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Abstract  12 

 13 

Concentrated solar power plants (CSP) combined with thermal energy storage (TES) offers the benefit to 14 

provide continuous electricity production by renewable energy feed. There are several TES technologies 15 

to be implemented, being the thermochemical energy storage the less studied and the most attractive since 16 

its volumetric energy density is 5 and 10 times higher than latent and sensible TES, respectively. 17 

Thermochemical energy storage technology is based on reversible chemical reactions, also named 18 

thermochemical materials (TCM). One of the main challenges of TCM is to achieve a proper reversibility 19 

of the reactions, which in practical conditions leads to lower efficiencies than the theoretically expected. 20 

A new concept based on changing from reversible TCM reactions towards TCM consecutive reactions  21 

aims to eliminate reversibility problems and therefore improve the overall efficiency. Consecutive TCM 22 

reactions can either be based in one cycle, where reactants are needed to feed the reaction, or two coupled 23 

cycles which offer the possibility to work without any extra mass reactants input. The plausibility of the 24 

implementation of both concepts in CSP is detailed in this paper and case studies are described for each 25 

one.       26 

 27 
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1. Introduction 31 

 32 

The fact of taking profit from renewable energies, like solar energy, and turning to sustainable 33 

and competitive energy systems is in agreement with the current world wide directives and 34 

H2020 [1]. The general target is focused on reducing fossil fuel consumption for electricity 35 

production, heating, and cooling in order to decrease CO2 emissions and thus support climate 36 

change goals. Regarding electricity production, concentrated solar power (CSP) plants are 37 

attractive alternative technologies. CSP technologies generate electricity by concentrating the 38 

solar radiation beam onto a small area, where a heat transfer fluid (HTF) is heated up and this 39 



energy is ultimately transferred to the steam. Electricity is then generated by an electric 40 

generator which is driven by a steam turbine with the efficiency limited by the Carnot cycle [2]. 41 

 42 

Today, several countries such as USA or Spain have developed commercial CSP plants [3,4] 43 

which are using different technologies to concentrate the solar beam. Nowadays, four CSP 44 

technologies are represented at pilot and commercial scale: parabolic-trough collectors (PTCs), 45 

linear Fresnel reflector (LFR) systems, power towers or central receiver systems (CRS), and 46 

dish/engine systems (DE). All existing plants imitate parabolic geometries with large surface 47 

area for the mirrors [4]. 48 

 49 

Energy production is restricted when sun shines, therefore, a system that allows storing solar 50 

heat is required.  In case of not having problems with sun shine, a producer company might 51 

want to store the energy as a function of the price of kWh on the market (to increase company 52 

benefits). For this purpose a thermal energy storage system (TES) is essential. TES is becoming 53 

particularly important for electricity storage in combination with concentrating solar power 54 

(CSP) plants where solar heat can be stored for electricity production when sunlight is not 55 

available [5,6]. 56 

 57 

Proposed mechanisms to store thermal energy are based on different physical or chemical 58 

principles: sensible heat (molten salts, solid particle materials, etc.), latent heat by means of 59 

phase change materials (PCM), and thermochemical heat storage (TCS) using thermochemical 60 

materials (TCM) [7-13]. Nowadays, the use of molten salts is the most viable alternative for 61 

TES coming from solar heat to supply intermittent power demand. Nevertheless, molten salts 62 

cannot provide a temperature or an energy density as high as the TCS due to the mechanism 63 

itself. From a theoretical point of view the use TCS is a challenge that can provide higher 64 

storage of energy for longer periods and operate at higher temperatures compared to the other 65 

mentioned systems. Consequently, implementing TCS technology would allow increase 66 

efficiency of a CSP plant [5,6]. This topic has experienced a remarkable increased perception in 67 

the last few years and thus several studies are being published. For instance, modeling of redox 68 

reactions where the model is shown to track complex trends in measured non-stoichiometry 69 

data, specific heat capacity, and global heats of reaction with respect to changes in T and pO2  70 

[14], novel concepts based coupling a CSP-CaL process and CO2 power cycle [15], cascade 71 

thermochemical storage with internal condensation [16], algorithm for searching potential 72 

thermochemical energy storage for a wide temperature range (25-1000 ºC) [17], etc. 73 

 74 

Actually, TCS for CSP is based on reversible reactions with high enthalpy of reaction but these 75 

reactions presented low efficiency and poor reversibility. The trend is to use heterogeneous 76 



reactions (solid-gas) to facilitate the removal and transport of the gases involved in the reaction. 77 

Redox systems based on oxide pairs, i.e. Mn3O4/Mn2O3 [12,13] are the most used to achieve the 78 

requirements and maintain material stability. The storage mechanism can be defined as depicted 79 

in equation 1: 80 

 81 

Aሺୱሻ	

୦ୣୟ୲ ୱ୲୭୰ୟ୥ୣ
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ୣ୶୭୲୦ୣ୰୫୧ୡ ୰ୣୟୡ୲୧୭୬

ርۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሲ
Bሺୱሻ ൅ ሺ୥ሻ Eq.1ܥ

 82 

During the charging process (endothermic reaction), solar thermal energy is used to move the 83 

reaction from the solid reactant (A) (sometimes together with a gas reactant) to products B( 84 

solid) and C (gas). During this step, the TCM is absorbing the heat concentrated at the solar 85 

receiver. The storage process consists on keeping B and C products separated. In order to 86 

discharge the system (exothermic reaction), the former solid product, B, is placed in contact 87 

with the gas C, to react and thus release the chemical reactions energy between the product 88 

stored.  89 

 90 

The problem that is seen from the TCS systems prototypes is that the reaction must be 91 

reversible and this premise is not being fully achieved. This implies that the chemical 92 

conversion and reversibility of the reaction [18,19] is not fulfilled and therefore the storage 93 

capacity differs from the expected. This makes difficult to find a TCM that can be adjusted to 94 

the theoretical model and in all, it will be difficult to implement TCS systems with the 95 

established premises. 96 

 97 

The main objective of this paper is to demonstrate the feasibility of a new concept of a CSP 98 

plant with solar central receiver reactors technology implementing thermochemical materials. 99 

This concept overcomes the drawback of the poor reversibility and low efficiencies in high 100 

temperature storage by changing from the reversible reactions towards TCM consecutive 101 

reactions. To illustrate this, two case studies are shown, one for a one cycle of TCM consecutive 102 

reactions and another for two coupled cycles of TCM consecutive reactions. 103 

 104 

2. Consecutive TCM reactions  105 

 106 

Two different concepts, one based on one cycle and the other based on two coupled cycles of 107 

consecutive TCM reaction were developed [20,21] and are presented in this section. 108 

 109 

 110 



2.1. One cycle TCM consecutive reaction, a case study Zn + CO2 111 

 112 

2.1.1. Presentation of the concept 113 

 114 

The general concept of one cycle of TCM consecutive reactions is depicted in Figure 1. The 115 

initial solid A is transformed into another solid B and a gas C, this last solid reacts with another 116 

gas D, giving the initial solid A and a gas E. The consecutive reaction can be running being the 117 

only input the gas D in the second reaction. 118 

 119 

 120 

Figure 1.  Simplified scheme of the consecutive reactions concept: one cycle.  121 

 122 

2.1.2. Case study: chemical basis  123 

 124 

As an example of this concept, the ZnO/Zn cycle is considered. The first step is the endothermic 125 

thermal reduction (ΔH298K= 350.85 kJ·mol-1) of zinc oxide and can be referred as the solar step 126 

(eq. 2). The second step, the non-solar step (eq. 3), is the exothermic reduction (ΔH298K= -67.87 127 

kJ·mol-1) of CO2 with zinc to generate CO and ZnO [22,23].  128 

 129 

 130 

The thermal reduction of ZnO can be performed at 1627-1727ºC [24,25] at 1 bar and inert 131 

atmosphere (N2 or Ar). After this thermal reduction, zinc is obtained in gas form (Tb=912ºC) 132 

[26]. Afterwards, in the non-solar step, the produced Zn gas reacts with CO2 giving the initial 133 

oxide (solid) and CO. This second reaction may be performed at temperatures below ZnO 134 

thermal decomposition. However, it presents a high resistance due to the formation of an oxide 135 

layer which slows the  reaction (Figure 2) which drops the chemical conversion [23]. This 136 

phenomenon can determine the working temperature, because at temperatures lower than 912ºC 137 

it has a low rate and conversion, but above 912ºC it would work in the gas phase. Some studies 138 
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2.2. Two coupled cycles of consecutive TCM reactions, a case study BaS/BaSO4 + 192 

Mn3O4/Mn2O3 193 

 194 

2.2.1. General concept  195 

 196 

Since the main drawback of the one cycle TCM consecutive reactions is the need of a reactant 197 

input, a new concept is presented where this reactant is produced in a second coupled cycle to 198 

close completely the system by generating and regenerating within the reaction all the products 199 

and reactants. The general concept of two coupled cycles TCM consecutive reactions is drawn 200 

in Figure 4.  201 

 202 

 203 

Figure 4. Simplified scheme of the consecutive reactions concept: two cycles. 204 

 205 

This approach of storing the TCM and not the solar heat, can be very similar to those proposed 206 

for obtaining solar fuels, fuel for fuel cells or via water or CO2 splitting (WS and CS, 207 

respectively) [27, 42-48]. However, the difference is that the material is used for WS and/or CS 208 

to produce a chemical to store (H2, CO2), and further perform another process such as Fischer-209 

Tropsch which allows benefiting solar heat. Instead, in the proposed system, the material is 210 

directly stored with the function of storing heat.  211 

 212 

In conclusion, a TCS system based in four consecutive reactions divided in two-loops. One of 213 

them is exothermic and the other is endothermic, so it can be considered the discharge cycle as 214 

the discharge process and the regenerative cycle as the charge cycle; in energy terms.  215 

 216 

 217 

A + C    B

A + E B+ D

Qout

Qout

G + E F + D

G + C F

Qin

Qin

Discharge
cycle

Regenerative
cycle



2.1.2. Case study: chemical basis 218 

 219 

It consists in a discharging cycle and a regenerative cycle. The concept is divided into a main 220 

cycle (discharge cycle) which is focused to release heat. The other cycle (regenerative) is 221 

focused to close the system. Consequently total enthalpy of the system should be zero, and if 222 

discharge cycle is exothermic, regenerative cycle must be endothermic. In this particular 223 

concept the involved gases are O2 and CO/CO2. This system of gases and the reactions involved 224 

are interesting to check in deep, in particular the thermodynamic data, conditions of work (P,T) 225 

used in many industrial processes. An example of a thermochemical storage concept based on 226 

two coupled cycles of consecutive reactions is BaS/BaSO4 coupled to Mn3O4/Mn2O3 and shown 227 

in Eq 4- Eq 7 and drawn in Figure 5.  228 

 229 

Discharge cycle 

 

ሺ௦ሻܵܽܤ ൅	2ܱଶሺ௚ሻ → ܵܽܤ ସܱሺ௦ሻ ܪ߂°଼ହ଴ º஼ ൌ െ5747  Eq. 4 ܵܽܤ	݃݇/ܬ݇

ܵܽܤ ସܱሺ௦ሻ ൅ ሺ௚ሻܱܥ4 → ሺ௦ሻܵܽܤ ൅ ହ଴଼°ܪ߂ ଶሺ௚ሻܱܥ4 º஼ ൌ െ933 ݃݇/ܬ݇  Eq. 5 ܵܽܤ

 

Regenerative cycle 

 

ଷ݊ܯ2 ସܱሺ௦ሻ ൅ ଶሺ௚ሻܱܥ → ଶܱଷሺ௦ሻ݊ܯ3 ൅ ଽଵ଴°ܪ߂ ሺ௚ሻܱܥ º஼ ൌ 2178 ݃݇/ܬ݇  ଶܱଷ Eq. 6݊ܯ

ଶܱଷሺ௦ሻ݊ܯ3 → ଷ݊ܯ3 ସܱሺ௦ሻ ൅
ଵ
ଶ
ܱଶሺ௚ሻ ܪ߂°ଽଵ଴ º஼ ൌ 397 ݃݇/ܬ݇  ଶܱଷ Eq. 7݊ܯ

 230 

As it can be seen, the system consists in four intertwined reactions, but, based on the first 231 

reaction (Eq. 4) [31-35]. A second charge reaction (Eq. 5) is necessary to recover BaS, 232 

obtaining a closed cycle for TCM. However, to perform the discharge cycle and to maintain the 233 

TCS system closed, a second cycle (regenerative cycle) is needed to regenerate/recover the 234 

product gases involved in the reactions. A third reaction (Eq. 6) regenerates CO2 produced in 235 

the second reaction, and at the same time, produces CO for BaSO4 reduction. The last reaction 236 

(Eq. 7) serves to close the regenerative cycle for the part of the solid, and at the same time to 237 

release O2 that is needed in the BaS oxidation (Eq. 5). 238 

 239 

Unlike the TCM system concept [36-38, 39-41], in which the system store solar heat is 240 

considered, in this novel concept, solar heat is used to achieve the required temperature and the 241 

thermal energy for the desired TCM reaction. Therefore, the proposed system store chemical 242 

compounds capable to release thermal energy.  243 

 244 
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exothermic (ΔrH⁰ൌ	 -1013.20 kJ/mol, -5963.75 kJ/kgBaS) [26,31-33]. Furthermore, it is well 266 

known that sulphur (S2-) oxidation has high reaction kinetics, and even become spontaneous 267 

[60-62]. This, added to the working temperature (800-1000 ºC) in a CSP plant suggests that 268 

oxidation of BaS will be a fast reaction. 269 

 270 

For barite reduction there is literature available regarding the process on an industrial scale, 271 

however it is presented as a carbothermic reaction [51,53-56] (Eq. 8): 272 

 273 

ܵܽܤ ସܱሺ௦ሻ ൅ ܥ2 → ሺ௦ሻܵܽܤ ൅  ଶሺ௚ሻ Eq. 8ܱܥ2

 274 

Nevertheless, at temperatures higher than 800 ºC carbothermal reduction is similar to equation 5 275 

[50], because the CO reduction mechanism is stabilized due to the Boudouard reaction 276 

equilibrium at working temperatures [52][63]. In this manner, it works in solid-gas reactions 277 

that is easier to operate and, at the same time, CO is easier than C to recover in a regenerative 278 

cycle. 279 

 280 

Another advantage of the BaS/BaSO4 consecutive reactions in front other possible cycles as 281 

MS/MSO4 (where M is a metal) is that BaSO4 is one of the most thermal and water stable 282 

[26,31,60,64]. Thermal stability of BaSO4 is only exceeded by alkali sulfates, but on the other 283 

hand, alkali sulphides have very low water stability. Sulphides of some transition metals such as 284 

Fe, are more stable in water than BaS [26,65], but their sulfates have poor thermal stability. 285 

Besides the high thermal stability and relatively high stability in water of the BaS/BaSO4 redox 286 

pair suggests stability in the presence of CO2 gas [51]. This means that the carbonation of the 287 

barium salt could be minimized during the BaSO4 reduction (Eq. 5) unlike what might happen 288 

with other metal sulfates. For that reason, the most attractive MS/MSO4 redox pair for discharge 289 

cycle is BaS/BaSO4. 290 

 291 

Furthermore, there are some studies that evaluate the cyclability using carbothermal reduction 292 

of BaS [51]. Another indication which suggests the feasibility/viability of these reactions is the 293 

high melting temperature of BaSO4 and BaS in comparison with the working temperature, 294 

which hinders particle sintering. On the other hand, minimization of coarsing will depend, in 295 

part, on the particle size distribution and the particle shape [66,67] . 296 

 297 

 298 

 299 



b. Regenerative cycle 300 

 301 

As CO/CO2 is used as a reducer/oxidizer gas, the aim of the regenerative cycle is to recover CO 302 

from the produced CO2 in equation 5 to be reused as a reactive in the discharge cycle. 303 

Therefore, the regenerative cycle is an important part of the proposed TCS system. Due to the 304 

nature of the cycle, which reactions are endothermic, those reactions should be performed in a 305 

solar reactor/receiver located in the central tower. Paradoxically, the regenerative cycle requires 306 

solar thermal energy but not for storing thermal energy. Absorbed heat in the solar 307 

reactor/receiver is not stored as heat; rather it will serve to store CO.  308 

 309 

CO2 is a very stable gas, so it is not usually considered an oxidizing gas although at elevated 310 

temperatures can be reduced and oxidize a reduced metal (or reduced metal oxide). The reaction 311 

mechanism is used to WS and CS, where a reduced metal is used as a reaction support (not as 312 

catalyst). Usually the used support is a cheaper reduced metal oxide such as iron oxide 313 

(FeO/Fe3O4) [22,23,28,43,68,69]; ceria oxides (CeO) [68,70]; or metals such as Zn 314 

[22,23,43,68,71]; Sn [46,47,71]. 315 

 316 

Equations 9 and 10 show the CS mechanism based on the thermal stability of the metal oxide. 317 

At a given temperature it favours the reduced or oxidized form. The reduced form always will 318 

be more thermally stable, so the reduction reactions will always be at higher temperature than 319 

the oxidation reaction. Every metal oxide redox pair has a specific temperature for thermal 320 

reduction; consequently, it could control the process by temperature control. On the other hand, 321 

the reduction reaction always requires thermal energy (endothermic reaction), but in the case of 322 

the metal oxidation (CS) reaction could be exothermic or endothermic, depending of material 323 

enthalpy formation:  324 

 325 

Reduction at Thigh ܱܯ
ା௱௛,்೓೔೒೓
ርۛۛ ۛۛ ۛሮ ܯ ଵܱିఋ ൅

ߜ
2
ܱଶሺ௚ሻ 

Eq.9 

Oxidation at Tlow ܯ ଵܱିఋ ൅ ଶܱܥߜ
േ௱௛,்೗೚ೢ
ርۛ ۛۛ ۛۛ ሮ ܱܯ ൅  ሺ௚ሻܱܥߜ

Eq.10 

 326 

Due to the disproportionation temperature or because it may experiment a phase change in the 327 

temperature range, initially, none of the mentioned metal oxides is suitable for the system. 328 

Therefore the best options could be other redox pairs like Mn2O3/Mn3O4 and Co3O4/CoO which 329 

disproportionation temperature is in the range of the working temperature and have no phase 330 

change (Eq. 11 and 12) [40,41, 72-76]: 331 

 332 



ଶܱଷሺ௦ሻ݊ܯ3
ଽହ଴º஼
ሱۛ ሮۛ ଷ݊ܯ3 ସܱሺ௦ሻ ൅

ଵ
ଶ
ܱଶሺ௚ሻ 

Eq. 11 

ଷ݋ܥ ସܱሺ௦ሻ
ଽଵଷº஼
ሱۛ ሮۛ ሺ௦ሻܱ݋ܥ3 ൅

ଵ
ଶ
ܱଶሺ௚ሻ 

Eq. 12 

 333 

According to the Ellingam-Richarson diagram [32,77], Mn3O4 or CoO can reduce CO2 334 

performing Eq. 10. Although the reaction is thermodynamically feasible, the tolerance of the 335 

metal oxides to CO2/CO mixture should be considered. There could be a small fraction of CO 336 

changing direction in Eq. 10, and that would affect the reactor design and the purity of CO 337 

(mixture CO2/CO rich in CO) obtained. 338 

 339 

Manganese (Mn) cobalt (Co), and iron (Fe) are very similar elements, since they are very close 340 

on the periodic table and have very similar electron configuration [60,78]. Except for the 341 

different disproportionation temperature between each redox pairs, that is given by the better 342 

ability of Fe to stabilize the iron oxides. Consequently, the expected behaviour for the two redox 343 

pairs should be similar to FeO/Fe3O4, with good kinetics and cyclability of the redox pair. On 344 

the other hand, use of doping agents, such as iron or nickel, can vary the disproportionation 345 

temperature [40,41,74,75,79,80]. 346 

 347 

Studies indicate that Co can be oxidized/reduced from 30 cycles [[56]] and up to 100 cycles 348 

without reactivity loss [81]. This ensures the ability of cobalt to be reduced by thermal 349 

disproportionation, along with presumption of good oxidation with CO2, cobalt becomes a good 350 

candidate. Similarly to cobalt, other studies have shown the same behaviour with manganese 351 

[40,41]. Although manganese cyclability is not as good as that of cobalt, some studies [67] 352 

suggest that it is possible to improve its cyclability. 353 

 354 

As the oxidation temperature of the metal oxide is lower than that of the disproportionation, this 355 

means that it can work below 1000⁰C, complying with the first premise of the concept. 356 

Furthermore, the re-oxidation mechanism usually is controlled by oxygen diffusion inside the 357 

particle [67,81]. Although there is a maximum temperature which cannot be overcome, this will 358 

not have an important role in the kinetics. To improve kinetics it is essential to control the 359 

morphology and particle size of the metal oxide, and also to have a controlled atmosphere. To 360 

ensure morphology, minimizing sintering and maintaining surface/volume ratio, it may be 361 

advisable to decrease the disproportionation temperature. 362 

 363 

Finally, considering the economic aspects, manganese is considered the best alternative for the 364 

regenerative cycle. Particularly, manganese has a cost approximately ten times lower than 365 

cobalt. 366 



2.2.3. Case study: engineering and implementation 367 

 368 

Following the presented case study (2.2.2) and according to the patent submitted [17] the results 369 

of mass and energy balances and the plant diagram of this concept are presented in this section.  370 

To know how much potential and the viability of this concept, mass and heat balances for whole 371 

cycle of BaSO4/BaS coupled to Mn3O4/Mn2O3 cycle are provided. First of all, BaSO4/BaS 372 

balances are shown taking into account Eq. 4 and 5 (see Table 2, note that a basis of 100 kg of 373 

BaSO4 in solid state is taken for the balances). Then, operating modes during day and night for 374 

BaSO4/BaS cycle are detailed and afterwards the balances of the regenerative cycle (see Table 375 

3) and the diagram of the whole concept are provided. 376 

 377 

Table 2. Mass balance of BaSO4/BaS cycle 378 

Reaction 1BaSO4 (s) + 4CO (g)  1BaS (s) + 4CO2 (g) 

Mass (kg) 100.00 48.00 72.57 75.43 

Molar mass 
(kg/kmol) 233.34 28.00 169.34 44.00 

Moles 
(kmol) 0.43 1.71 0.43 1.71 

Reaction 1BaS (s) + 2 O2 (g)  1BaSO4 (s)   

Mass (kg) 72.57  27.43  100.00   

Molar mass 
(kg/kmol) 169.34  32.00  233.34   

Moles 
(kmol) 0.43  0.86  0.43   

 379 

The total energy released from both reactions for full conversion (X=1) conditions is: -6680 380 

kJ/kg of BaS (Eq. 4 and 5). However, this level of conversion is rarely reached by a chemical 381 

reaction and therefore 60% is commonly used as level of conversion (conservative value). Then, 382 

the total energy available for heating up the power block fluid would be -4008 kJ/kg of BaS. 383 

 384 
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c) Regenerative cycle Mn2O3-Mn3O4 420 

The mass balance of the regenerative cycle following Eq. 6 and 7 is shown in Table 3, whereas 421 

in Figure 8 the diagram of the whole concept implementation is drawn.  422 

Table 3. Mass balance of Mn2O3/Mn3O4 423 

Reaction 2Mn3O4 (s) + 1CO2 (g)  3Mn2O3 (s) + 1CO (g) 

Mass (kg) 784.50 75.43 811.93 48.00 

Molar mass 
(kg/kmol) 228.82 44.00 157.88 28.00 

Moles 
(kmol) 3.43 1.71 5.14 1.71 

Reaction 3Mn2O3 (s)  2Mn3O4 (s) + 0.5O2 (g)   

Mass (kg) 811.93  784.50  27.4   

Molar mass 
(kg/kmol) 157.88  228.82  32.00   

Moles 
(kmol) 5.14  3.43  0.86   

 424 

The regenerative cycle, used for regenerating the CO for reducing BaSO4, is composed for two 425 

endothermic reactions which need absorbing 2222 kJ/kg of Mn2O3 for a full conversion reaction 426 

(see Eq. 6 and 7). For these reactions, it has also considered a chemical conversion of 60% and 427 

as consequence the total energy absorbed per kg of Mn2O3 is higher than for a full chemical 428 

conversion. So, this energy increases until 3703 kJ/kg of Mn2O3 for 60% of conversion. 429 

The net energy value, released on BaSO4/BaS cycle and absorbed on Mn2O3/Mn3O4 cycle, 430 

should be interpreted as kJ per kg of BaS. According to the mass balance (see Table 2 and 3), 431 

for producing 72.57 kg of BaS, the system needs 811.93 kg of Mn2O3, and thus the net energy 432 

balance is 37165 kJ per kg of BaS for a 60% of chemical conversion.  433 

 434 



4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

436 

437 

 438 

3. C439 

440 

Conc449 

and to450 

there 451 

electr452 

to op453 

as TE454 

focus455 

desig456 

conse457 

 450 

Cons454 

based455 

a gas456 

again457 

Figu

Conclusions 

 

centrated sola

o reduce CO

are some h

ricity. These 

erate in cont

ES materials

sed on looki

gn. Regardin

ecutive react

ecutive TCM

d on two reac

s (CO2) to gi

n, being CO2

ure 8. Plant dia

ar power pla

O2 emissions 

hybrids CSP,

technologie

tinuous therm

s implemente

ing for effic

ng both, to i

ions TCM is

M reactions 

ctions, where

ive again the

2 the only ex

agram of the tw

ants are pote

and therefore

, usually the

s operate wh

mal energy st

ed in CSP, s

cient reversib

increase the 

s presented. 

concepts hav

e the main pr

e reactive, so

xternal input

wo coupled cyc

ential techno

e contribute 

eir primary e

hen the renew

torage (TES)

specifically 

ble chemica

overall rea

ve been deta

roduct from 

olid, of the f

t. Whereas th

les of consecut

logies to inc

positively to

energy is so

wable energy

) should be c

for solar cen

al reactions, 

ctor efficien

ailed; first th

the first reac

first reaction

he second co

tive TCM reacti

crease the sh

o Earth envir

lar energy, t

y is available

considered. T

ntral receive

and heat ex

ncy, a new c

he one cycle 

ction, in solid

n. Then the p

oncept, base

ions.  

hare of renew

ronment. Alth

to finally pr

e and consequ

The R&D of 

er reactors, is

xchangers/re

concept bas

e concept wh

d state, react

process can r

ed on two co

 

wables 

hough 

roduce 

uently 

f TCM 

s now 

eactors 

ed on 

hich is 

s with 

restart 

oupled 



cycles, is born with the idea of coupling another cycle of consecutive reaction to need o extra 454 

input of reactants.  455 

 456 

Therefore, the proposed system store chemical compounds capable to release thermal energy. 457 

By changing from reversible endothermic/exothermic reactions towards consecutive reactions a 458 

higher chemical reaction conversion can be achieved and this would also contribute in a better 459 

material stability, leading to a longer material life time and thus longer operational plant 460 

periods.  461 
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