5.6: Error distribution due to each factor. Distribution is sepa-
rated by window size.

not contribute to smaller error. The proposed algorithm rejects beacon with higher RSS
value if it does not form a well-conditioned triangle with other beacons. WC algorithm
does not reject beacon with higher RSS. This seems to have influenced the output.

5.3 IMU position

IMU positions estimate was close to the test track. The results were highly sensitive to
sensor bias. Small error in bias determination would produce different result. Estimates
were found to be sensitive to the rate of change of angle. Taking fast turns disorients
the heading estimations. IMU estimates were very accurate over short distances. The
figure 5.8 shows the estimates are less spread than in other methods. Distance estimation
was not very accurate due to which average error is high. Heading estimations were very
accurate. It is important to note that the device orientation is based on magnetic north.
For real world applications conversion to true north is essential otherwise estimates will
be misaligned.
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FIGURE 5.7: Error distribution due to window size on each factor.

FIGURE 5.8: Position estimates with discrete Stride-length and heading
method
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5.4 Sensor Fusion

IMU Position estimates were fused with estimates from BLE on window size 2 second,
continuous window grouping, highest of redundant advertisement and WC algorithm.
Output of fusion had lower average error than either of IMU or BLE. Fusion results were
able to accurately represent the turns.

FIGURE 5.9: Position estimates with fusion of IMU and BLE

This chapter presented output from IPS systems used in this research. Accuracy of Wi-
Fi positioning was found similar to error reported by other Wi-Fi based IPS literature.
BLE based systems performed better than Wi-Fi. Choice of discrete or continuous win-
dow had minor effect. Use of highest of redundant advertisements had highest accuracy
but the positions appeared to be smeared in window size 3 seconds.it is recommended
to further study the relation with window size. New proposed method did not show sig-
nificant improvement in accuracy but variance in error is less than WC method. Further
improvements seem necessary.
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Window Size Window Technique Redundant Algorithm Average Error P75 Error

WC 1.852 2.406
average Proposed 2.045 2.406

WC 1.816 2.249
highest Proposed 2.106 2.249

WC 1.898 2.483
Discrete

last Proposed 2.098 2.483

WC 1.758 2.406
average Proposed 1.778 2.406

WC 1.725 2.249
highest Proposed 1.766 2.249

WC 1.832 2.483

1

Continuous

last Proposed 1.857 2.483

WC 1.643 2.309
average Proposed 1.944 2.309

WC 1.504 2.079
highest Proposed 2.028 2.079

WC 1.686 2.352
Discrete

last Proposed 2.073 2.352

WC 1.599 2.309
average Proposed 1.670 2.309

WC 1.494 2.079
highest Proposed 1.596 2.079

WC 1.739 2.352

2

Continuous

last Proposed 1.781 2.352

WC 1.548 2.198
average Proposed 2.283 2.198

WC 1.632 2.160
highest Proposed 2.207 2.160

WC 1.562 2.344
Discrete

last Proposed 2.386 2.344

WC 1.639 2.198
average Proposed 1.596 2.198

WC 1.535 2.160
highest Proposed 1.635 2.160

WC 1.744 2.344

3

Continuous

last Proposed 1.761 2.344

TABLE 5.2: Overview of errors on all combination of factors.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

The main objective of the research work in this thesis is to improve the accuracy positional
accuracy of BLE based positioning system. Network based and inertial based IPS systems
were reviewed. An existing BLE positioning environment was selected for experiment.
Wi-Fi fingerprinting database and BLE fingerprint dataset were publicly available. The
datasets provide necessary tools to reproduce the results, so they are good for learning.

Thesis objective presented in chapter 1 is discussed here, with its explanations.

1. To study and analyse factors affecting BLE positioning

Four factors affecting BLE positioning were studied (window size, window tech-
nique, redundant advertisements handling strategies and algorithms). All combina-
tions of 3 different window sizes, 2 window techniques, 3 redundant advertisements
handling strategies and 2 algorithms were tested. 36 different combinations tested.
A new algorithm was also proposed. Window size mattered to some extent. 2
seconds window had improvement over 1-second window size but results from 3
seconds window size was similar to 2 seconds. So, the choice is between 1 second
or more than 1 second. Results show that choice of window technique had no sig-
nificant effect. Update interval’s effect on accuracy was not found but it affects the
amount of computation. Update interval should depend on available computing re-
source. Discrete window can be taken as a special case of continuous window so, a
good approach is using continuous window with a suitable update interval. Choice
of this would depend on specific use case. Handling strategies for redundant adver-
tisement in same window is another studied factor. Using highest of BLE showed
best results but it might be misleading in larger window size. Smearing was seen
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in window size 3. Other strategies (Average of repeats and Last of repeats) did not
detect smearing.

2. To design and implement a positioning algorithm based on well-conditioned trian-
gle for BLE positioning and study its effects.

Proposed algorithm of selecting beacons based on well-conditioned triangle had
no improvements on accuracy but had improved consistency than WC algorithm.
Further study is required to understand its working.

3. To implement an integration of BLE positioning and inertial method.

Literature suggested sensor fusion approach provided improved accuracy or func-
tionality so it was chosen for implementation. IMU was chosen to be fused with
BLE and IMU sensors are available in most smartphones. This would be infrastructure-
free and no extra setups are required. Kálmán filter offered a simple, intuitive but
powerful mechanism for fusion. It was adapted to suit the research scenario. An
experiment was designed for comparing accuracy before and after fusion. Existing
system was used as baseline. Sensor fusion results were more accurate than BLE.
Additionally, the fusion results were better at turns where other IPS showed more
error.

Overall, for BLE positioning window size of two seconds seems to be best. Larger win-
dow size are prone to smearing. Continuous window technique provides a general. Update
interval should be balanced on available computation power and update frequency. Strat-
egy of using highest of redundant advertisements performed the best. If smearing can be
reduced, it is a viable option. IMU provides high accuracy estimates. With the fusion
of BLE and IMU, IMU can provide estimates during BLE positioning intervals and BLE
estimates can correct drift error. The overall fusion system performed well.

6.2 Future Works

Results presented are not conclusive and leaves much scope for improvement. Some ways
to improve the result are suggested.

• Although beacon selection is not based on RSS value, position estimation still used
RSS for computing weights. RSS values have error, other techniques for computing
position should be explored.

• Device calibration stage was not explicit. Calibration can improve IMU accuracy.
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• Proposed approach depends on detection of the closest beacons. In some cases the
closest beacon was not detected,

• Count of number of redundant advertisement also gives clue to closeness.

• Well-conditioned triangle is simple technique. Braced quadrilaterals and centred
polygons are more robust than triangles. These can be explored.





SENSOR FUSION OF IMU AND BLE USING A

WELL-CONDITION TRIANGLE APPROACH FOR

BLE POSITIONING

Amrit KARMACHARYA

21 february





3

Appendix A

BLE positions

A.1 BLE positions using Discrete time window and Weighted
centroid algorithm

FIGURE A.1: Last of redundant advertisements
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FIGURE A.2: Average of redundant advertisements

FIGURE A.3: Highest of redundant advertisements
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A.2 BLE positions using Continuous time window and Weighted
centroid algorithm

FIGURE A.4: Last of redundant advertisements

FIGURE A.5: Average of redundant advertisements
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FIGURE A.6: Highest of redundant advertisements

A.3 BLE positions using Discrete time window and Proposed
algorithm

FIGURE A.7: Last of redundant advertisements
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FIGURE A.8: Average of redundant advertisements

FIGURE A.9: Highest of redundant advertisements
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A.4 BLE positions using Continuous time window and Pro-
posed algorithm

FIGURE A.10: Last of redundant advertisements

FIGURE A.11: Average of redundant advertisements
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FIGURE A.12: Highest of redundant advertisements
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