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ABSTRACT

Structural and electronic changes induced by laser irradiation are currently of interest owing to the possibility to tune the mechanical,
optical, and transport properties of the irradiated materials. In this work, we investigate the effects of laser irradiation on indium phosphide,
InP, by modifying the electronic temperature, T, of the system within the density functional theory framework and performing molecular
dynamics simulations to prove that the laser irradiation also provokes a local thermalization effect. We found that the process can be
described by a two-stage mechanism. First, at low T, values (0-1.0 eV), the laser energy induces electronic transitions, while the InP lattice
remains undisturbed and cool. In the second stage (with T, in the range of 1.0-4.0 eV), both electron-electron scattering and electron-
phonon coupling processes are triggered, increasing the energy of the lattice so as to provoke a Coulomb explosion, which changes some
physical chemical properties of InP. The close agreement between the simulations helps explain the formation of metallic In as it is observed

in the transmission electron microscopy images.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5109230

I. INTRODUCTION

Understanding the laser-induced stimuli at solid materials that
provoke both chemical and structural perturbations is crucial to
many interdisciplinary fields. In particular, laser irradiation of
semiconductors to produce new materials with different functions
and innovative technological advances continues to receive much
attention.'™” Although this topic attracts significant interest, as it is
promising for a wide range of applications, the phenomenology of
the optical heating process is complex and requires consideration
of a wide set of features related to laser interaction with semicon-
ductors to enhance the controllability of the target modification.
Many theoretical and experimental studies have been devoted to
this purpose.” " Laser irradiation is a process that is fundamentally
different from chemical nanoparticle synthesis routes. In the past,
different laser synthesis and processing of colloids, metal-oxides

films, and nanostructures have been successfully carried out using
femtosecond pulses.*'* The strong electrical field generated by
the laser light is sufficient to remove electrons from the bulk of the
penetrated volume of the material. The free electrons oscillate
within the electromagnetic field, transferring energy to the lattice.
The irradiated surface is then heated, and this process is charac-
terized by very fast and localized photothermal effects. The laser
that focused on the surface generates a local temperature field at
the desired position, allowing precise control of the local material
properties.

Our research endeavors are devoted to studying the interaction
between electron beams and laser irradiation with matter via the
joint use of theoretical calculations and advanced experimental
techniques to obtain and develop novel systems with technological
applications.'”™"> We have reported four new phenomena caused
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by femtosecond laser irradiation, enabling the fabrication of new
complex nanoensembles, such as (i) the scale-up of the formation
of Ag nanoparticles on a-Ag2WO4 with bactericidal properties
by femtosecond laser irradiation;'®'” (ii) the formation of nano-
particles of In from the laser irradiation of InP;'* (iii) the synthe-
sis of stable and metastable phases of Bi nanoparticles;'” (iv) the
synthesis of Ag-Bi nanoalloys with high antibacterial activity by
femtosecond laser irradiations, which is interesting for potential
antimicrobial applications;z” and (v) the laser and electron
beam-induced formation of Ag/Cr structures on Ag,CrO,.”' In
addition, we have analyzed the nature of chemical interactions by
developing a new protocol based on the chemical pressure
approach to point out the connection between some topological
features of the electron density and structural stability of InP, thus
providing an efficient tool to predict the breaking and formation
of chemical bonds provoked by electron irradiation.””

The current understanding of the processes that emerge in a
material upon interaction with a laser involves multiple time and
length scales.”” These processes create extreme nonequilibrium
conditions that provoke the loss of periodicity at the irradiated
crystal, thus inducing significant perturbations on the system under
observation, including chemical-bond-breaking processes, and
generating transient states. These states arise through the interplay
of nonequilibrium, many-body Coulomb interactions, thermal, and
nonthermal effects. The excitation of electrons or collective charge
oscillations and atomic ionization, with the occupation of higher
energy states, eventually induces electron-electron collisions.”” In
this sense, samples under laser irradiation are in a state far from
equilibrium caused mainly by electronic excitations occurring in
subfemtosecond time scales. Subsequently, the return to new equi-
librium states involves electronic and ionic relaxations, which
extend well into the picosecond range. In this process, an electronic
energy redistribution takes place, and as the new lattice attains
equilibrium, the additional electronic energy must be dissipated,
changing the vibrational modes of the lattice. The dissipation
channels for this relaxation include the electron-phonon and
phonon-phonon couplings, responsible for inducing local heating
of the lattice.””” Theoretical calculations can provide some
insights into these processes via a two-temperature model, in
which it is assumed that electrons are excited by the laser effect
and return to an equilibrium state so rapidly that it is possible to
define an electronic temperature (T.) that is much higher than
the lattice temperature (T}).

The nature of the mechanisms of the response of crystalline
materials to laser irradiation remains controversial and was the
subject of intense debates.”’*” The main concern of the paper was to
draw attention to the nonequilibrium process of laser irradiation of
matter as well as the nonequilibrium electronic excitations triggered
by it. Thus, we present, for the first time, first-principles calculations
based on the finite-temperature density functional theory
(FT-DFT)*~° to study electronic excitations of InP induced by fem-
tosecond laser irradiation. The FT-DFT framework has proven its
performance in understanding and rationalizing the properties of
Si,”** InSb* and SrTiO;,”* semiconductors, and metals due to the
presence of laser-irradiation-induced excited electrons."’™*

Indium phosphide, InP, is a ITI-V semiconductor with a zinc
blend crystal structure and F43m symmetry and has attracted
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considerable interest for its versatile use in electronics and opto-
electronics. It has been widely explored, for instance, in applica-
tions in semiconductor devices,"** where the high absorption
coefficient allows the InP to be engineered as efficient photodetec-
tors,”” nanowire lasers, and quantum-dot light emitters.””** Here,
the electronic excitation of InP provoked by the laser irradiation is
the focus of our investigation, which is threefold. First, we are inter-
ested in exploring the efficiency of this formalism to properly
describe the bond formation and rupture processes under the laser
irradiation of InP. Second, we analyze and compare the modifica-
tions of the structural, electronic, and vibrational properties pro-
duced by the femtosecond laser irradiation and establish a
correlation between these changes. Finally, we present the results
obtained by classical molecular dynamics (MD) simulations at
different temperatures (in the range of 10-1500 K) to compute the
phonon dispersion and specific heat in order to prove that the laser
irradiation also provokes a local thermalization effect. With these
results, we wish to answer the following questions: (1) how the
laser irradiation changes structural properties, such as lattice
parameter, In-P bond distances, and elastic constants along with
electronic properties such as band structure, electron density distri-
butions, and dielectric constants; (2) how the phonon vibrational
modes are modified by laser irradiation, showing that the two-
temperature theoretical framework yields similar effects associated
to lattice temperature changes as the classical MD simulations; and
(3) how the laser effects allow forming metallic In, as observed in
our reported experimental results.

Il. THEORETICAL APPROACH AND COMPUTATIONAL
DETAILS

The Perdew-Burke-Ernzerhof (PBE) functional®’ was selected
for our calculations. This functional systematically underestimates
the bandgap energy of semiconductor materials, and hybrid func-
tionals such as HSE06 and PBEO,""” the DFT+U method,” or
other many-body perturbation methods should be used for improv-
ing the gap description. However, their use involves a much higher
computational cost. In this work, we focus on the effects of the
electronic temperature, and although the exact energy values of the
electronic excitations are modified by the band gap underestima-
tion, the trend of the electronic properties should not be affected.

The Kohn-Sham equations were solved using the projected
augmented-wave (PAW) method,”*” as implemented in the
Vienna ab initio simulation package (VASP),”” version 5.4.4,
employing the following PAW projectors: In(4d!°5s25p!) and
P(3s?3p®), where the valence electrons are shown in parenthesis.
The equilibrium of the InP bulk was reached by a minimization of
the stress tensor (atomic forces) using a plane wave cutoff of
557 eV (313 eV), where the cutoff employed for atomic forces is
12.5% higher than the largest reccommended PAW cutoff energy for
the mentioned chemical species. Here, the difference between the
cutoff energies is due to the slow (fast) convergence of stress tensor
(total energy) as a function of the number of used plane waves.
The integration of the Brillouin zone was performed employing a
k-mesh of 5 x5 x5 for the InP bulk optimization and twice
for electronic properties. For these calculations, we used a self-
consistent electronic convergence criterium of 10° eV, where the
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equilibrium geometries were reached when the atomic forces on
every atom were smaller than 0.01 eV A~1,

To better understand the effects of the electronic excitation in
the InP and its electronic occupations p;, discretized in energy
levels &, we considered that fermionic excitations to the conduction
band (CB) are only due to the increase in the electronic tempera-
ture T, where the electronic occupation obey the Fermi-Dirac
statistics within the DFT scheme p; = [exp(?—l— 1)}71,58 where
0 =KgT,, Kp is the Boltzmann constant and u is the chemical
potential provided by the atomic species in the periodic calculation.
The convenient variation of the electronic temperature induces
electron density rearrangements in the system, and then new
atomic positions can be obtained.

The electron density redistributions and charge transfer
processes as a function of T, are investigated by using the quantum
theory of atoms in molecules (QTAIM)” %0 and the electron localiza-
tion function (ELF).”’~ The calculation of the vibrational lattice
modes was performed through the phonon frequencies.”*™" The
force constants were calculated within the frozen phonons approach
as implemented in the Phonopy package,”**” where the k-mesh used
was 10 x 10 x 10. The vibrational frequencies were obtained within
the harmonic approximation by calculating the numerical second
derivatives of the potential energy using the scheme implemented in
the Phonopy package.

The stress tensor was also investigated within the scope of
Hook’s law.”’ In the particular case of InP, with a zinc blend bulk
phase, the calculation of the elastic properties is reduced to only
three nonequivalent elastic constants C;;, Cy44, and Cy,. Then, the
bulk modulus can be obtained as By = 1/3(C;;+2C)2) and the shear
modulus as Sy = 1/2(Cy; — Cy3).”""” These calculations allow us to
assess the effect of strain and the change of the specific heat
induced by the laser irradiation. In order to obtain a better descrip-
tion of the elastic constants for the PBE functional, we employed
the cutoff energy multiplied by a factor 2.5, namely, 696 eV. For
those calculations, the finite differences allowed the calculation of
the Hessian matrix, where we used the atomic step size of 0.010 A,
which is smaller than the one recommended by VASP package.
Molecular dynamics simulations were also performed based on the
effective interaction potential proposed by Branicio et al.”> A system
with 64 000 particles was simulated in the NPT ensemble (constant
number of particles, pressure, and temperature) for temperatures
ranging from 10 to 1500 K. The phonon vibrational density of states
(VDOS) was obtained by the Fourier Transform of the velocity
autocorrelation function as a function of temperature. The softening
due to the increase in temperature of the VDOS was then compared
with the results obtained from DFT calculations. More details can
be found in the supplementary material.

lll. RESULTS AND DISCUSSION

To understand the effects of the laser irradiation on the pris-
tine InP crystal, first, analysis of the variation in the lattice parame-
ter, In-P bond, bulk modulus, and shear modulus is presented.
Second, we will analyze the behavior of the electronic properties by
calculating the charge redistribution of In and P atoms, electronic
density of states, dielectric function, and the electron localization
function (ELF). In addition, the band structure and the electronic
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occupations as a function of the electronic temperature were
analyzed, providing an elucidative study of the electronic levels’
positions. A comprehensive study of the vibrational modes and
structure stability through the phonons is presented as well. Finally,
molecular dynamics simulations have been performed to elucidate
the thermal effects associated with the laser irradiation.

A. Structural properties

The laser irradiation provides high energy doses to the
material conducting eventually to significant structural distortions
and formation of defects. We initiate these studies by searching
the optimal InP structure as T, increases. The evolution of the opti-
mized lattice constant a; and In-P distance is shown in Fig. 1.
Analysis of these results shows that, for small electronic tempera-
tures, the equilibrium lattice constant is ag = 5.96 A, which agrees
with the experimental value of ay = 5.87 A. The value of ay, as well
as for the In-P distances, shows a smooth increase as T. grows.
In particular, the effects of the electronic temperature ranging
0-1.5eV on the InP distances and lattice parameters are negligible
compared to T, higher than 1.5 V.

A deeper understanding of the effects of the laser irradiation
on the geometry can be elucidated by calculating the elastic con-
stants, bulk, and shear modulus, as presented in Fig. 2. For small
electronic temperature calculations, such as T, = 0-0.1eV, the
obtained theoretical predictions (experimental measurements,
reported in Refs. 74 and 75), are C;; = 87.48 GPa (C;; = 101.00
GPa), C12 = 46.11 GPa (Cu = 56.00 GPa), and C44 = 41.60 GPa
(C44 = 46.00 GPa). This disagreement can be attributed to the fail-
ures of the PBE functional. An analysis of the results indicates that,
for lower T, = 0-0.01 eV, small perturbations in the values of the
elastic constants are sensed. By increasing the electronic tempera-
ture, we note a strong decrease in the elastic constants, inducing
changes on the internal strains. Thus, the three Born stability
criteria for the cubic system begin to not be met: C;; — Cy; > 0;
Ci1 +2C1 > 0; Cyq > 0”7 This behavior indicates that the
atoms are moving away from the ideal positions, increasing the
interatomic distances, which is in agreement with the results pre-
sented in Fig. 2.
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FIG. 1. Values of the calculated lattice parameter ap and the In-P distance as
a function of the electronic temperature, T.
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FIG. 2. Calculated elastic constants (a) C11 and Cy4, (b) Cq2, and bulk and
shear modulus (c) as a function of Te.

B. Electronic properties

InP is a nonmagnetic semiconductor, with a direct gap in the
I'-point. At T. within the range of 0-1.0eV, we note that the
valence band (VB) maximum is triply degenerate, in contrast with
the nondegenerate empty state in the conduction band (CB)
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minimum. We also find that the occupancy of the energy levels
and Fermi energy for the interval between T. = 0-0.1 eV does not
present significant changes except for a minor variation on the
positions of some energy levels (see the band structure calculation
in the supplementary material). By increasing T, the lowest levels
of the CB band gradually becomes occupied, where the CB
minimum is the preferential state for the occupation of the excited
electrons. For T, = 0.5¢eV, the Fermi energy is higher than the VB
maximum energy for small electronic temperatures. Moreover, for
higher electronic temperatures, such as T.=2.5eV, the VB
maximum and CB minimum are triply degenerate, where CB is
partially filled. Furthermore, a thorough analysis of energy levels
indicated that the excited electrons in the CB originated from the
higher levels of the VB as T. increases, and, then, more electrons
are located in the CB and can be excited from inner levels in the
VB. The electronic density of states projected on the different
atomic orbitals (s, p, and d) at Te = 0.01 eV (see the supplementary
material) shows that both p states of In and P atoms are the main
components of the Fermi level and have the larger contribution
to the VB.

The increase of T. provides changes in the energy levels
positions and, as a consequence, new electronic transitions can be
triggered. Thus, the electronic charge transfer occurs from P to In
atoms, and an analysis of the corresponding orbitals indicates that
this electronic flow takes place between the P and In p-orbitals.
In order to elucidate this process, we irradiated an InP sample
using a femtosecond laser and compared with the pristine material.
We observed the formation of metallic In, proving the charge
transfer between atoms and providing the ripple of the material
until metallic In atoms are placed at the edge of the sample, as
depicted in Fig. 3. In addition, the atomic displacements from
equilibrium positions lead to new chemical environments involv-
ing electron density rearrangements in the system. Given the fact
that P atoms have higher electronegativity than In atoms, electron
density tends to accumulate near the P atoms providing an
anionic character. This fact can be visualized in the ELF map
reported in the supplementary material.

The effect of T. changes on the electron density distribution
was evaluated by calculating the electronic charge enclosed within
the Bader atomic basins for the two (In and P) atom types. The
effective Bader charge (Q%) is calculated as Q% = Zy, — QB2
where the Z,, are the number of valence electrons and Q%" is the

FIG. 3. Transmission electron micros-
copy (TEM) images. The InP pristine
material is shown (a) before the laser
irradiation and (b) after electronic exci-
tation by laser action, where the pres-
ence of In is obtained.
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FIG. 4. Calculated values of the effective Bader charges as a function of Te.

Bader charge. The calculated effective Bader charges for both atoms
are represented in Fig. 4. The results show how the increase of T,
affects the atomic charge of both atoms. In fact, as rising T, signifi-
cant changes in the effective Bader charges are observed. In the
range 0-1.0eV for Te, the atomic charges oscillate between 0.37 e
and 0.23 e (—0.37 e and —0.23 ¢) for In (P) atoms, whereas in the
range of T, 1.0-4.0 eV, these values oscillate between 0.33 e and
0.15e (—0.37 e and —0.23 ¢). We clearly note a tendency of the In
atoms to assume the metallic character, similarly to that effect
observed when the material is highly dosed with electrons irradi-
ated by transmission electron microscopy (TEM) beams.”” We have
also investigated the laser effects on the dielectric function at
different electronic temperatures for InP (see the supplementary
material). The most significant differences are observed at the
highest temperatures when the material experience profound trans-
formations as discussed previously and the optical properties also
reflect that fact.

C. Phonon vibrational frequencies and lattice
temperature effects

To characterize the lattice vibrations induced by the laser
incidence, we compare DFT calculations and classical molecular
dynamics simulations in order to study the phonons and the
specific heat of the material. First of all, we analyze the phonon
frequencies at different electronic temperatures. Figure 5(a) shows
the phonon dispersion of InP calculated at normal conditions
(low electronic temperatures), which is in agreement with the
experimental measurements.”*™*’ As already reported in the liter-
ature, the optical branches are quite flat because of the large mass
difference between In and P atoms. This fact also results in the
observation that acoustical and optical phonons are separated by
a gap of about 5 THz. Moreover, the transverse optical (TO) and
longitudinal optical (LO) modes at the I'-point were chosen and
compared with experimental and other theoretical values from
the literature at normal conditions (see the supplementary material).
Our estimated values are well below the experimental values, because
it is known that the PBE functional underestimates drastically the
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FIG. 5. (a) InP phonon band structure. The transverse acoustic (TA) and longi-
tudinal acoustic (LA) modes are represented in red, and the transverse optical
(TO) and longitudinal optical (LO) frequencies are represented in blue.
Vibrational density of states (VDOS) as a function of frequency (in THz) at differ-
ent values of (b) Te and (c) T,

phonon frequencies. However, our aim here is to analyze the effect
of the electronic excitations on the phonon frequencies to identify
structural modifications due to the laser effect. It can also be seen
that the vibrational density of states (VDOS) distribution is shifted
when compared to the low T, regime [Fig. 5(b)]. This behavior is a
consequence of the local lattice heating due to the laser irradiation.
Thus, as T, increases, the electronic excitations rise the electron
repulsions forcing atoms to move away from their original positions,
as depicted also by the InP distances in Fig. 1, and consequently
leading to lattice heating. Additionally, the effects of the lattice
heating on the VDOS have been simulated using classical MD simu-
lations and represented in Fig. 5(c). Thus, at 300 K, the VDOS corre-
sponding to the optical modes (higher frequencies) is quite similar
to the experimental one, indicating that the vibrational structure of
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the InP is well represented by the force field. When the system is
heated to 1500 K, the phonon softening is observed and the dis-
tribution is shifted to lower frequencies. In addition, the equiva-
lence between the DFT and MD simulations is provided in the
supplementary material as a function of the electronic and lattice
temperatures for the InP lattice parameter.

We also calculated the LO and TO vibrational phonon modes
at the I'-point as a function of T, by using the DFT PBE exchange
correlation functional, depicted in Fig. 6(a), where the increase in
the electronic temperature decreases the LO and TO vibrational
InP frequencies. In fact, it can be seen that at low electronic tem-
peratures (lower than 1eV), there are negligible changes for the
optical frequencies, compatible with a regime of lattice stability. For
T. > 1.0eV, the structural modifications become stronger, which
was previously elucidated, and the elastic constants calculations are
depicted in Fig. 2.

Furthermore, as the electronic excitation can contribute to the
heat transfer and thermal expansion of the material, we compared
the specific heat of InP calculated from integrating the DFT
phonon density of states for Te = 0.01 eV and classical MD simula-
tions. These results are plotted in Fig. 6(b) and show that both
methodologies are in good agreement to represent the effect of the
lattice heating on the thermal properties.
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FIG. 6. (a) LO and TO vibrational phonon modes, calculated at the DFT level
as a function of Te. (b) Values of the specific heat as a function of the lattice
temperature obtained by using DFT calculations and MD simulations.
Experimental values are included for comparison.
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IV. CONCLUSIONS

With external perturbations, such as laser irradiation, the
nature of a material changes from its ground state and exhibits
interesting properties. However, the response of solids to high-
power laser irradiation is not well understood. This work sought
some understanding of the effects on InP induced by laser irradia-
tion. The laser excitations were simulated by performing density
functional theory calculations within the electronic temperature
approach, which allows us to analyze the structural and electronic
properties at the atomic level.

The laser irradiation of InP crystals was selected as an
example. Increasing the value of T, in the bulk structure results in
an increase in both the lattice parameter, and In-P distance,
which changes the chemical environment of the InP bulk phase.
The direct consequence of the lattice parameter increase is the
decrease in the elastic constants, bulk, and shear modulus of the
material. The Bader charge analysis shows that the In atoms
attract more electrons than P atoms to fill their empty subshells
and become neutral at larger values of T.. In fact, this process
induces changes in the ELF around In atoms and along In-P con-
tacts. We found that small values of T, ensure that states in the
valence band are occupied and the forbidden region of the semi-
conductor is well defined.

An increment of T, values enhances the electron excitation
process from the valence to the conduction bands. Larger values of
electronic temperatures change the symmetry of the energy levels,
which are triply degenerate in the valence band for small values of
Te. Another consequence of the electron excitations is the significa-
tive changes in the dielectric function of the material, thereby
changing the optical response of the irradiated material. These
structural and electronic modifications contribute to new vibra-
tional phonon mode frequencies, thus affecting the heat capacity of
the material.

A comparison of the results obtained by the density functional
theory and molecular dynamics simulations shows good agreement,
pointing out that the laser irradiation provokes a local thermaliza-
tion effect. The present results are capable to explain the formation
of metallic In when InP is irradiated by laser as it is observed in
the transmission electron microscopy images.

SUPPLEMENTARY MATERIAL

See the supplementary material for structural properties; dielec-
tric function, density of states, and band structure; electron localiza-
tion function—ELF; electronic and lattice temperature—lattice
parameter; electronic temperature and vibrational phonon modes;
and experimental approach.
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