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Abstract: Converters are the key for the increasing development of renewable energy generation but their dynamic 
interaction with the grid has an important impact on stability. Oscillatory instabilities in different grid-connected converter 
systems at several frequency ranges are reported. In particular, sub and supersynchronous oscillatory instabilities in AC 
power systems with type-3 and type-4 wind turbine generators were recently registered at several wind farm areas. A 
number of works based on eigenvalue analysis and frequency domain approaches are carried out to analyze this new 
stability issue and more research is going on to analyze in detail the electric and control parameters that may affect this 
phenomenon. This paper contributes analyzing in detail the influence of system parameters on the subsynchronous 
oscillations in AC power systems with type-4 wind turbine generators. This study is based on a new approach for 
subsynchronous stability assessment which could also be used for analyzing other types of subsynchronous oscillations (e.g., 
subsynchronous control interactions between doubly-fed induction generators and series-compensated networks) as well 
as supersynchronous oscillations. A representative example of weak AC grids with type-4 wind turbine generators is used 
to illustrate the contributions of the paper. Results are validated with PSCAD/EMTDC time-domain simulations. 
 

Nomenclature 

AC Alternating current 

CC Current controller 

DC Direct current 

DFIG Doubly-fed induction generator 

DFT Direct Fourier Transform 

DVC DC-link voltage controller 

EMTDC Electromagnetic transient design and control 

GNC General Nyquist criterion 

HVDC High voltage direct current 

PI  Proportional-integral 

PLL Phase-locked loop 

PMSG Permanent magnet synchronous generator 

PSCAD Power Systems Computer Aided Design 

PSS Power System Stabilizers 

SSO Subsynchronous oscillation 

WPP Wind power plant 

WTG Wind turbine generator 

VSC Voltage source converter 

SCR Short-circuit ratio 

1. Introduction 

Renewables are currently become a clean source of 

energy in power systems. In particular, the presence of solar 

and wind power plants (WPPs) is increasing all over the 

world [1], [2]. These plants are usually aggregated in large 

solar and wind energy areas far away from demand centers. 

High-voltage DC (HVDC) is currently the rising 

transmission system for delivering all power of these solar 

and wind energy areas through long-distance lines while AC 

grids are commonly used to interconnect the different 

renewable energy plants (and also power and thermal power 

plants) inside these areas [1], [3]. Wind turbine generators 

(WTGs) based on partial-scale power converters (type-3 

WTGs) [4] − [6] and fully-rated power converters (type-4 

WTGs) [7] are mainly used in WPPs. Power electronic 

converters such as voltage source converters (VSCs) are 

used to connect WTGs with power systems playing an 

important role for the development of renewable energy 

generation. However, they also bring new challenges and 

problems due to their differences with traditional power 

system components such as synchronous generators, 

transformers and lines [1]. One of the most important 

problems is the interactions between the WTG control and 

grids which may lead to oscillatory instabilities. These 

instabilities are classified in two categories depending on 

their frequency range [1], [8]: (i) Harmonic oscillations 

which approximately range from 0.1 to 2 kHz. (ii) Near-

synchronous oscillations which can be divided in 

subsynchronous oscillations (SSOs) and super-synchronous 

oscillations approximately ranging from 15 to 45 Hz and 55 

to 100 Hz, respectively. Harmonic oscillatory instabilities 

are well-documented and studied phenomena in several 

VSC applications such as HVDC links [9], wind power 

plants [10] and ac traction systems [11]. Subsynchronous [1], 

[3], [6], [12], [13] and supersynchronous [1] oscillatory 

instabilities are new reported phenomena in power systems 

which are currently being studied. In particular, SSOs 

caused by the interactions between doubly-fed induction 

generators (DFIGs) and fixed series compensators were 

observed in Texas (USA) [14] and Guyuan area, Hebei 

Province (North-China) [6], [12]. Currently, 
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subsynchronous [1], [3], [13] and supersynchronous [1] 

oscillations caused by the interactions between type-4 

WTGs and AC weak grids were observed in Hami area, 

Xinjiang province (North-China). In traditional power 

systems, damping of resistive loads is sufficient to prevent 

these instabilities but they may arise in systems with large 

penetration of grid-connected VSCs, where resistive and 

rotating mass loads are limited. It is common for low-

frequency electro-mechanical oscillations to appear due to 

low damping. These oscillations are usually avoided by 

means of power system stabilizers (PSSs) [15] − [17]. Such 

controllers are also applied in grid-connected VSCs to 

introduce active damping [18], [19]. 

There are several studies about SSOs between type-4 

WTGs and AC grids [3], [13], [20] − [24]. Preliminary 

studies in [23], [24] point out that there is no impact of type-

4 WTGs on SSOs. Nevertheless, more recent studies in 

[20] − [22] focused on frequency response of VSC input 

admittance and they show that VSCs may introduce 

negative damping in the grid at near-synchronous 

frequencies that could cause SSOs. This is confirmed by 

actual observations newly presented in [3], [13]. Traditional 

stability criteria such as state space eigenvalue analysis and 

generalized Nyquist criterion (GNC) are commonly used for 

examining this phenomenon [3], [6], [8], [9], [20] − [22], 

[25], [26]. State space eigenvalue analysis requires detailed 

information for all elements in the system which is not 

always completely available. On the other hand, frequency 

domain methods as GNC can be applied by using system 

measurements if the parameter information is not available 

[13], [26]. The GNC only provides qualitative results 

because it focuses on the matrix transfer function of the 

entire system which does not allow investigating separately 

the contribution of the grid and VSCs to the closed-loop 

stability [3]. Also, sequence impedance model based 

analysis is recently used to assess the contribution of the 

system parameters to SSOs [1], but it may provide 

inaccurate stability predictions [27]. A criterion based on the 

impedance matrix determinant characteristics of the system 

impedance matrix is recently proposed in [3] to overcome 

the drawbacks of the previous approaches. However, this 

criterion focuses on the impedance matrix determinant of 

the entire system which limits to investigate separately the 

influence of the grid and VSCs on stability.  

This paper investigates the influence of system 

parameters on SSOs between type-4 WTGs and AC grids by 

using a new developed approach based on the impedance 

matrix determinant-based stability criterion in [3]. This 

approach shows the contribution that grid and VSC have on 

stability. A representative system of weak grids with type-4 

WTGs is analyzed to show the contributions of the paper. 

Several conclusions about the influence that converter 

control and grid parameters have on stability are reported 

analyzing the interaction of the grid and VSC. Results are 

validated with time-domain simulations in PSCAD/EMTDC. 

The rest of the paper is organized as follows: 

Section 2 presents grid-connected VSC modelling for 

stability studies. Section 3 reviews the criteria for SSO 

analysis of grid-connected VSCs. Section 4 deals with the 

study of the new alternative approach to assessing SSOs. A 

PSCAD/EMTDC application is presented in Section 5 to 

validate the study. Conclusions are drawn in Section 6. 

2. Grid-connected VSC modelling  

The influence of type-4 WTGs on subsynchronous 

instabilities mainly depends on the dynamics of the VSCs 

connecting WTG with the grid. Such instabilities can be 

investigated in frequency-domain using the dq-frame 

impedance-based representation of the grid-connected VSCs 

in Fig. 1 [3], [20] − [22]. Capacitor filter at VSC terminal is 

omitted because it does not affect significantly SSOs. 

 

2.1. VSC model 
 

According to Fig. 1, the VSC control is represented 

with the inner current controller (CC) and the outer DC-link 

voltage controller (DVC) as well as the phase-locked loop 

(PLL). The DVC generates the d-component of the CC 

reference current idref and the PLL drives the q-component of 

the voltage v in the converter dq-frame to zero providing the 

transformation angle . The q-component of the CC 

reference current iqref is set to zero by assuming that VSC is 

operating at unity power factor which is common in normal 

operation conditions [3], [20], [22]. 

The small-signal model of the VSC is derived and 

well-documented in [20] − [22] as 
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where 

 

- The variables v = [vd vq]T and i = [id iq]T are the real 
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Fig. 1. Grid-connected VSC system model 
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space vectors of the VSC input voltage and current in 

dq-frame. 

- The transfer functions gcc(s) and ycc(s) characterize the 

CC dynamics, 

 

2

2
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( ) ,
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 (2) 

 

where R and L are the resistance and inductance of the 

VSC filter, kp = c·L and ki = c·R are the gains of the 

proportional-integral (PI) CC Fpi(s) = kp + ki/s, 

c  0.2·(2fsw) is the bandwidth of the inner current 

control loop, fsw is the VSC switching frequency and 

f  0.1·c  is the bandwidth of the feed-forward voltage 

low-pass filter Hf(s) = f /(s + f) [22]. 

- The transfer function Gdc(s) characterizes the dynamics 

of the reference current idref due to change in the VSC 

input voltage v by considering the outer loop of the DVC, 
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where C is the DC capacitance and Fdc(s) = kp-dc + ki-dc/s 

is the PI DVC, kp-dc = dcC and dc   0.1·c is the 

bandwidth of the outer DC-link voltage control loop [20], 

[23]. 

- The transfer function GPLL(s) characterizes the dynamics 

of the PLL, 

 

0

( )
( ) ,

( )

PLL
PLL

PLL

F s
G s

s v F s
=

+
 (4) 

 

where FPLL(s) = kp-PLL + ki-PLL/s is the PI controller of the 

PLL, kp-PLL = p/v0 and p   0.1·c is the bandwidth of 

the PLL control loop [22]. 

- The variables v0 and P0 are the steady-state operation 

points of VSC input voltage and DC output power (see 

Fig. 1). 

- The off-diagonal elements of Zvsc(s) are zero because 

reactive power or AC voltage controls are not considered. 

This is a usual procedure for approximately analyzing 

the effects of CC, DVC and PLL on stability [3], 

[20] − [22]. 

 

2.2. Grid model 
 

The dynamic equations of the grid in dq-frame with 

the VSC input voltage v and current i are 

 

𝑣𝑔 = [
𝑣𝑔𝑑
𝑣𝑔𝑞
] = [

𝑍𝑔,𝑑𝑑(𝑠) 𝑍𝑔,𝑑𝑞(𝑠)

𝑍𝑔,𝑞𝑑(𝑠) 𝑍𝑔,𝑞𝑞(𝑠)
]

⏟            
𝑍𝑔𝑟𝑖𝑑(𝑠)

𝑖 + 𝑣. (5) 

 

For symmetric systems, the relations Zg, dd(s) = Zg, qq(s) 

and Zg, dq(s) = −Zg, qd(s) hold. In particular, transformers and 

medium and high voltage lines can be modeled as R-L 

circuits at subsynchronous frequencies (equivalent shunt 

capacitors are neglected in line models) and the impedance 

matrix of these components is [25] 
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 (6) 

 

where 1 = 2f1 (f1 = 50 Hz) is the fundamental angular 

frequency of the grid. The impedance matrix of the grid 

commonly presents the same structure as Zcomp(s) [3], [25]. 

 

2.3. Grid-connected VSC model 
 

The impedance-based equivalent circuit of the grid-

connected VSC system is obtained by replacing the WTG in 

Fig. 1 with Zvsc(s) (1) and characterizing the grid as the 

voltage source vg in series with the equivalent impedance 

matrix Zgrid(s) (5). The small-signal dynamics of the grid-

connected VSC system can be analyzed from the expression: 

 

𝛥𝑖 = (𝑍𝑣𝑠𝑐(𝑠) + 𝑍𝑔𝑟𝑖𝑑(𝑠))⏟            
𝑌𝑠𝑦𝑠(𝑠)=𝑍𝑠𝑦𝑠

−1 (𝑠)

−1
𝛥𝑣 

= (1 + 𝑍𝑣𝑠𝑐
−1 (𝑠)𝑍𝑔𝑟𝑖𝑑(𝑠)⏟          

𝐿(𝑠)

)−1𝑍𝑣𝑠𝑐
−1 (𝑠)𝛥𝑣. (7) 

 

It must be highlighted that, although the off-diagonal 

elements of Zvsc(s) are zero, coupling between d- and q-axis 

components are identified on the grid-connected VSC 

impedance in (7) due to the grid impedance. 

3. Stability analysis of grid-connected VSC 
systems  

Near-synchronous oscillatory instabilities are mainly 

due to the outer control and grid synchronization loop 

(designed with lower bandwidths than the CC loop) 

[20] − [22], and they must be studied in frequency domain 

from the system matrix impedance modelling (7) due to the 

asymmetries introduced in the VSC model by these loops 

[25]. This makes difficult to analyze the contribution of the 

VSC and grid to the oscillations. In this case, stability of 

grid-connected VSC systems is usually assessed by either 

determining the poles of the closed-loop system Ysys(s) (i.e., 

the state-space eigenvalues of the system) or applying the 

GNC to the open-loop transfer matrix 

L(s) = Z−1
vsc(s)Zgrid(s) = Yvsc(s)Zgrid(s) [25]. The state space 

eigenvalue analysis is a useful tool to analyze the impact of 

system and control parameters on stability. However, this 

method requires detailed information for the physical and 

control parameters in the system and high-order dynamic 

models for large systems [13], [26]. The GNC extends the 

traditional Nyquist criterion to the Nyquist curves of the 

eigenvalues of L(s) [25], i.e. 
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Although GNC is commonly used, it only shows 

numerical results because it focuses on the open-loop 

transfer function of the entire system which does not allow 

investigating separately the contribution of the grid and 

VSCs to the closed-loop stability [3]. Sequence impedance 

analysis is also used to assess the contribution of the system 

parameters to SSOs from two independent single-input-

single-output systems [1], but this method may lead to 

inaccurate stability predictions because the coupling 

between the sequence components is neglected [24]. 

To address the issues of the above approaches, [3] 

proposes the impedance matrix determinant-based stability 

criterion based on the frequency domain representation of 

the determinant of Zsys(s), D(s) = det[Zsys(s)]. The admittance 

matrix in (7) can be expressed as 

 

1 1
( ) ( ) adj ( ) ,

( )
sys sys sysY s Z s Z s

D s

−  = =    (9) 

 

where adj[Zsys(s)] denotes the adjoint of Zsys(s). According to 

(9), the poles of the closed-loop system Ysys(s) can also be 

obtained from the zeros of D(s) [3]. Considering the 

difficulty to determine the zeros of D(s) in actual systems 

due to its high order, the impedance matrix determinant-

based stability criterion assesses the oscillatory stability of 

the poorly damped zeros of D(s) by analyzing its frequency 

domain plot [3]. If zo = o  jo are a pair of conjugate zeros 

of D(s), the frequency domain representation of D(s) can be 

expressed as follows [12], [13]: 

 
*( ) ( )( ) ( ),o oD j j z j z H j   = − −  (10) 

 

which can be approximated in a small neighbourhood of o 

as 
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), (11) 

 

by assuming that [H(j)]  o  Hr + jHx with Hr and Hx 

constant values. The zero-crossing frequency of the 

imaginary part of D(j)| is only analyzed in [3], [12], [13] 

by solving Dx() = 0. The present paper further analyses (11) 

and it determines the zero-crossing frequencies r and x of 

the real and imaginary parts of D(j)| by solving Dr() = 0 

and Dx() = 0, respectively, 
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where the feasible solutions correspond to positive zero-

crossing frequency values with the largest magnitude. 

The frequency of oscillation modes related to poorly 

damped zeros are obtained from the zero-crossing 

frequencies in (12). In case of poorly damped zeros, such 

zeros have |o| << |o|, which implies that r and x are very 

close and approximately match with the frequency of 

oscillatory modes, i.e. r  x  o. The zero-crossing 

frequency that best approximates the subsynchronous 

oscillation frequency o depends on the ratio between Hr 

and Hx: If Hr < Hx, o  x, otherwise o  r. Subsequently, 

the subsynchronous oscillation stability, characterized by the 

sign of o, is assessed from the real or imaginary part of 

D(j) depending on the ratio between Hr and Hx and 

considering the poorly damped zero assumption |o| << |o|: 

 

- If Hr < Hx, the real part of D(j) at x is approximated as 

 

( ) ,r x x oD k  −  (13) 

 

where kx is the slope of Dx() at x, i.e, 
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=  − 
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Therefore, the subsynchronous oscillation is stable (i.e., 

o < 0) when 

 

( ) 0 if 0 or ( ) 0 if 0.r x x r x xD k D k      (15) 

 

- If Hr > Hx, the imaginary part of D(j) at r is 

approximated as 

 

( ) ,x r r oD k   (16) 

 

where kr is the slope of Dr() at r, i.e, 

 

( )
2 .
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r
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k H

d  




 =

 
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Therefore, the subsynchronous oscillation is stable (i.e., 

o < 0) when 

 

( ) 0 if 0 or ( ) 0 if 0.x r r x r rD k D k      (18) 

 

According to the Appendix, it can be concluded that 

the result of the stability study does not depend on the ratio 

between Hr and Hx, i.e., both criteria (15) and (18) can be 

applied for stability assessment independently of the ratio 

between Hr and Hx. The real part zero-crossing frequency 

criterion (18) is a novel alternative to the imaginary part 

zero-crossing frequency criterion (15). 

The impedance matrix determinant-based stability 

criterion is a practical approach to address subsynchronous 

oscillation concerns because it allows easily quantifying the 

oscillatory stability by observing the frequency plots (real 

and imaginary parts) of the determinant of the system 

impedance matrix. However, the determinant only focuses 

on the frequency response of the entire system which does 

not allow investigating separately the contribution of the 

grid and VSC to the closed-loop stability. This limits the 

analysis of oscillations caused by particular impedances of 

the grid or filters connected to the system as well as VSC 
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control parameters. This drawback is avoided in next 

Section by analyzing the terms of the system impedance 

matrix Zsys(s). 

4. Alternative approach to assess SSOs  

According to (1) and (5), the frequency response of 

the system impedance matrix is obtained by setting s = j in 

(7) and can be expressed as follows 
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and the real and imaginary parts of its determinant can be 

written as 

 

𝐷(𝑗𝜔) = 𝑅𝑑𝑑𝑅𝑞𝑞 − 𝑋𝑑𝑑𝑋𝑞𝑞 − (𝑅𝑔,𝑑𝑞𝑅𝑔,𝑞𝑑 − 𝑋𝑔,𝑑𝑞𝑋𝑔,𝑞𝑑)⏟                              
𝐷𝑟(𝜔)

 

+𝑗(𝑅𝑑𝑑𝑋𝑞𝑞 + 𝑅𝑞𝑞𝑋𝑑𝑑 − (𝑅𝑔,𝑑𝑞𝑋𝑔,𝑞𝑑 + 𝑅𝑔,𝑞𝑑𝑋𝑔,𝑑𝑞)⏟                              
𝐷𝑥(𝜔)

), (20) 

 

where the resistances and reactances functions R() and X() 

are expressed as R and X to simplify the notation. 

Considering (20) and the stability criterion in [3] (see 

Section 3), the closed-loop stability can be assessed as 

follows, 

 

- If Hr < Hx, the subsynchronous oscillation is stable (15) 

if one of the following conditions are verified at x 

 

𝑅𝑑𝑑𝑅𝑞𝑞 − 𝑋𝑑𝑑𝑋𝑞𝑞⏞          

𝐷𝑟,𝑣𝑠𝑐(𝜔𝑥)

> 𝑅𝑔,𝑑𝑞𝑅𝑔,𝑞𝑑 − 𝑋𝑔,𝑑𝑞𝑋𝑔,𝑞𝑑⏞              

𝐷𝑟,𝑔𝑟𝑖𝑑(𝜔𝑥)

 (𝑘𝑥 > 0) 

𝑅𝑑𝑑𝑅𝑞𝑞 − 𝑋𝑑𝑑𝑋𝑞𝑞 < 𝑅𝑔,𝑑𝑞𝑅𝑔,𝑞𝑑 − 𝑋𝑔,𝑑𝑞𝑋𝑔,𝑞𝑑 (𝑘𝑥 < 0).

 (26) 

 

- If Hr > Hx, the subsynchronous oscillation is stable (18) 

if one of the following conditions are verified at r 

 

𝑅𝑑𝑑𝑋𝑞𝑞 + 𝑅𝑞𝑞𝑋𝑑𝑑⏞          

𝐷𝑥,𝑣𝑠𝑐(𝜔𝑟)

< 𝑅𝑔,𝑑𝑞𝑋𝑔,𝑞𝑑 + 𝑅𝑔,𝑞𝑑𝑋𝑔,𝑑𝑞⏞              

𝐷𝑥,𝑔𝑟𝑖𝑑(𝜔𝑟)

 (𝑘𝑟 > 0) 

𝑅𝑑𝑑𝑋𝑞𝑞 + 𝑅𝑞𝑞𝑋𝑑𝑑 > 𝑅𝑔,𝑑𝑞𝑋𝑔,𝑞𝑑 + 𝑅𝑔,𝑞𝑑𝑋𝑔,𝑑𝑞 (𝑘𝑟 < 0).

 (22) 

 

It must be noted that the right terms of the 

inequalities, Dr, grid(x) and Dx, grid(r), only depend on the 

grid and they are called as grid terms. On the other hand, the 

left terms, Dr, vsc(x) and Dx, vsc(r), are called as VSC terms 

because it is numerically verified that they are mainly 

affected by the VSC. This is because the contribution of the 

grid reactances at subsynchronous frequencies, 

Xg, dd = Xg, qq = Lg ( < 1), is smaller than the contribution 

of the grid reactances at synchronous frequency, 

Xg, dq = Xg, qd = Lg1 (see Section 5). Therefore, the 

contribution of the grid and VSC subsystems to the closed-

loop stability can be approximately analyzed from the 

comparison of the frequency response of the grid and VSC 

terms of the inequalities (21) or (22). 

Considering (6), the frequency response of 

transmission grids (Rg < Lg) at subsynchronous frequencies 

may usually be approximated as 

 

1 1

1 1

( )

,

grid

g g g g g

g g g g g

Z j

R jL L jL L

L R jL L jL



   

   



+ − −   
   

+      

 (23) 

 

and the inequalities (21) or (22) become, 

 

- If Hr < Hx, the subsynchronous oscillation is stable if one 

of the following conditions are verified at x 

 

𝑅𝑣,𝑑𝑑𝑅𝑣,𝑞𝑞 − (𝑋𝑣,𝑑𝑑 + 𝑋𝑔)(𝑋𝑣,𝑞𝑞 + 𝑋𝑔)⏞                        

𝐷𝑟,𝑣𝑠𝑐(𝜔𝑥)

> −𝑋𝑔1
2⏞  

𝐷𝑟,𝑔𝑟𝑖𝑑(𝜔𝑥)

(𝑘𝑥
> 0) 

𝑅𝑣,𝑑𝑑𝑅𝑣,𝑞𝑞 − (𝑋𝑣,𝑑𝑑 + 𝑋𝑔)(𝑋𝑣,𝑞𝑞 + 𝑋𝑔) < −𝑋𝑔1
2  (𝑘𝑥 < 0).

 (24) 

 

- If Hr > Hx, the subsynchronous oscillation is stable if one 

of the following conditions are verified at r 

 

𝑅𝑣,𝑑𝑑(𝑋𝑣,𝑞𝑞 + 𝑋𝑔) + 𝑅𝑣,𝑞𝑞(𝑋𝑣,𝑑𝑑 + 𝑋𝑔)⏞                        

𝐷𝑥,𝑣𝑠𝑐(𝜔𝑟)

< 0 (𝑘𝑟 > 0) 

𝑅𝑣,𝑑𝑑(𝑋𝑣,𝑞𝑞 + 𝑋𝑔) + 𝑅𝑣,𝑞𝑞(𝑋𝑣,𝑑𝑑 + 𝑋𝑔) > 0 (𝑘𝑟 < 0), (25) 

 

where Xg = Lg and Xg1 = Lg1. 

5. Application 

An example of WPPs far away from consumptions as 

well as connected through weak AC grids proposed in [3] is 

analyzed. The example has a WPP with N = 700 identical 

PMSG type-4 WTGs of rated power PWTG, rated = 1.5 MW 

connected through a local and a long-distance transmissions 

to the main grid (see Fig. 2). It is assumed that the WTGs 

operate under a similar operating point supplying an output 

active power PWTG  − PO (see Fig. 1) and the possible 

turbine generators connected to the main grid are shut down, 

which are actual conditions of the detected SSOs [3]. The 

data of the electrical installation and the WTG VSCs are 

shown in [3] and Table 1, respectively. The electrical 

parameters of the AC grid in [3] are expressed in pu with 

SB = 1500 MVA. WTGs operate with a low output active 

power PWTG and the AC grid has a low value of the short-

circuit ratio SCR equal to 1.34,  

 

1 2 2 3
,rated

,B
L L T T

WTG

S x
SCR x x x x x

N P


= = + + +


 (26) 

 

which corresponds to the SSO scenario observed in the 

actual installation in [3]. The transfer function of the system 

impedance matrix (7) can be derived from (1) and (6) as, 
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, 1

1 ,

1
1 2 1 1

1

( ) ( )
( )

( ) ( )

( ) ,

v dd g g

sys
g v qq g

T
g L L g g

Z s N Z s X
Z s

X Z s N Z s

xs
Z s r r X X x

N


+ − 
=  

+  

= + + = +

 (27) 

 

and the impedance matrix (19) is obtained by setting s = j. 

 Starting from an unstable reference case 

corresponding to the data in [3] and Table 1, the influence of 

system parameters on SSOs is analyzed in several cases to 

improve system stability. These parameters are classified in 

electrical (e.g., grid components) and control parameters. 

The latter is divided in the CC parameters and outer loop 

(DVC and PLL) control parameters because they have 

different time constants, and therefore their influence on 

stability may be different. Stability is assessed from the 

poles of the closed-loop system, the impedance matrix 

determinant-based stability criterion [3], the alternative 

approach proposed in the paper (Section 4) and the GNC (8). 

The study is also validated from PSCAD/EMTDC time-

domain simulations.   

 

5.1. Reference case (data in [3] and Table 1) 
 

The system has a pair of poorly damped conjugate 

poles, zo = 11.8  j(2·17.8), with their frequencies located 

in the subsynchronous range and positive real parts meaning 

that the SSOs at these frequencies are unstable. System 

instability is analyzed in Fig. 3. The impedance matrix 

determinant-based stability criterion (15) predicts the 

instability because, in the neighborhood of the previous 

poorly damped poles, the slope of Dx(x) is negative, kx < 0, 

and Dr(x) is positive, Dr(x) > 0, at the zero-crossing 

frequency of Dx() fx = 19.3 Hz (see in Fig. 3(a)). Note that 

the above frequency approximates the subsynchronous 

oscillation frequency of the unstable poles. According to 

Fig. 3(b), the alternative approach in Section 4 also confirms 

the instability due to Dr, vsc(x) > Dr, grid(x) = −Xg1
2 (24) at 

the zero-crossing frequencies of Dx(). This approach shows 

that the contribution of the VSC, represented by Dr, vsc(x), 

does not compensate the large contribution of a weak grid, 

represented by Dr, grid(x). The GNC verifies the instability 

results because the curve of the eigenvalue 2 (8) encircles 

the −1 point in clockwise direction (Fig. 3(c)). It is observed 

that the paper approach shows the individual contribution 

that the grid and the VSC have on the stability, while this is 

not possible by the impedance matrix determinant-based 

stability criterion and GNC. The system dynamics are 

investigated in Fig. 3(d) from PSCAD/EMTDC time-

domain simulations in order to validate the previous stability 

results. The WTG output active power PWTG is raised from 

zero to the value of the reference case (PWTG = 0.1 pu in 

Table 1) at 1 s. Note that the VSC input voltage (vd and vq) 

becomes unstable after the step rise of the WTG output 

active power. Discrete-Fourier-transformation (DFT) of the 

VSC input voltage is also shown in Fig. 3(d) to illustrate the 

frequency of subsynchronous ( 17 Hz) oscillations which 

approximately matches with the predictions of the stability 

study. These SSOs in the dq-frame are reflected in the phase 

voltage and current magnitudes as subsynchronous ( 50 –

 17 = 33 Hz) and supersynchronous ( 50 + 17 = 67 Hz) 

oscillations around the fundamental frequency which 

produce active power subsynchronous fluctuations at 17 Hz 

[1], [3]. It is worth noting that this oscillatory instability is a 

new phenomenon different from the classical voltage 

 

rL2 xL2 xL3 rL1 xL1 

T3 (xT3) 

220/110 kV 

T2 (xT2) 

110/35 kV 
T1 (xT1) 

35/0.6 kV Turbine Generators 

N = 700 

Local transmission Long-dist. transm. Grid WPP 

1.5 MW 

WTGs 

PWTG 

 

Fig. 2. Long-distance transmission AC grid with PMSG 

WPPs. 

Table 1 1.5 MW WTG Parameters (50-Hz base frequency) 

[20], [21], [22] 
    

 Parameters Values  

VSC input voltage vo (pu) 1 

WTG output active power PWTG (pu) 0.1 

Output L-filter R, L (pu) 0.015, 0.15 

DC Capacitance C (pu) 13 

Current controller (CC) 

(kp = cL      ki = cR) 

fsw (pu) 40 

c, ref (pu) 3.4 

f, ref (pu) 0.34 

DC-link voltage controller (DVC)  

(kp-dc = dcC    ki-dc = kp-dc/25) 
dc, ref (pu) 0.68 

Phase-locked loop (PLL) 

(kp-PLL = p/vo      ki-PLL =  kp-PLL/10) 
p, ref (pu) 0.25 
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Fig. 3. Stability study of the reference case (data in [3] and Table 1) 

(a) Impedance matrix determinant-based stability criterion, (b) Alternative approach, (c) Generalized Nyquist criterion, (d) 

PSCAD/EMTDC time-domain simulations. 
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instability due to voltage drops in weak grids [26]. 

 

5.2. Influence of electrical and control parameters  
 

 A sensitivity analysis of the impact of the main 

electrical and control parameters on stability is performed 

from the proposed approach in Fig. 4. These parameters are 

the short-circuit ratio, SCR, and control bandwidths (i.e., the 

bandwidths of the feed-forward voltage low-pass filter, f, 

inner current control loop, c, outer DC-link voltage control 

loop, dc, and PLL control loop, p). The Dr, grid(x) and 

Dr, vsc(x) values at the zero-crossing frequencies of Dx() 

are compared for a typical range of the above parameters in 

Fig. 4. According to Fig. 3, kx < 0 for the whole study range, 

and therefore the system is stable (grey area) when 

Dr, vsc(x) < Dr, grid(x) (24). The sensitivity analysis results 

are verified with the root locus plot of the poorly damped 

poles in Fig. 5. Note that the poles go from the RHS to the 

LHS of the Nyquist plot for the parameter values labelled in 

the plot, meaning that the system becomes stable. These 

values match with the values obtained in Fig. 4. According 

to the above study, Fig. 6 shows five cases where the 

stability is achieved by increasing or decreasing the values 

of the previous parameters up to SCR = 2.25 (Case #1), 

f = 5f, ref (Case #2), c = 2c, ref (Case #3), dc = 3dc, ref 

(Case #4) and p = 0.2p, ref (Case #5). The impedance 

matrix determinant-based stability criterion (15) predicts the 

stability of the above cases because, in the neighborhood of 

the poorly damped poles, kx < 0 and Dr(x) < 0 at the zero-

crossing frequencies of Dx(). The alternative approach in 

Section 4 also confirms the stability because 

Dr vsc(x) < Dr grid(x) = −Xg1
2 (24) at the zero-crossing 

frequencies of Dx(). The GNC verifies the results on 

instability because the curves of the eigenvalues 1 and 2 (8) 

do not encircle the −1 point in any case. Note that, unlike 

impedance matrix determinant-based stability criterion and 

the GNC, the proposed approach shows that the stability is 

achieved because the VSC term Dr, vsc(x) compensates the 

weak grid term Dr, grid(x). PSCAD/EMTDC time-domain 

simulations validate the above results. It is observed that the 

system becomes unstable when the WTG output active 

power PWTG is raised to 0.1 pu (reference case) at 0.1 s and 

it goes out of instability if the parameters SCR, f, c, dc 

and p are stepped to 2.25 (Case #1), 5f, ref (Case #2), 

2c, ref (Case #3), 3dc, ref (Case #4) and 0.2p, ref at 0.5 s.  

 
5.3. Understanding the influence of parameters on 

stability  
 

The influence of the different system parameters on 

SSOs cannot be clearly analyzed with the traditional 

frequency domain stability methods [3], [6], [9], [20] − [22] 

and the impedance matrix determinant-based stability 

criterion [3]. On the other way, the alternative approach in 

Section 4 allows clearly analyzing the contribution of VSCs 

and grid to stability because it evaluates SSOs from the 

comparison between the VSC (Dr, vsc or Dx, vsc) and grid 

(Dr, grid or Dx, grid) terms. This provides a criterion for 

understanding the influence of grid and VSCs on stability.   

Analyzing the alternative approach plots in Fig. 3 and 

Fig. 6, the following conclusions can be obtained: 

 

- Reference case: The grid term Dr, grid is smaller than the 

VSC term Dr, vsc, (24) due to the high value of the grid 

reactances (i.e., the low value of the SCR) and the 

system is unstable. This means that SSOs caused by any 

electrical event are increased by the high reactance value 

of weak grids and VSC control is not able to mitigate 

these oscillations becoming the system unstable. 

- Influence of electrical parameters (Case #1): Increase of 

short-circuit ratio (26) by reducing the transmission line 

reactance x or increasing the number N of WTGs 

mainly reduces the off diagonal term Xg1 in (27) at 

subsynchornous frequencies. This may lead the grid term 

Dr, grid (24) above VSC term Dr, vsc at resonance 

frequency and system turns stable (i.e., VSC control can 

mitigate possible increase of SSOs due to grid 
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Fig. 4. Sensitivity analysis of system parameters  
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Fig. 5. Influence of system parameters on root locus of the poorly damped poles (conjugate poles are not plotted for clarity)  

(a) SCR, (b) f, c, dc and p. 
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reactances). Large values of short-circuit ratio could also 

be obtained by reducing the number of online WTGs N, 

which increases VSC impedances in (27). In this 

situation, the system may also turn stable if Dr, vsc 

becomes smaller than Dr, grid. 

- Influence of VSC control parameters (Case #2, #3, #4 

and #5): Control parameters should lead the VSC term 

Dr, vsc below the grid term Dr, grid (24) by changing VSC 

impedances in (27) in order to obtain system stability. 

This would allow that VSC control could mitigate 

possible SSOs caused by high reactance values of weak 

grids:  

 

o Case #2: High bandwidths of the feed-forward 

voltage low-pass filter, f, improve the VSC voltage 

disturbance rejection capability and instability may 

be avoided. 

o Case #3 and #4: Fast VSC inner and outer controls 

(i.e., high bandwidths of inner and outer control 

loops, c and dc) improve control dynamics to SSOs 

and it has positive impact on instability mitigation. 

This can also be achieved by increasing the 

proportional gains of the CC and DVC (kp = cL and 

kp-dc = dcC, respectively). These results are different 

than those in [22] because the present study considers 

the contribution of the grid and VSC on system 

stability while [22] only analyzes the damping 

contribution of the VSC. 

o Case #5: Low bandwidths of the PLL loop, p, allow 

filtering SSOs and improving system stability. This 

can also be achieved by reducing the proportional 

gain of the PLL, kp−PLL = p/v0. This recommendation 

was also proposed in [22] but the presented approach 

shows the contribution that the grid and VSC have on 

stability. 

 

It is worth noting that the reduction of term Dr, vsc in 

(24) can be obtained by other procedures than increasing the 

damping of VSC impedance as it is usually recommended in 

the literature [8], [20] − [22]. Fig. 7 illustrates that the VSC 
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Fig. 6. Influence of system parameters on stability  

(a) Impedance matrix determinant-based stability criterion, (b) Alternative approach in the paper, (c) Generalized Nyquist 

criterion, (d) PSCAD/EMTDC time-domain simulations. 
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control recommendations for improving system stability 

should not be necessarily aimed to increase the damping of 

the VSC impedance. Fig. 7(a) compares the terms 

Dr, grid = −X2
g and Dr, vsc in the reference case and the 

Cases #2 to #5, and also shows the contribution of the terms 

D(R)
r, vsc and D(X)

r, vsc to Dr, vsc (24), i.e.,  

 

𝐷𝑟,𝑣𝑠𝑐(𝜔𝑥) = 𝑅𝑣,𝑑𝑑𝑅𝑣,𝑞𝑞⏟      

𝐷𝑟,𝑣𝑠𝑐
(𝑅)

(𝜔𝑥)

− (𝑋𝑣,𝑑𝑑 + 𝑋𝑔)(𝑋𝑣,𝑞𝑞 + 𝑋𝑔)⏟                

𝐷𝑟,𝑣𝑠𝑐
(𝑋)

(𝜔𝑥)

. (28) 

 

It can be observed that the feed-forward voltage low-

pass filter  (Case #2) and the CC (Case #3) improve stability 

by mainly increasing the term D(X)
r, vsc (i.e., the VSC 

equivalent reactances Xv, dd and Xv, qq in Fig. 7(b)) while the 

DVC (Case #4) and PLL loop (Case #5) improve stability 

by varying both terms D(R)
r, vsc and D(X)

r, vsc. The DVC 

modifies only the d-component of the VSC equivalent 

impedance while the PLL loop modifies only the q-

component in Fig. 7(b). 

6. Conclusions 

This paper studies the influence that electrical and 

control parameters have on SSOs in AC grids with WTG 

VSCs. This is a new phenomenon different from the 

classical voltage instability. The paper contributes with a 

new approach for analyzing the contribution that grid and 

VSC have on stability. This approach analyzes two terms of 

the system impedance determinant that represent the 

contribution that the VSC and the grid have on the system 

stability. This allows understanding the influence that 

electrical system and control parameters have on stability. It 

is concluded that changes on VSC or grid parameters may 

be used to independently modify these two terms in order to 

achieve stability. It is observed that stability margins do not 

only depend on the damping of the system (i.e., on the 

resistances) but also depends on the system reactances. It is 

verified that the risk of SSOs may be mitigated reducing the 

value of the grid reactance by decreasing the number of 

transformers or by connecting new transmission lines [1], 

[3], because this could reduce the grid term of the 

determinant which directly depends on the grid reactance. 

Also, the paper presents the following recommendations 

about the SSOs mitigation from the VSC control:  

 

- Large bandwidth of the feed-forward voltage filter 

improves control dynamics against SSOs. 

- Large bandwidths of the CC and DVC also improve 

control dynamics against SSOs. 
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Fig. 7. Understanding the influence of VSC control parameters on stability  

(a) Dr, vsc terms, (b) VSC resistance and reactance values. 
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- PLL loop bandwidths should not be unnecessarily large 

in weak AC grids to avoid SSOs. 

 

It is observed that similar recommendations are 

presented in the literature for improving voltage stability 

although it is a different phenomenon than SSOs.  

The new approach presented in the paper and the 

analysys and recommendations on SSOs may be used to 

design power system stabilizers. 
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9. Appendix: Impedance matrix determinant-
based stability criterion 

Criteria (15) and (18) for assessing system stability 

are analyzed graphically by comparing all possible 

combinations of the impedance matrix determinant-based 

stability criterion. An example of these combinations is 

shown in Fig. 8. The curves in Fig. 8 represent the Dr(ω) 

and Dx(ω) plots around the real and imaginary part zero-

crossing frequencies of the poorly damped zeros. It is 

concluded that both criteria lead to the same prediction. 

Although the other combinations of the impedance matrix 

determinant-based stability criterion are not shown for space 

reasons, the previous conclusion is also true for all of them. 
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which are not shown in the paper for the sake of space. 

 

Comment #4: In (24), 𝑘𝑟 should be 𝑘𝑥. Am I right?  

 

Response to comments #4: 

 

The reviewer is right. The error has been fixed.  

 

Comment #5: Following my previous comment, Equations (15) and (24) do not show the same 

behavior. When 𝑘𝑥 > 0, according to (15) we have 𝐷𝑟 > 0; whereas in (24) we have 𝐷𝑟 > −𝑋𝑔21.  Note 

that if your answer to the fourth comment is not in the affirmative, explanations in Sections 3 and 4 will 

be completely different.  

 

Response to comments #5: 

 

Equations (15) and (24) correspond to the same stability criterion. 

 

If Hr < Hx, the subsynchronous oscillation is stable when we verify (15), 
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( ) 0 if 0 or ( ) 0 if 0.r x x r x xD k D k      

 

Considering (20),  

 

, , , ,( ) ( ),r dd qq dd qq g dq g qd g dq g qdD R R X X R R X X = − − −  

 

the stability condition in (15) can be rewritten as (21) 

 

 

 
 

Considering that the frequency response of transmission grids (Rg < Lg) at subsynchronous frequencies 

may usually be approximated as (23), the above expression can be rewritten as (24): 
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Fig. R1. Study of the impedance matrix determinant-based stability criterion 

(a) ωx > ωr, (b) ωx < ωr. 
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