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Abstract: Ischemic retinopathies (IRs) are the main cause of severe visual impairment and sight loss,
and are characterized by loss of blood vessels, accompanied by hypoxia, and neovascularization.
Actual therapies, based on anti-vascular endothelial growth factor (VEGF) strategies, antioxidants or
anti-inflammatory therapies are only partially effective or show some adverse side effects. Abscisic
acid (ABA) is a phytohormone present in vegetables and fruits that can be naturally supplied by
the dietary intake and has been previously studied for its benefits to human health. It has been
demonstrated that ABA plays a key role in glucose metabolism, inflammation, memory and tumor
growth. This review focuses on a novel and promising role of ABA as a potential modulator
of angiogenesis, oxidative status and inflammatory processes in the retina, which are the most
predominant characteristics of the IRs. Thus, this nutraceutical compound might shed some light in
new therapeutic strategies focused in the prevention or amelioration of IRs-derived pathologies.
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1. Ischemic Retinopathies (IRs)

The retina, located at the back of the eyecup, is a multilayer tissue with the main purpose of
performing phototransduction [1]. Neovascularization, or the formation of new blood vessels from the
existing vasculature, probably after an ischemic event, is often associated with aberrant formation of
immature vessels, and is one of the most common hallmarks of blinding diseases. Ischemic retinopathies
(IRs), such as retinopathy of prematurity (ROP), diabetic retinopathy (DR), and age-related macular
degeneration (AMD), are the main causes of severe visual impairment and sight loss in children, adults
(with diabetes), and the elderly population, respectively [2]. Other ischemic ocular diseases are sickle
cell retinopathy, retinal vein occlusion and several inflammatory diseases of the eye. However, the
proportion of visual loss caused by these other diseases is much smaller.

IRs are biphasic diseases characterized by the loss of blood vessels, which is accompanied by
hypoxia that in turn, induces a vasoproliferative phase in which aberrant immature blood vessels grow
into the vitreous humor. These events can result in retinal detachment and vision loss [3]. It is also
noteworthy that the ischemia associated with vessel loss can also impair neuronal function, together
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with the fact that retinal neurons secrete molecules in response to ischemia or stress, which are able to
modulate vascular outgrowth [4].

In the case of ROP, in premature neonates, the retina remains incompletely vascularized at the
time of birth and the vasculogenesis process in the premature neonatal retina becomes disrupted.
Therefore, abnormal new proliferating vessels develop at the juncture of vascularized and avascular
retina, growing from the retina into the vitreous. This phenomenon can result in hemorrhage and
tractional detachment of the retina [5].

DR is the leading cause of blindness in adults of working age. The classification of diabetic
retinopathy into stages is based on the presence of visible ophthalmologic changes and the manifestation
of retinal neovascularization. The fourth stage is severe non-proliferative diabetic retinopathy and
patients at this stage likely progress to the proliferative stage [6]. Proliferative diabetic retinopathy
(PDR) refers to a severe stage of DR in which new vessels proliferate on the surface of the retina and
posterior surface of the vitreous [7,8]. The duration of diabetes is clearly related to the development and
progression of retinopathy and a good glycemic control reduces the progression of retinopathy [9,10].
Finally, serious visual loss in PDR is caused by vitreous hemorrhage and tractional retinal detachment.

AMD is the main cause of severe visual loss in the elderly and its prevalence increases every year
due to the exponential aging of the population. Two types of AMD are clinically recognized: dry AMD
which is characterized by the formation of extracellular deposits called drusen, followed by retinal
pigment epithelium and photoreceptor cell death, and geographic atrophy and wet AMD with the
presence of neovascularization. Contrary to ROP and PDR, in wet AMD neovascularization originates
from the choroidal vasculature and extends into the subretinal space. This choroidal neovascularization
takes place in the macula, the area of retina responsible for central vision, and in consequence it causes
severe visual loss in AMD patients [11,12].

Neovascularization is characterized by the occupation of avascular areas with uncontrolled
growing of blood vessels characterized for being sinuous, not well organized, and with tendency
to exudation/leakage, fibrosis and cellular inflammation processes. Among many known growth
factors, research has demonstrated that vascular endothelial growth factor (VEGF) is an endothelial
cell-specific growth and survival factor and a significant factor responsible for vasculogenesis and
neo-angiogenesis, both in physiological and pathological events. In this sense, VEGF seems to be
responsible for the anomalous growth of blood vessels, the blood-retinal barrier (BRB) breakdown and
the consequent vascular edema [13].

Among the factors involved in the pathogenesis of IRs, inflammatory processes and oxidative
stress are crucial [2,14,15]. In addition, other factors involved in these pathologies, such as hyperoxia
in ROP, hyperglycemia in DR, and lipid accumulation in AMD, are relevant amplifiers of oxidative
stress causing cell metabolism dysregulation [16–18]. Furthermore, much evidence suggests that ROS
may play a role in angiogenesis, due in part to the involvement of reactive oxygen species (ROS) in the
mitogenic cascade initiated by the tyrosine kinase receptors of several growth factor peptides. Thus,
Colavitti and coworkers, reported that VEGF utilizes ROS as messenger intermediates downstream of
the VEGF receptor-2 (VEGFR-2)/KDR receptor [19]. Interestingly, oxidative stress and inflammation
are tightly interconnected. Inflammation is a cellular response to different insults (among them oxidant
stress) that compromises cell and tissue homeostasis, but also acts as a defense mechanism to preserve
the stability of cellular functions. However, sustained inflammation can be detrimental to tissue
integrity. Interestingly, it has been shown that the increased VEGF levels could be, at least in part,
a consequence of an inflammatory environment characterized by the release of proinflammatory
cytokines [20].

The retina is extremely rich in polyunsaturated lipids (such as docosahexaenoic acid, DHA),
cis-arachidonic acid, and choline phosphoglyceride, and therefore it is very sensitive to oxygen and
nitrogen reactive species and lipid peroxidation. In addition, it is characterized by a high-energy demand
and an exposure to light; altogether, these conditions favor oxidative stress situations in this tissue.
Antioxidant defenses, such as glutathione (GSH) or glutathione peroxidase (GPx) are compromised in
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DR [14] or AMD [21], as well as oxidative damage to macromolecule (such as lipids, DNA or proteins)
increases in IRs [22,23]. The accumulation of peroxides likely induces thromboxane A2 production,
a potent cytotoxic agent to microvasculature [24]. On the other hand, nitrosative stress can result in
cis- to trans-isomerisation of arachidonic acid, which in turn has been shown to cause retinal vascular
degeneration in a mouse model of ROP [25]. Platelet-activating factor and lysophosphatidic acid are
other lipids generated during peroxidation that act as pro-inflammatory mediators and contribute
to microvascular injury in the retina. Platelet-activating factor is profusely secreted under oxidative
stress situations, and its cytotoxic effects are mediated, to a large extent, by thromboxane A2 [24].
Along the same lines, lysophosphatidic acid is released from lysophosphatidylcholine by the action of
lysophospholipase D and can play a role in retinal inflammation, leading to microvascular cytotoxicity
in oxygen-induced retinopathy (OIR) [26], thus connecting oxidative stress and inflammatory processes.

1.1. Possible Therapies for IRs

Anti-VEGF strategies, which include neutralization by engineered antibodies, chimeric receptors,
or laser treatment that alleviates ischemia, an important stimulus for VEGF expression, have been
proposed as promising therapies [15,27]. Although partially effective, several side adverse effects have
been associated with anti-VEGF agents, including visual impairment since this growth factor has also
been shown to have neuroprotective functions in the survival of retinal ganglion cells [28]. Therefore,
advances in pharmacological antiangiogenic therapies are needed to improve the efficacy and safety of
these agents. In addition, current therapies only target the advanced stages of IRs, more concretely the
vasoproliferative phase and probably acting at the initial ischemic stage would better contribute to
curtail the progression of these diseases.

As mentioned above, inflammation is a key factor in the development and progression of IRs.
The use of corticosteroids, have been also approved for the clinical treatment of several IRs because
of their ability to modulate inflammation-mediated neovascularization in the retina, being actually
used as adjuvants in anti-VEGF therapies. However, clinical differences have been observed in efficacy,
pharmacokinetics, and safety profiles, associated to each specific molecule administered, as well as
inter-individual variation to treatment [3]. Furthermore, Ketorolac a nonsteroidal antiinflammatory
drug that inhibits the synthesis of prostaglandins or anti-IL-1 treatments have been tried in ROP [2].
Other molecules such as compounds with anti-TNFα properties in DR, or mTOR inhibitors in AMD
have been also proposed as anti-inflammatory therapies [2].

On the other hand, rather than developing new synthetic drugs that non-selectively target
angiogenic and non-angiogenic signaling pathways, evaluating natural phytochemicals, which
generally act through multiple cell-signaling mechanisms, but minimally affect the overall health of
tissues, seems a better alternative approach. Since during retinal ischemia the imbalance between
the production of ROS and the ability to scavenge these ROS is disturbed, ROS are able to trigger
several signaling pathways and affect DNA, proteins and lipids inside the cell, leading to cell death.
Therefore, antioxidants can protect retinal cells from microvascular degeneration in IRs, and in fact
supplementation with different compounds such as vitamin E, vitamin C, lipoic acid or different
polyphenols (i.e., resveratrol) and carotenoids (among them, lutein and zeaxanthin, the main macular
pigments) have shown promising effects for the treatment of these diseases [2,14,22].

Abscisic acid (ABA), a phytohormone most commonly known for inhibiting germination, could
be also an example of such a natural product with novel properties to explore in the treatment of
inflammation-induced vasoproliferative disorders.

1.2. Phytohormones are Cross-Kingdom Molecules

Plants have developed different, well-conserved evolutive mechanisms which allow them to
overcome multiple environmental conditions such as water or nutrient availability, ultraviolet light,
temperature variations, parasite threatens, etc. Most of these responses are mediated by plant hormones
or phytohormones. Particularly, these molecules are a diverse group of natural metabolites with a low
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molecular weight that act at micromolar or even lower concentrations [29]. Phytohormones have been
proved to control the different plant developmental stages and are responsible for the mechanisms
that trigger responses to adverse environmental conditions, which are essential to improve or achieve
stress tolerance [30].

There are different groups of phytohormones that notably vary in molecular structure and
functional properties being named as ABA, gibberellins, cytokinins, ethylene, auxins, jasmonates,
salicylic acid, and the recently discovered brassinosteroids and strigolactones [29]. Despite their known
functional role on plants, phytohormones have proved to have a function on organisms from other
kingdoms. Thus, animals, including humans, can sense and produce plant hormones [31,32].

2. Abscisic Acid (ABA)

Chemically, ABA has a formula C15H20O4, and its appearance is colorless crystals. ABA belongs
to the terpenoid (also known as isoprenoid) class of plant metabolites. The ABA molecular structure
have some peculiarities worth to note, such as the side chain with two double bonds conjugated to the
carboxylic acid; with the closest double bond to the acid group being cis, and the one placed closer to
the ring being trans. Under ultraviolet (UV) radiation this configuration can be reversibly changed to
the inactive form 2-4-trans [33]. On its structure, there is an asymmetric carbon on position 1’ that
provides specificity for the described receptors in plants [34].

In animal tissues, the presence of ABA has been known since the early 1980s but unfortunately
ignored until the last decade. Recently, ABA has emerged as a key modulator of different human
physiological processes.

ABA is commonly named the ‘stress hormone’ and regulates many aspects of plant growth and
development [35,36]. Under stressful situations, ABA induces a burst of the plant’s antioxidant defense
system. Also, it seems to inhibit germination and promoting plant dormancy. ABA was discovered in
the 1960’s and due to its function on plant dormancy was called “Dormidin”. At the same time, other
researchers described ABA’s properties on fruit abscission, naming it as ‘Abscisin II’ [33]. However, a
later accurate identification of this substance revealed that both functions were carried out by the same
molecule and after deliberations ABA was chosen as the most suitable name. Since then, biochemical,
molecular and genomic approaches were developed with the aim of elucidating the ABA biosynthetic
and catabolic pathways, identifying any possible ABA transporters and shedding some light into the
complex signaling components associated with the ABA response [37]. Moreover, the discovery of
the ABA receptors and other genes involved in ABA downstream signaling cascade constituted an
important milestone that deepened the understanding of the ABA mode of action [38].

3. ABA Actions in Animals

In animals, ABA naturally originates from different dietary sources but also is endogenously
produced by the carotenoid biosynthesis pathway

In mammals, the best proposed mechanism for ABA actions is the G-coupled membrane
protein called lanthioninesynthetase C-like protein 2 (LANCL-2) [39,40]. This hormone binding to
LANCL-2 triggers a PKA-dependent cascade, which activates the ADP-ribosyl cyclase, mobilizes cyclic
ADP-ribose and leads to an increase on cyclic AMP-dependent cellular calcium. This phytohormone,
can be administered either through different nutritional sources or as a drug. In fact, it has been
proved that in mice, high doses of ABA can be tolerated without any side effect [41]. Moreover, there is
also endogenous production of ABA in many different cell types such as granulocytes, macrophages,
keratinocytes, microglia and stem cells [42].

At the functional level, it has been demonstrated that ABA plays a key role in resistance against
different microbial pathogens [43–45]. Zhou and coworkers, 2016; studied ABA effects on brain gliomas.
This data support a key role of ABA in promoting apoptosis of cancer cells [46]. Moreover, a protective
role on type 2 diabetes has been demonstrated [47,48]. On this respect, plasmatic ABA (ABAp) levels,
correlate with different glucose dysregulation conditions. For example, the hyperglycemia observed in
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T2D and in gestational diabetes (GDM) is also accompanied by an increase of ABAp levels. In the case
of GDM, there is a link between spontaneous remission (after childbirth) and a restoration of a normal
ABA response to oral glucose [48]. A similar link is observed in T2D patients, in which resolution of
diabetes was observed after biliopancreatic diversion (BPD). In this case, pre-BPD values and basal
ABAp were, compared to the latter, significantly increased 1 month after BPD in T2D as well as in
normal glucose tolerant subjects, in parallel with a reduction of fasting plasma glucose [47]. These
results highlight the critical role of ABA in mediating the normal and pathogenic glucose tolerance
levels concluding that ABA can improve glucose tolerance.

Furthermore, at a central level, ABA administration in a mice model has demonstrated an
anti-inflammatory protective effect, lowering microglia activation, decreasing TNFα levels, and
restoring high-fat diet induced cognitive dysfunctions [49]. Recent studies also support an ABA role in
modulating hippocampal neurogenesis [50].

Another studied action of this phytohormone are its role on the inflammatory response. It has
been described that ABA plays a dual function since has pro- and anti-inflammatory actions. In this
respect, two differential signaling pathways have been described as key modulators of these two
inflammatory opposite responses. Thus, ABA’s pro-inflamatory response is mediated by macrophage
G protein-coupled receptors (GPCRs). These receptors are expressed in the immune system cells
and trigger the production of cytokines, and other pro-inflammatory molecules [51]. On the other
hand, ABA actions through the LANCL2-PPARγ cascade have been linked to its anti-inflamatorry
effects. The peroxisome proliferator activated receptors (PPARs) are a subset of the nuclear receptor
superfamily [52]. Particularly, PPARγ is expressed in a wide range of tissues including immune
cells. Its anti-inflammatory effects are mediated by a repression of the macrophage pro-inflammatory
genes [53]. However, as endogenous synthetized anti-inflammatory molecule, very little is known
about the human function and regulation of ABA.

As mentioned, in plants ABA is a ubiquitous hormone, which modulates critical plant processes
such as germination and development and regulates stressful situations. However, ABA has also been
studied for its properties as a potent antioxidant molecule. Under stress conditions, ABA triggers a
potent burst on the plant antioxidant defense system increasing the activity of superoxide dismutase,
catalase, peroxidase, and glutathione reductase [54]. Moreover, ABA can elicit a response on gene
expression to increase the activity of these antioxidant enzymes [54–56]. In animals, it has been
recently described an antioxidant protective effect of ABA. Rafiepour and coworkers [57] studied ABA
neuroprotective properties against 6-OHDA-induced neurotoxicity on an in vitro model of Parkinson’s
disease. They demonstrated ABA’s antioxidant (by reducing ROS levels) and antiapoptotic properties
mediated by the PPARγ signaling cascade [57]. Furthermore, Soti and coworkers have recently reported
that ABA is also able to reduce oxidative stress in rat brain [58]. Briefly, the central microinjection of
ABA was able to reduce MDA concentration, H2O2 levels in rat diencephalon as well as to increase the
antioxidant enzymes catalase and peroxidase activities [58].

4. ABA Presence in Food and Its Relationship with Lutein and Zeaxanthin

As mentioned above, ABA belongs to the terpenoid class of plant metabolites. ABA biosynthesis is
derived from C40 epoxycarotenoid precursor through an oxidative cleavage reaction in plastids, what is
known as the indirect or C40 pathway in plants. This route is started from isopentenyl pyrophosphate
(IPP), a C5 terpenoid precursor [59,60]. IPP is converted into geranylgeranyl pyrophosphate (GGPP)
through the action of IPP isomerase and GGPP synthase enzymes [61]. A series of intermediate
reactions occur but the first step more specific to the ABA synthesis pathway is the epoxidation of
zeaxanthin and antheraxanthin to violaxanthin. This precursor violaxanthin is converted to xanthoxin,
which is then exported to the cytosol. Here, a two-step reaction occurs and the product xanthoxin is
converted to ABA (Figure 1).
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In this biosynthetic pathway, two carotenoids are mainly produced, lutein and zeaxanthin. In this
respect, previous works support the beneficial effects of these molecules against eye diseases, being
critical in the prevention of age-related macular degeneration [62,63].

Although the absence of reports that analyze the concentrations of lutein and zeaxanthin jointly
with ABA, some works reveal that, the nutraceutical role of ABA could be similar to the mentioned for
lutein and zeaxanthin [64]. In fact, several vegetables such as maize, kiwi, red grapes, zucchini squash,
etc. have been proposed as food with high contents of lutein and zeaxanthin [64]. Other vegetables
have been reported to have high contents of ABA, including avocado, citrus, soybean or maize [64].
Although some of the analyzed vegetables such as corn, had high concentrations of lutein, zeaxanthin
and ABA simultaneously, it seems that there is not a direct correlation between them [63,64]. Moreover,
in non-vegetable edibles, egg yolk has been also reported as a food rich in lutein and zeaxanthin [64].
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Figure 1. Abscisic acid (ABA) biosynthesis pathway in plants: Ggps: Geranylgeranyl pyrophosphate
synthase, Pds: 15-cis-phytoene desaturases, VNCED (VP14): 9-cis-epoxycarotenoid dioxygenase, Psy:
phytoene synthase, Zds: zeta-carotene desaturase, AO, aldehydes oxidase, LCY-B/CRTL-B: Lycopene
beta-cyclase, Zep1: Zeaxanthin epoxidase1, IPi: IPP isomerase, Vde1: Violaxanthin de-epoxidase,
lycopene β-cyclase, CrtR-b: β-ring hydroxylase [65].

5. ABA as a Novel Therapy for IRs

To date, the majority of the evidence on protective effects ABA in human health has addressed
glucose metabolism and anti-tumorigenic effects. In this review, we describe various aspects of ABA
mechanisms of action and discuss the potential role of this phytohormone in the treatment of the most
common neovascular retinopathies. At the moment, there is almost no literature about the direct
functional effects of ABA in this neurosensorial tissue. However recently, Chaqour and coworkers
have studied the effects of ABA administration on physiological and pathological angiogenesis
processes in the retina, particularly in a mouse model of OIR [27]. Interestingly, they showed that this
phytohormone acts largely by altering the phenotypical plasticity of endothelial cells and skewing
the canonical polarized inflammatory statuses of macrophages towards an antiangiogenic phenotype.
This mechanism is based on ABA suppression of the neo- and revascularization processes of the
retina by knocking down endogenous pro-migratory genes in endothelial cells, thus promoting
endothelial quiescence.

Moreover, they also examined if ABA was able to modulate macrophage recruitment and
polarization during retinal neovascularization. Although ABA did not affect macrophage infiltration
of the ischemic areas in the retina, the treatment with this phytohormone significantly increased
the amount of OIR-induced anti-angiogenic macrophage markers and dampened pro-angiogenic
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macrophage-related markers. It is especially noteworthy that ABA also reduced significantly VEGF
expression in the retina, which is the major growth factor involved in angiogenesis [27].

As mentioned above, inflammatory processes and oxidative stress are also crucial factors in
the pathogenesis of IRs and, although there is no literature about the direct effects of ABA in the
retina, this hormone is able to modulate cell oxidative status by enhancing the antioxidant defense
in plants and in different animal tissues [57,58,66]. In addition, ABA has also revealed prominent
anti-inflammatory properties [67]. Thus, ABA upregulates the PPARγ both in vitro and in vivo [45]
inhibiting among others, NFkB translocation to the nucleus [68]. Both of them, PPARγ, and NFkB are
transcription factors expressed in retinal tissue able to modulate oxidative stress situations [14,69]. In
addition, PPARγ agonists have protective effects against oxidative damage, inducing the expression
of antioxidant enzymes such as catalase or superoxide dismutase [70]. Moreover, there is evidence
that PPARγ might be involved in the mechanisms underlying angiogenesis regulation. It has been
demonstrated that PPARγ is able to reduce the VEGFR-2 expression in a mouse model of IRs, thus
inhibiting neovascularization in this tissue [69]. On the other hand, NFkB, which is blocked by PPARγ,
is a sensor of oxidative stress. ROS activate this transcription factor, which, in turn, translocates from
the cytosol into the nucleus and subsequently activates a variety of target genes related to inflammatory
processes and apoptosis. These genes have proved to be involved in the development and progression
of IRs [14,71] (Figure 2). Moreover, different data support that retinal NFκB transcriptional activity
plays a pivotal role modulating ischemia-independent mechanisms, which lead to local activation of
angiogenic cascades, showing an interesting link between VEGF and NFκB [72].
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Figure 2. Schematic representation of the pro- and anti-inflammatory pathways mediated by ABA in
animals with special focus on a potential anti-inflammatory, antioxidant and anti-angiogenic retinal
mechanism of action. cAMP: Cyclic adenosine monophosphate; AC: Adenylyl Cyclase; PKA: Protein
Kinase A; PPARγ: Peroxisome Proliferator-Activated Receptor Gamma; NF-κB: Nuclear Factor- Kappa
B; VEGF: anti-vascular endothelial growth factor; LANCL-2: lanthioninesynthetase C-like protein 2;
ROS: Reactive Oxygen Species.

It is noteworthy to remark that ABA has been reported to play an important role in the maintenance
of glycemic control [73]. As mentioned above, a good glycemic control reduces the progression of
retinopathy [9,10], thus ABA appears to be a promising therapy for DR.
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6. Conclusions

It is importantly to highlight that ABA’s anti-angiogenesis properties have not been studied in
detail yet. However, this phytohormone present in vegetables and fruits that can be naturally supplied
by the dietary intake has previously shown other benefits for human health in terms of glucose
metabolism, inflammation and oxidative stress, all of them factors that are involved in IRs development
and progression. This review focuses on a novel and promising role of ABA as a modulator of
angiogenesis, which is the most relevant feature in IRs. Considering that, the actual therapies for these
pathologies are only partially effective and show adverse side effects, these ABA properties might shed
light on the potential therapeutic role to prevent or ameliorate IRs. Further experiments are necessary
to determine the presence of ABA in the retina, and to elucidate its promising beneficial effect as an
anti-inflammatory and antioxidant compound for the treatment of IRs.
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