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KOROVKIN-TYPE RESULTS ON CONVERGENCE OF SEQUENCES OF

POSITIVE LINEAR MAPS ON FUNCTION SPACES

MALIHEH HOSSEINI AND JUAN J. FONT

Abstract. In this paper we deal with the convergence of sequences of positive linear maps to a

(not assumed to be linear) isometry on spaces of continuous functions. We obtain generalizations

of known Korovkin-type results and provide several illustrative examples.

1. Introduction

One of the most impressive results in approximation theory is, without doubt, Korovkin’s theorem

on convergence of positive linear operators on a space of continuous functions. More explicitly,

Korovkin’s theorem (often called Korovkin’s first theorem) states that if a sequence {Tn} of positive

linear maps on CR[0, 1] converges to the identity operator on the quadratic polynomials, then Tnf

converges to f for all f ∈ CR[0, 1] ([8]). This result arose from a generalization of the well-known

proof of Weierstrass’s approximation theorem given by S. Bernstein. Its strength and simplicity

have produced, as it is clearly imaginable, a wide range of applications and generalizations. One of

them deals with substituting the identity operator by other operators and the closed interval [0, 1]

by other spaces. Others center on finding subsets of function spaces, known as Korovkin sets or test

functions, which guarantee that the convergence of a sequence of positive linear maps holds on the

whole space provided it holds on them. For more details and other aspects of this topic, we refer to

the monographs [2, 6], the recent survey paper by Altomare [1], and the references therein.

Let X and Y be compact Hausdorff spaces, M be a unital subspace of C(X), and S be a function

space included in M . In [7], the authors studied the convergence of a sequence of unital linear

contractions towards a fixed linear isometry. Indeed, they proved that, under certain assumptions,

if each Tn : M −→ C(Y ) (n ∈ N) is a unital linear contraction and T∞ : M −→ C(Y ) is a

linear isometry such that {Tnf} converges to T∞f for all f ∈ S, then {Tnf} converges to T∞f

for all f ∈ M , not only pointwise but also uniformly. In this paper we deal with the convergence

of sequences of (not necessarily contractions) positive linear maps to a (not assumed to be linear)

isometry on spaces of continuous functions by combining ideas given in [7] and in the original proof

2010 Mathematics Subject Classification. Primary 41A36; Secondary 46E15.

Key words and phrases: Function space, Korovkin’s theorem, Choquet boundary, positive linear map.

J.J. Font is supported by Spanish Government grant MTM2016-77143-P (AEI/FEDER, UE) and Generalitat

Valenciana (Projecte GV/2018/110).

1

http://arxiv.org/abs/1908.03027v1


of Korovkin’s theorem. In particular, we obtain proper generalizations of [7, Theorems 3.1 and 4.1]

and of several classical Korovkin-type results, and provide several illustrative examples.

2. Preliminaries

For any compact Hausdorff space X , let C(X) denote the space of continuous real or complex-

valued functions on X , equipped with the uniform norm ‖ · ‖. Note that we write CR(X) instead

of C(X) when we want to consider only real-valued case. A unital subspace S of C(X) is called a

function space on X if S separates the points of X in the sense that for each x, x′ ∈ X with x 6= x′

there exists a function f ∈ S such that f(x) 6= f(x′).

Let S be a subspace of C(X), which we always assume to be linear. We denote by BS∗ the closed

unit ball of the dual space of (S, ‖ · ‖). A nonempty subset E of X is called a boundary for S if each

function in S attains its maximum modulus within E. The Choquet boundary Ch(S) of S is the

non-empty set of all points x ∈ X for which δx, the evaluation functional at x, is an extreme point

of the closed unit ball BS∗ . Namely, we have ext(BS∗) = TCh(S) = {αx : α ∈ T andx ∈ Ch(S)},
where T = {z ∈ C : |z| = 1}. It is known that Ch(S) is a boundary for S. In particular, one can

obtain the following remark immediately:

Remark 2.1. If for each x ∈ X there is a function h ∈ S such that h(x) = 1 and |h(y)| < 1 for any

y 6= x, then Ch(S) = X . For example, as in Korovkin’s original theorem, if we assume X = [0, 1]

and S = Span{1, x, x2}, then h(x) := 1− (x− a)2, a ∈ [0, 1], yields Ch(S) = [0, 1].

In the sequel, unless otherwise stated, it is assumed that X and Y are compact Hausdorff spaces,

M is a self-conjugate subspace of C(X) in the sense that f̄ ∈ M whenever f ∈ M , and S is a

function space included in M .

A linear map T : M −→ C(Y ) is called positive if Tf ≥ 0 holds for all f ≥ 0.

Let f, f1, f2, ... ∈ C(X) and X0 ⊆ X . If {fn} converges pointwise to f on X0, we write fn −→ f

on X0. Also, we omit X0 when X0 = X .

Given f, g ∈ C(X), we shall write f ⊗ 1 + 1 ⊗ g to denote the function in C(X ×X) such that

(f ⊗ 1 + 1 ⊗ g)(x, x′) := f(x) + g(x′). Furthermore, if T, T ′ : S ⊆ C(X) −→ C(Y ), then we set

(T ⊗ T 1T ′)(f ⊗ 1 + 1⊗ g)(y) := Tf(y) + T 1(y)T ′g(y) for all f, g ∈ S and y ∈ Y .

Finally let us state the following lemma which is used in the proofs of our results.

Lemma 2.2. [5, Theorem 2.2.6] Let S be a function space on X and x0 ∈ X. Then x0 ∈ Ch(S) if

and only if for any α, β ∈ (0,∞) with α < β and any open neighborhood U of x0, there is a function

f ∈ S such that Ref ≤ 0 on X, Ref < −β on U c and Ref(x0) > −α.
2



3. Results

Theorem 3.1. Suppose that {Tn} is a sequence of positive linear maps from M into C(Y ), and T∞

is an isometry from M onto a subspace T∞(M) of C(Y ).

(a) If Tnf −→ T∞f for all f ∈ S, then Tnf −→ T∞f on Ch(T∞(S)) for all f ∈ M .

(b) Let N := Span
⋃

1≤n≤∞

Tn(M). If, in part (a), Ch(N) ⊆ Ch(T∞(S)) and the set {Tn1 : n ∈ N}

is bounded, then Tnf −→ T∞f for all f ∈ M .

Proof. We will base the proof of (a) through the following steps.

Step 1. For each triple of distinct points x, x′, z ∈ Ch(M), there exists a function h ∈ M such

that |h(x)| 6= |h(x′)| and h(z) = 0.

Since M is a self-conjugate function space we can find a real-valued function f ∈ M such that

f(x) = 1 and f(x′) = 0. Now we consider the following cases based on the value of f at z:

• f(z) = 1. Clearly, h = 1− f is the desired function.

• f(z) 6= 1, 12 . Take h = f − f(z).

• f(z) = 1
2 . In this case we choose a non-negative function g in M with g(x), g(x′) > 3 and

g(z) < 1
2 , by Lemma 2.2. If g(x′) − g(x) = 2, then h = g − g(z) is the desired function.

Otherwise, we can see that h = 2f + g − g(z)− 1 satisfy the requested properties.

Step 2. T∞ is a linear isometry.

Note that T∞0 = limTn0 = 0. Then according to the Mazur-Ulam theorem [10], T∞ is a real-

linear isometry. Hence now we only need to consider the complex case. Let us point out that

T∞1 = limTn1 ≥ 0. Taking into account Step 1, from [9, Theorem 2.3] it follows that T∞1 = 1 and

there exist a (possibly empty) clopen subset K of Ch(T∞(M)), and a continuous surjective map

φ : Ch(T∞(M)) −→ Ch(M) such that for all f ∈ M ,

T∞f =





f ◦ φ onK,

f ◦ φ onCh(T∞(M)) \K.

But T∞i = limTni = i limTn1 = iT∞1 = i, which implies that K = Ch(T∞(M)). Hence taking into

account that Ch(T∞(M)) is a boundary for T∞(M), we deduce that T∞ is a linear isometry.

Step 3. For each f ∈ M , Tnf −→ T∞f on Ch(T∞(S)).

By [7, Lemma 2.5] (or [3, Corollary 3.2]), there is a continuous surjection ϕ : Ch(T∞(S)) −→
Ch(S) such that

T∞f(y) = f(ϕ(y)) (f ∈ S, y ∈ Ch(T∞(S))).
3



Let f ∈ M and ǫ > 0. Then we can define a function in C(X×X) as F := f ⊗ 1− 1⊗ f . Clearly,

F = 0 on the subset △X = {(x, x) : x ∈ X} of X ×X . Then there is an open neighborhood U of

△X with |F | < ǫ on U .

Let y′ ∈ Ch(T∞(S)) and x′ = ϕ(y′). Choose an open neighborhood Vx′ of x′ such that Vx′ ×Vx′ ⊆
U . By Lemma 2.2, we find a function fy′ ∈ S such that

Refy′ ≥ 0 on X, Refy′ ≥ 1 on V c
x′ , Refy′(x′) < ǫ.

Put Fy′ = fy′ ⊗ 1 + 1 ⊗ fy′ . It is clear that ReFy′ ≥ 0 on X ×X and ReFy′ ≥ 1 on U c. Hence we

have

ReF ≤ ‖F‖ ≤ ‖F‖ReFy′ on U c,

which yields |ReF | ≤ 1⊗ ǫ+ ‖F‖ReFy′ on X ×X . In other words,

−(1⊗ ǫ+ ‖F‖ReFy′) ≤ ReF ≤ 1⊗ ǫ+ ‖F‖ReFy′ on X ×X.

Hence for each y ∈ X we get

−ǫ− 2‖F‖Refy′ − ‖F‖Refy′(y) + Ref(y) ≤ Ref − ‖F‖Refy′ ≤ ǫ+ ‖F‖Refy′(y) + Ref(y).

Since {Tn} is a sequence of linear positive maps, it follows that

−2‖F‖Tn(Refy′) + (−ǫ− ‖F‖Refy′(y) + Ref(y))Tn1 ≤ Tn(Ref)− ‖F‖Tn(Refy′) ≤

Tn1(ǫ+ ‖F‖Refy′(y) + Ref(y))

for each y ∈ X . Now, from the representation of T∞ on M (Step 2), we deduce that

−2‖F‖Tn(Refy′)(z) + T∞(−ǫ− ‖F‖Refy′ +Ref)(z′)Tn1(z) ≤ Tn(Ref)(z)− ‖F‖Tn(Refy′)(z) ≤

Tn1(z)T∞(ǫ+ ‖F‖Refy′ +Ref)(z′)

for any z ∈ Y and z′ ∈ Ch(T∞(M)). Thus, again since T∞1 = 1, T∞ is a positive linear map

and also Ch(T∞(M)) is a boundary for T∞(M), it is observed that the above relation holds for all

z, z′ ∈ Y . Therefore, especially we get

−||F ||Tn(Refy′)−Tn1T∞(ǫ+‖F‖Refy′) ≤ Tn(Ref)−Tn1T∞(Ref) ≤ Tn1T∞(ǫ+‖F‖Refy′)+||F ||Tn(Refy′)

on Y . Rewriting the above inequality adopted to our notation in Section 2 we have

−(Tn ⊗ Tn1T∞)(1⊗ ǫ+ ‖F‖ReFy′) ≤ (Tn ⊗ Tn1T∞)(ReF ) ≤ (Tn ⊗ Tn1T∞)(1⊗ ǫ + ‖F‖ReFy′),

equivalently,

|(Tn ⊗ Tn1T∞)(ReF )| ≤ (Tn ⊗ Tn1T∞)(1 ⊗ ǫ+ ‖F‖ReFy′).
4



Consequently, from the fact that each Tn is a positive linear map and the representation of T∞,

it follows that

|Re(Tn ⊗ Tn1T∞)(F )| = |ReTnf − Re(Tn1T∞f)|

= |Tn(Ref)− Tn1T∞(Ref)|

= |(Tn ⊗ Tn1T∞)(ReF )|

≤ (Tn ⊗ Tn1T∞)(1⊗ ǫ + ‖F‖ReFy′)

= (Tn ⊗ Tn1T∞)(1⊗ ǫ) + (Tn ⊗ Tn1T∞)(‖F‖ReFy′)

= ǫTn1 + ‖F‖(Tn(Refy′) + Tn1T∞(Refy′))

= ǫTn1 + ‖F‖(ReTnfy′ + Tn1ReT∞fy′)

≤ ǫTn1 + ‖F‖(|Tnfy′ − T∞fy′ |+ Tn1ReT∞fy′ +ReT∞fy′),

which is to say,

|Re(Tn ⊗ Tn1T∞)(F )| ≤ ǫTn1 + ‖F‖(|Tnfy′ − T∞fy′ |+ Tn1ReT∞fy′ +ReT∞fy′).

Thus, from the latter inequality, the representation of T∞ and for any sufficiently large integer n,

we get

|ReTnf(y
′)− ReT∞f(y′)| ≤ |ReTnf(y

′)− Tn1(y
′)ReT∞f(y′)|+ |Tn1(y

′)ReT∞f(y′)− ReT∞f(y′)|

≤ ǫTn1(y
′) + ‖F‖(|Tnfy′(y′)− T∞fy′(y′)|+ Tn1(y

′)Refy′(x′)+

Refy′(x′)) + |ReT∞f(y′)||Tn1(y
′)− 1|

≤ 2ǫ+ ‖F‖(ǫ+ 2ǫ+ ǫ) + ‖f‖ǫ

= (2 + 4‖F‖+ ‖f‖)ǫ.

Hence ReTnf −→ ReT∞f on Ch(T∞(S)). By replacing f by −if , we see that ImTnf −→ ImT∞f

on Ch(T∞(S)). Therefore, Tnf −→ T∞f on Ch(T∞(S)), which completes the proof of part (a).

(b) We first claim that ‖Tn‖ ≤
√
2‖Tn1‖, where ‖Tn‖ is the operator norm of Tn (for each n ∈ N).

To see this, assume that g ∈ M is real-valued and has supremum norm at most 1. Then −1 ≤ g ≤ 1

and thus, −Tn1 ≤ Tng ≤ Tn1, which implies that ‖Tng‖ ≤ ‖Tn1‖. In the real case, this shows that

Tn is continuous and the claim holds. In the complex case, from this argument and the fact that M

is self-conjugate, it easily follows that ‖Tn‖ ≤
√
2‖Tn1‖.

Let f ∈ M . Taking into account the above claim and the boundedness of {Tn1 : n ∈ N}, we
deduce that the set {Tnf : n ∈ N} is bounded. Now one can follow the last part of the proof of [7,
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Theorem 3.3] to conclude that Tnf −→ T∞f on Y and we include it for completeness. Assume that

∼ is the equivalence relation on Y defined by

y ∼ y′ ⇔ g(y) = g(y′) ∀g ∈ N.

The quotient space of Y by ∼ is denoted by Y/ ∼, and ŷ will stand for the image of y ∈ Y under

the canonical map ·̂ from Y onto Y/ ∼. Moreover, we define ĝ(ŷ) = g(y) for all g in N and y in

Ŷ = {ŷ : y ∈ Y }. It is apparent that N̂ = {ĝ : g ∈ N} is a function space on the compact space Ŷ .

By [4, Section V] and [12, Section 4], for any y ∈ Y , there exits a positive measure µ on the

σ-ring of subsets of B
N̂∗ generated by ext(B

N̂∗) and the Baire subsets of B
N̂∗ which represents

ŷ and µ(B
N̂∗) = 1. From part (a), it is clear that T̂nf −→ T̂∞f on ̂Ch(T∞(S)). Hence, since

ext(B
N̂∗) = TCh(N̂) ⊆ T ̂Ch(T∞(S)) and the set {Tnf : n ∈ N} is bounded, from the Lebesgue’s

dominated convergence theorem we get

Tnf(y) = T̂nf(ŷ) =

∫

B
N̂∗

T̂nf −→
∫

B
N̂∗

T̂∞fdµ = T̂∞f(ŷ) = T∞f(y).

Therefore, Tnf −→ T∞f , as desired. �

Let us recall here the famous Arzela-Ascoli theorem, which will be used in the proof of the next

result.

Theorem (Arzela-Ascoli). Given a subset A of C(X), the following statements are equivalent:

(1) A is a compact subset of (C(X), ‖ · ‖).
(2) A is closed, bounded, and equicontinuous in the sense that for each x ∈ X and ǫ > 0, there

exists a neighborhood V of x such that |f(y)− f(x)| < ǫ for all f ∈ A and y ∈ V .

Theorem 3.2. Let {Tn} be a sequence of positive linear maps from M into C(Y ), and T∞ be an

isometry from M onto a subspace T∞(M) of C(Y ).

(a) If {Tnf} converges uniformly to T∞f for all f ∈ S, then {Tnf} converges uniformly to T∞f

on each compact subset of Ch(T∞(S)) for all f ∈ M .

(b) If, furthermore, either Ch(T∞(S)) or Ch(N) is compact and Ch(N) ⊆ Ch(T∞(S)), then

{Tnf} converges uniformly to T∞f for any f ∈ M , where N is as in Theorem 3.1.

Proof. (a) As in the proof of Theorem 3.1, there is a continuous surjection ϕ : Ch(T∞(S)) −→ Ch(S)

such that for all f ∈ S,

T∞f(y) = f(ϕ(y)) (f ∈ S, y ∈ Ch(T∞(S))).

Suppose that K is a compact subset of Ch(T∞(S)). Let f ∈ M , y′ ∈ K and ǫ > 0. Put F =

f ⊗ 1 − 1 ⊗ f and x′ = ϕ(y′). As before, we choose an open neighborhood Vx′ of x′ and a function
6



fy′ ∈ S such that Refy′ ≥ 0 on X , Refy′ ≥ 1 on V c
x′ and Refy′(x′) < ǫ, and we also have

|ReTnf − ReT∞f | ≤ ǫTn1 + ‖F‖(|Tnfy′ − T∞fy′ |+ReT∞fy′ + Tn1ReT∞fy′) + |ReT∞f ||Tn1− 1|,

on Y . Now, we prove the following claim.

Claim: The set {Tnf : n ∈ N} is equicontinuous at y′.

Since {Tnfy′} and {Tn1} converge uniformly to T∞fy′ and 1, respectively, there is an integer

n0 such that for each n ≥ n0, ‖Tnfy′ − T∞fy′‖ < ǫ and ‖Tn1 − 1‖ < ǫ. On the other hand,

ReT∞fy′(y′) < ǫ and so, from the continuity of ReT∞fy′ and T∞f , we can choose a neighborhood

Wy′ of y′ so that the inequalities ReT∞fy′ < ǫ and |T∞f −T∞f(y′)| < ǫ hold on Wy′ . Hence, letting

η = supi∈N ‖Ti1‖, for each y ∈ Wy′ and n ≥ n0 we get

|ReTnf(y)− ReTnf(y
′)| ≤ |ReTnf(y)− ReT∞f(y)|+ |ReTnf(y

′)− ReT∞f(y′)|+

|ReT∞f(y)− ReT∞f(y′)| ≤ ηǫ + ‖F‖(|Tnfy′(y)− T∞fy′(y)|+ReT∞fy′(y)+

ηT∞fy′(y)) + ‖f‖|Tn1(y)− 1|+ ηǫ+ ‖F‖(|Tnfy′(y′)− T∞fy′(y′)|+

ReT∞fy′(y′) + ηT∞fy′(y′)) + ‖f‖|Tn1(y
′)− 1|+ |ReT∞f(y)− ReT∞f(y′)|

≤ ηǫ+ ‖F‖(ǫ+ ǫ+ ηǫ) + ‖f‖ǫ+ ηǫ + ‖F‖(ǫ+ ǫ+ ηǫ) + ‖f‖ǫ+ ǫ

= ǫ(2η + 2‖f‖+ 4‖F‖+ 2η‖F‖) + ǫ.

Now, from the continuity of T1f, ..., Tn0
f , it follows that the set {ReTnf : n ∈ N} is equicontinuous at

y′. Similarly, the set {ImTnf : n ∈ N} is equicontinuous at y′, and, as a consequence, {Tnf : n ∈ N}
is equicontinuous at y′, as claimed.

Moreover, as observed in the proof of Theorem 3.1(b), {Tnf : n ∈ N} is bounded. Therefore,

from the Arzela-Ascoli theorem and Theorem 3.1(a), it follows that each subsequence {Tnf} has a

uniformly convergent sequence to T∞f on K. This argument shows that {Tnf} converges uniformly

to T∞f on the compact set K.

(b) When either Ch(T∞(S)) or Ch(N) is compact, then, from the above discussion, we deduce

that {Tnf} converges uniformly to T∞f on Ch(N). Next, since Ch(N) is a boundary for N , it is

immediately seen that {Tnf} converges uniformly to T∞f (on Y ). �

Remark 3.3. We would like to remark that the sequential version of Korovkin’s theorem does not

yield its net version (see [14]). However, it can be easily checked that our techniques hold true when

we replace the sequence {Tn} by a net of positive linear maps.

In the following corollary, we obtain the main results of [7], namely, [7, Theorem 3.3] and [7,

Theorem 4.1] as consequences of Theorems 3.1 and 3.2.
7



Corollary 3.4. Let M be a subspace of C(X), S ⊆ M be a function space, {Tn} be a sequence

of unital linear contractions from M into C(Y ), T∞ be a linear isometry from M into C(Y ), and

Ch(N) ⊆ Ch(T∞(S)), where N := Span
⋃

1≤n≤∞

Tn(M).

(a) If Tnf −→ T∞f for all f ∈ S, then Tnf −→ T∞f for all f ∈ M .

(b) If {Tnf} converges uniformly to T∞f for all f ∈ S, then {Tnf} converges uniformly to T∞f

on each compact subset of Ch(T∞(S)) for any f ∈ M . If, furthermore, Ch(T∞(S)) or Ch(N) is

compact, then {Tnf} converges uniformly to T∞f for all f ∈ M .

Proof. In the context of real-valued function spaces, since every linear map T with ‖T ‖ = T (1) = 1

is positive ([13]), the result follows immediately from Theorems 3.1 and 3.2. Now let us consider the

complex case. We note that

M +M = {f + g : f, g ∈ M}

is a self-conjugate subspace of C(X). According to [7, Lemma 2.5] (or [3, Corollary 3.2]), there is a

continuous surjection ϕ : Ch(T∞(M)) −→ Ch(M) such that

T∞f(y) = f(ϕ(y)) (f ∈ M, y ∈ Ch(T∞(M))).

Since Ch(T∞(M) + T∞(M)) = Ch(T∞(M)) and Ch(M + M) = Ch(M) ([7, Lemma 2.3]) are

boundaries, T∞ can be extended to a linear isometry T̃∞ : M +M −→ C(Y ) such that

T̃∞(f + g)(y) = f(ϕ(y)) + g(ϕ(y)) (f, g ∈ M, y ∈ Ch(T∞(M))).

Moreover, by [7, Lemma 3.2], each Tn can be extended to a positive linear map T̃n from M + M

into C(Y ). Now, we get the result from Theorems 3.1 and 3.2. �

4. Examples

In this section we provide several examples which show how our results can be applied.

Example 4.1. Let k ∈ N∪{0,∞} and C(k)(I) denote the space of k-times continuously differentiable

functions on the interval I = [0, 1] which is a self-conjugate space. Suppose that {Tn} is a sequence

of positive linear maps from C(k)(I) into C(I) satisfying

Tn1 −→ 1, Tnx −→ x, Tnx
2 −→ x2.

For each a ∈ I, the function h(x) = 1 − (x − a)2 belongs to the function space S = Span{1, x, x2}.
Since h(a) = 1 and |h(y)| < 1 for any y 6= a, we infer Ch(S) = I, by Remark 2.1. Now from

Theorem 3.1, we conclude that Tnf −→ f for all f ∈ C(k)(I). Meantime, by Theorem 3.2, the same

result holds true for ”uniformly convergence” instead of ”pointwise convergence”, which can be also

obtained from Korovkin’s first theorem.
8



Example 4.2. Let Ω be a non-empty open subset of Rp and K be a compact subset of Ω. The

term multi-index denotes an ordered p-tuple α = (α1, ..., αp) of nonnegative integers αi. For each

multi-index α, consider the differential operator

Dα =

(
∂

∂x1

)α1

...

(
∂

∂xp

)αp

,

if α 6= 0, and Dαf = f if α = 0. A function f on Ω is said to belong to C∞(Ω) if Dαf ∈ C(Ω) for

all multi-index α. By DK we denote the space {f |K : f ∈ C∞(Ω)}. Since DK may be considered as

a function space on K, from our results we deduce the following.

If {Tn : DK −→ C(K) : n ∈ N} is a sequence of positive linear maps such that Tn1 −→ 1,

Tn(Pk) −→ Pk, Tn(
∑p

k=1 P
2
k ) −→

∑p

k=1 P
2
k , where Pk is the projection

Pk(x) = xk for x = (x1, ..., xp),

then Tnf −→ f for all f ∈ DK . A similar result holds true for ”uniformly convergence” instead of

”pointwise convergence”.

Let us remark that for any a = (a1, ..., ap) ∈ K, the function

h(x) = b1 − (P1(x) − a1)
2 + ...+ bk − (Pp(x) − ap)

2 (x = (x1, ..., xp) ∈ Ω),

where bi > max{|Pi(x) − ai| : x ∈ K}, i = 1, ..., p, implies that a belongs to the Choquet boundary

of S = Span{1, P1, ..., Pp, P
2
1 , ..., P

2
p } by Remark 2.1.

The following example includes the complex Korovkin theorem.

Example 4.3. If {Tn : C(T) −→ C(T) : n ∈ N} is a sequence of positive linear maps such that

Tn1 −→ 1 and Tnz −→ z, then Tnf −→ f for all f ∈ C(T). Notice that here if z0 ∈ T, then the

function h(z) = z+z0
2 works for Remark 2.1 (S = Span{1, z}).

Let D be the closed unit disc {z ∈ C : |z| ≤ 1} and {Tn : C(D) −→ C(D) : n ∈ N} be a sequence

of positive linear maps such that Tn1 −→ 1, Tnz −→ z, Tn|z|2 −→ |z|2, then Tnf −→ f for all

f ∈ C(D).

It should be noted that since Tn is positive, it is easily seen that Tnz̄ = Tnz, which yields

Tnz̄ −→ z̄. Hence for each z0 ∈ D, the function h(z) = 1 − |z−z0|
2

4 = 1 − |z|2−z̄z0−z̄0z+|z0|
2

4 , which

belongs to S = Span{1, z, z̄, |z|2}, is the appropriate function for Remark 2.1.

The two above results holds true for ”uniformly convergence” instead of ”pointwise convergence”.

Remark 4.4. From our theorems, one can obtain the Korovkin-type results of [11] and [15] (with

respect to both ”uniformly convergence” and ”pointwise convergence”), which are generalizations

of Korovkin’s second theorem on convergence of a sequence of positive linear maps for the space of

real-valued continuous 2π-periodic functions on R.
9
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