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The discovery of topologically non-trivial electronic systems has opened a

new age in condensed matter research. From topological insulators to topo-

logical superconductors and Weyl semimetals, it is now understood that some

of the most remarkable and robust phases in electronic systems (e.g., Quan-

tum Hall or Anomalous Quantum Hall) are the result of topological protection.

These powerful ideas have recently begun to be explored also in bosonic systems.

Topologically protected acoustic [1–4], mechanical [5–9] and optical [10–14] edge

states have been demonstrated in a number of systems that recreate the requisite

topological conditions. Such states that propagate without backscattering could

find important applications in communications and energy technologies. In this

work we demonstrate the mechanical analogue of a topologically bound state, a

different class of non-propagating protected state that cannot be destroyed by

local perturbations. These are well known in electronic systems, such as Ma-

jorana bound states [15, 16] in topological superconductors, but remain largely

unexplored in a bosonic setting. We implement topological binding by creat-

ing a Kekulé distortion vortex [17] on a two-dimensional mechanical honeycomb

superlattice.

Topologically protected states emerge at generic topological defects of a gapped band

structure. This general statement takes its simplest form in topological insulators [18],

electronic systems with a gap at the Fermi level that is topologically distinct from that of

vacuum or conventional insulators. At the boundary between a topological insulator and

vacuum, the topological index is forced to change and thus, the boundary is a topological

defect from the electronic point of view. It develops protected edge states that cannot be

destroyed, as long as the basic symmetries of the system (time-reversal symmetry in this

example) are preserved. In a deep sense, these topological states are a manifestation of

bulk topology, and their emergence is sometimes dubbed the bulk-boundary correspondence

principle.

Topological modes at an extended boundary are propagating, but this is not generic.

Topological bound states are also possible, e.g., at the point-like boundaries between two

one-dimensional (1D) topological insulators or superconductors [19]. The 1D topological su-

perconducting case is particularly striking. The topological states at its boundaries have zero

energy, and are known as Majorana bound states (MBSs), due to their peculiar self-conjugate
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γ = γ† nature (half-electron, half-hole). These states, invented by Ettore Majorana in 1937

in a very different context [20] and studied by Kitaev in 2001 in superconductors [15], have

been proposed as a building block of practical quantum computers [21], and are the subject

of intense research currently [22, 23]. MBSs are furthermore a realisation of the topological

binding mechanism studied in the context of the 1D Dirac equation by Jackiw and Rebbi in

1976 [19].

A related work by Jackiw and Rossi demonstrated topological binding of states in the

two-dimensional Dirac equation by means of vortices in a gap-opening field [24]. Magnetic

flux vortices in spinless, p-wave superconductors have been shown to be a realisation of

this proposal [25, 26], with topologically trapped MBS emerging at the vortex core. The

fundamental Jackiw-Rossi Hamiltonian takes the low-energy form of two Dirac valleys s =

±1 coupled by a gap-opening parameter ∆,

H =

∫
d2r
∑
s=±

ψ†s

(
~σ · ~∂r

)
ψs + ∆ψ†+ψ− + ∆∗ψ†−ψ+. (1)

The gap parameter can be position dependent and is in general complex, ∆(r) = |∆(r)|eiφ(r).

A magnetic n-vortex is realized by a winding of 2πn of its phase φ around the vortex core

(taken here at the origin r = 0), where continuity forces the modulus |∆| to vanish. A

standard model for a vortex of radius ξ reads [27]

∆(r) = ∆0 tanh(r/ξ) exp(inφr), (2)

where r = r(cosφr, sinφr). This vortex traps a Majorana zero energy state, confined to the

core of the vortex. No perturbation to the system, other than merging of two vortices, can

remove a MBS from zero energy. Key to this protection is the charge-conjugation symmetry

between electrons and holes, which is also responsible for the particle-hole symmetry of the

Bogoliubov–de Gennes spectrum of H.

In this work we demonstrate a mechanical analogue of a MBS topologically bound to a

vortex. The field of topological mechanics recently emerged as a fertile ground to explore

bosonic analogies in terms of elastic wave motions. Along this frontier, artificial gyroscopic

lattices have shown to sustain robust chiral edge states by mimicking the quantum Hall effect

[5, 6]. Other phononic metamaterials have been constructed to enable mechanical versions

of the quantum spin Hall effect [7–9] and the valley degree of freedom [28] for unidirectional

phononic signal guiding.
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FIG. 1. Kekulé distorted mechanical graphene. A honeycomb lattice of bolts is attached to

an oscillating plate. Shifting the position of bolts following a Kekulé pattern gaps the modes. The

Kekulé gap has an internal phase φ(r) in valley space (see bands in perimeter) that can create a

vortex. A Kekulé vortex traps a topologically protected mode (in black and yellow), a mechanical

analogue of a Majorana bound state.
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We constructed an artificial honeycomb-like lattice, i.e., distorted mechanical graphene,

by decorating a thin aluminum plate with steel bolts [8, 29, 30]. The pattern of bolts, ren-

dered in Fig. 1, realises a periodic honeycomb lattice plus a distortion field. The former

produces a spectrum analogous to graphene’s, with two valleys and a Dirac-like dispersion

around a specific Dirac frequency in each of them. As we will see in the following, this ap-

proach emulates electronic topological phenomena in our bosonic mechanical structure. The

distortion field for an n-Kekulé-vortex takes the form of a position-dependent displacement

δr(r) of the resonator (bolt) sites,

δr(r) = d(r) [sin(Kr + φ(r)),± cos(Kr + φ(r))] , (3)

where K = [4π/3a, 0] is the valley wavevector, ± correspond to the two sublattices, and

(d, φ) play the role of the modulus and phase of ∆(r), respectively. For a constant d = d0

and φ, the lattice remains periodic (see Fig. 2a), but the perturbation triples the unit cell,

which folds the two Dirac cones onto the Γ-point and opens a gap ∼ d0/a. The gap changes

slightly as a function of the phase φ, but never closes. In the rest of this work we focus

on the n = 1 vortex, defined by d(r) = d0 tanh(r/ξ) and φ(r) = φr, with ξ = 0.1a and

d0 = 0.15a specifically. The vortex lattice is no longer periodic (see Fig. 2b). The phase

φ(r) does a full turn as r moves around the vortex core, but since d0 remains finite the local

gap never closes (see Fig. 1 and supplementary video.) Such a Kekulé 2D vortex binds a

Majorana-like mode at its core at the Dirac point frequency, which in our concrete example

of a bolted elastic plate takes the form of a strongly localized vibrational mode of flexural

wave motions and out-of-plane bolt vibrations as visualized in Fig. 1.

We fabricated such vortex-hosting configuration using the bolted-plate design and per-

formed measurements with a laser Doppler vibrometer (LDV). In Fig. 2c, we show the

experimental setup, in which a piezoelectric actuator excites the core of the vortex, and the

LDV takes point-by-point measurements of the plate to reconstruct the wave field in the

entire scanned area (see Methods).

To numerically characterize the system, we model the bolts as resonators with an effective

out-of-plane stiffness and employ the multiple scattering theory (MST) [29]. For fixed n = 1

and ξ = 0.1a in Eq. (2), we vary the gap opening perturbation d0, and calculate the

local density of states (LDOS) (see Methods for more details). In Fig. 2e, we plot the

emerging spectral peaks and bandgap region (grey region) as we increase the perturbation
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FIG. 2. System configuration and the vortex bound states. a, b, No-vortex (n = 0) and

vortex (n = 1) patterns, respectively. The hollow circles containing two sub-lattices in golden and

purple denote unperturbed (d0 = 0) honeycomb configuration with lattice period a, whereas the

filled circles denote the perturbed configuration as per Eq. 3. The red star denotes the origin.

c, Experimental setup, in which a laser Doppler vibrometer scans the yellow area to measure the

out-of-plane response of the n = 1 vortex lattice. The pattern contains 1069 bolts mounted on

a thin aluminium plate as shown in the inset. The blue dot represents the location where the

piezoelectric actuator has been mounted. d, MST predictions of the bandgap opening (in grey)

and the three localized states that become bound as one increases the perturbation strength d0/a

for n = 1. The topological peak converges to the Dirac point as the perturbation is reduced to

zero. The other two peaks enter the continuum for small perturbations. From this point on the

vortex amplitude is fixed to d0/a = 0.15. e, LDOS at the core, predicted by MST for the n = 0 and

n = 1 structures. f, Measured LDOS verifying the presence of localized states inside the bandgap.

g, Spatial profile of the out-of-plane displacements within the bandgap when the n = 0 structure

is excited at the blue point. h, i, Simulated displacements and measured power spectral density

for n = 1 at their corresponding frequencies. 6



d0 in the vortex. For d0 = 0, we recover the unperturbed honeycomb lattice hosting a double

Dirac cone at a Dirac frequency of 8.83 kHz. A nonzero d0 couples the two valleys, thus

gapping the two Dirac cones and lifting their degeneracy, with a gap that increases with d0.

Within this bandgap, several localized states emerge. Figure 2d illustrates that particularly

one state always remains bound inside the gap, and converges within our precision to the

Dirac frequency as the perturbation d0 approaches zero. Since a topological state can be

eliminated only by closing a bulk bandgap, we claim that the first peak (blue dots in the

figure) corresponds to the topological bound state in our system. The other two states are

topologically trivial, since they merge with the continuum below a finite d0, at which point

they become delocalized.

In Fig. 2e we plot in blue the n = 1 normalized LDOS, computed for fixed d0 = 0.15a,

with the topological mode highlighted. To corroborate its topological origin, we also include

in red the LDOS results for the zero-winding n = 0, ξ → 0 configuration of Fig. 2a, which

should not trap topological states. Its LDOS shows a similar bandgap, but with peaks

clustering around the edges of the bandgap. We experimentally verify the existence of

vortex-localized states by plotting the measured normalized LDOS in Fig. 2f. We detect

three localized states at frequencies 8.83 kHz (topological), 9.81 kHz, and 10.17 kHz. We

attribute the slight frequency mismatch between MST and experiments to fabrication errors

and to the fact that the MST model only captures the out-of-plane motion of the bolts [30].

The computed spatial profile of the displacement field at 8.83 kHz, excited by the point-like

actuator shown in Fig. 2c, indicates that the topological mode is concentrated at the n = 1

vortex core (Fig. 2h), while the displacement field is hardly visible in the n = 0 non-resonant

case (Fig. 2g). This prediction is closely matched by the measured mode profile shown in

Fig. 2i.

Topological bound states within a given symmetry class are special in that they cannot be

removed out of the gap by arbitrary local perturbations that remain in the same symmetry

class. To confirm the topological nature of the 8.83kHz mode trapped at the vortex, we now

study its behavior as local perturbations are added to the core region. In the first place, we

introduce a small local perturbation by adding a mass. This we do by fastening two nuts

(with ∼41% mass of each bolt) to N bolts sequentially as indicated in insert of Figs. 3a,b.

The mass-loading perturbation does not preserve the particle-hole (PH) symmetry of the

original symmetry class, and hence the topological bound state is not truly protected against
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FIG. 3. Topological robustness with and without particle-hole symmetry. a, Dependency

of the in-gap bound state frequencies with an increasing number of mass-loaded bolts. b, Bound

state frequency evolution under PH-symmetry-preserving perturbations. Note the frequency pin-

ning of the topological mode. Insets show an enlarged view of the vortex core with numbered

perturbation sites. c,d, Measured and simulated bound state map when N = 4 bolts are per-

turbed through mass-loading. e–g, Simulated, mechanical bound states protected by particle-hole

symmetry for N = 1, N = 5, and N = 9, respectively.

this type of perturbation. As the number N of loaded bolts is increased, all modes shift,

including the topological one, and may even move out of the gap. Before exiting the gap,

however, the experimental and numerical displacement maps of the topological mode re-

main remarkably insensitive to the perturbation, as can be seen by comparing Figs. 3c,d to

Figs. 2h,i. This result highlights the topological mode’s exceptional robustness even against

symmetry-breaking local mass perturbations. Additional measurements are found in the

Extended Data Figs 1 and 2. True topological protection as enjoyed by MBSs is stronger,

however, and implies a pinning of the mode to the Dirac frequency as the symmetric per-

turbation grows. To confirm such topological pinning, we designed a special perturbation

that preserves PH symmetry by simultaneously changing the bolt stiffness and mass, see
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Methods. We show numerically that this perturbation, sequentially added to the same set

of bolts, shifts the energy of all modes in the gap except for the topological mode, which

indeed remains pinned at 8.83 kHz, see Figure 3b. In addition, like in the mass loading

experiment, the spatial profile of the non-trivial mode remains essentially insensitive to the

local perturbations, see Figs. 3e-g. These observations confirm the mode to be a mechanical

analogue of a Majorana bound state.

We numerically and experimentally demonstrated that the mechanical analogue of a MBS

can exist in artificial structures hosting a non-trivial Kekulé vortex. We specifically showed

the effect on the topologically bound mode of local-mass perturbations and PH symmetry-

preserving perturbations. In contrast to other trivial bound states in the system, we showed

that the topological mode is completely insensitive to PH-symmetric perturbations, which

confirms its unique topological character. We foresee that our findings will widen the re-

search of exotic topological phases in bosonic settings and could stimulate robust control

and guiding of mechanical energy for signalling and filtering applications.
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METHODS

Sample fabrication

The sample is made of a thin aluminum 6061-T6 plate (762 × 762 × 2 mm ) and M4

black-oxide alloy steel bolts. The lattice size a is 26 mm. First, we machined and threaded

1069 holes on the plate using a CNC milling machine. We ensured that the bolts were

firmly and equally fastened by taking advantage of the partially threaded bolts, in which

the thread-less part can be used as limiter. We then used an electric screwdriver to tighten

the bolts with the same torque as much as possible. At the same time, we added an instant-

bond adhesive (Loctite R© 431) on the threads to secure the contact between the bolts and

the plate. For the robustness study, we attached two zinc-plated steel nuts (1.4 g in total)

at the bottom of each bolt (3.4 g).

Experimental measurements and post-processing

We bonded a piezoelectric ceramic disc actuator (STEMiNC, diameter 10 mm, and thick-

ness 1 mm) with a conductive silver epoxy adhesive just below the center of the plate,

at which the topological mode has the maximum out-of-plane displacement. We send a

frequency-chirped signal (2–20 kHz in 100 ms) from a function generator to the actuator

via a voltage amplifier. We used a laser Doppler vibrometer (Polytec OFV 5000) to detect

these vibrations. The device was mounted on a 2-axis linear stage, automated to scan a 2D

area on the plate. We conducted point-by-point measurements in a square grid (7.5 × 7.5

mm) and collected the velocity-time history of 1600 points in total inside the yellow region

shown in Fig. 2c. All the measurements were synchronized with respect to the onset of the

input voltage signal of the function generator. We performed a fast Fourier transformation

(FFT) on these velocity-time histories and obtained the power spectral of density (PSD)

to reconstruct a 2D field map at a given frequency. We further calculated the LDOS by

summing the squared PSD for all points in the scanning area.
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Modelling

1. Multiple scattering theory

The multiple scattering method is employed to solve the plate biharmonic equation cou-

pled to a cluster of harmonic oscillators. We compute the plate displacement field as a

superposition of a known harmonic incident wave ψ0(~r, t) = ψ0(~r)e
iωt and the iterated scat-

tered wave at each resonator[29].

Each resonator is modelled as a point scatterer. The incident wave is taken as a point

source. The plate stiffness, width and density together with the harmonic oscillator masses

and spring constants are encoded in two dimensionless parameters, ΩR and γR. These two

quantities define uniquely the Dirac frequency ΩD for the undistorted lattice, see Fig. 3. In

this article we use ΩR = 2.15 and γ = 10. The spatial integration of absolute value of the

displacement field is proportional to the local density of states (LDOS).

2. PH symmetric bolt-perturbation

The Dirac frequency in dimensionless units is ΩD = 1.362 which transformed to kHz is

fD = 8.83kHz. This corresponds to t = 1 in Extended Data Fig. 3. The Dirac frequency

changes as a function of either γ or ΩR . However, an appropriate change of the two keeps

the Dirac frequency constant. More precisely,

γ′ =
1

S0

∣∣∣∣ 1

Ω2
D

− 1

Ω′2R

∣∣∣∣ (4)

where S0 is a constant equivalent to the one deduced in Ref. [29].
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Extended Data Fig. 1. Experimentally measured LDOS and field maps. We introduced

perturbations in the form of mass-loaded bolts, with a, N=0. b, N=1. c, N=2. d, N=3. e, N=4.
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Extended Data Fig. 2. Experimentally measured LDOS and field maps. We introduced

perturbations in the form of mass-loaded bolts, with a, N=5. b, N=6. c, N=7. d, N=8. e, N=9.

15



0 1 2 3
0

5

10

15

t

Fr
eq

u
en

cy
 (

kH
z)

 

 

PH symmetry

Mass change

S�ffness change

Extended Data Fig. 3. Spectral location of Dirac frequency fD as a function of t. The

mass change is computed for fixed ΩR and varying γ′ = γt. The stiffness change correspond to

fixed γ and Ω′R = ΩRt. The PH symmetric corresponds to varying both parameters simultaneously

according to γ′(Ω′R) in Eq. (4).
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