
Exploiting Nested Task-Parallelism in

the H-LU Factorization
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Abstract

We address the parallelization of the LU factorization of hierarchical matrices
(H-matrices) arising from boundary element methods. Our approach exploits
task-parallelism via the OmpSs programming model and runtime, which dis-
covers the data-flow parallelism intrinsic to the operation at execution time,
via the analysis of data dependencies based on the memory addresses of the
tasks’ operands. This is especially challenging for H-matrices, as the struc-
tures containing the data vary in dimension during the execution. We tackle
this issue by decoupling the data structure from that used to detect depen-
dencies. Furthermore, we leverage the support for weak operands and early
release of dependencies, recently introduced in OmpSs-2, to accelerate the
execution of parallel codes with nested task-parallelism and fine-grain tasks.
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1. Introduction

Hierarchical matrices (or H-matrices) [1] provide a useful mathemati-
cal abstraction to tackle problems arising in boundary element methods,
elliptic partial differential operators, and related integral equations, among
others [2]. Concretely, for many of these applications, H-matrices and the
associated H-arithmetic methods offer efficient numerical tools to store an
n × n matrix using only O(n k log n) elements and compute matrix factor-
izations with a cost of O(n k2 log2 n) floating-point operations (flops). In
these cost expressions, k denotes the local rank for subblocks of the matrix,
which can be tuned to trade off accuracy of the approximation for storage
and computational costs [3].

The development of linear algebra methods for H-matrices has been an
active area of research during the past two decades, having produced a wide
number of packages such as HLib, H2Lib and HLibPro as well as a collection
of individual routines. Part of this software directly relies on the kernels
from the Basic Linear Algebra Subprograms (BLAS) [4] to compute funda-
mental dense linear algebra (LA) operations. As a result, when linked with
a multi-threaded instance of the BLAS, these H-LA routines can seamlessly
run in parallel on current multicore processors. However, this solution can
extract a limited amount parallelism, bounded to that present in the indi-
vidual BLAS kernels. Furthermore, for H-matrices arising from real applica-
tions, low-rank blocks “dominate” the data structure. While this confers H-
matrices/methods their appealing low storage and computational costs, un-
fortunately, it also limits further the parallelism that can be extracted from
individual kernels. In particular, H-arithmetic involves memory-bounded
kernels which, in general, do not benefit from a multi-threaded execution.
The bottom-line is that, for practical H-applications, it becomes necessary
to exploit parallelism at a higher level.

In the last years, exploiting task-parallelism has been exposed as an ap-
pealing coarse-grain approach for the solution of dense and sparse linear
systems on multi-threaded architectures [5, 6, 7, 8, 9]. These approaches
discover task parallelism dynamically (at execution time) via a runtime but
rely on a sequential implementation of the numerical kernels (in the dense
case, BLAS) to execute the individual operations. Although similar, the fac-
torization of H-matrices for linear systems presents some specific challenges
when the aim is to extract task-parallelism. First, the “recursive nature”
of H-matrices makes the detection and efficient exploitation of nested task-
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parallelism a complex endeavor. Second, handling low-rank matrices requires
specialized data structures that can vary (grow/shrink in size), at execution
time, with low overhead. This is particularly important given the low cost
of H-arithmetic algorithms.

In [10], we presented two prototype task-parallel versions of the H-LU
factorization using the OpenMP and OmpSs programming models [11, 12].
Our initial implementations presented several drawbacks, that we overcome
in this work, making the following specific contributions:

• The prototype implementations in [10] assumed that the blocks of the
H-matrix were either dense or null. No specialized data structures and
H-arithmetic for low-rank blocks were therefore involved in the factor-
ization. In comparison, in the present work we parallelize the H-LU
factorization as implemented in the sequential version of H2Lib, with
problems involving low-rank blocks and, therefore, low-rank storage
and real H-arithmetic.

• An additional consequence of targeting theH-LU factorization in H2Lib
is the need to accommodate low-rank data structures that can change
their dimensions at execution time. This is particularly challenging for
a runtime-based parallelization because task dependencies are detected
via an analysis of the memory addresses of the tasks’ operands. To
address this problem, we propose the use of an auxiliary “skeleton”
array, which reflects the block hierarchy of the H-matrix, and can be
leveraged to identify task dependencies. This additional data struc-
ture is built before the execution commences, at low cost, and remains
unchanged during the complete execution, independently of the modi-
fications on the structures containing the actual data due to the use of
H-arithmetic.

• The task-parallel implementation developed in our past work [10], based
on OmpSs, forced us to operate on fine-granularity tasks with operands
that were stored in contiguous regions of memory. The practical conse-
quence of this constraint is that it was not possible to exploit the nested
task-parallelism intrinsic to the H-LU factorization. In the present
work, we address these problems using the new OmpSs-2 model, with
explicit support for weak dependencies and early release to take advan-
tage of fine-grained nested parallelism [13].
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The rest of the paper is structured as follows. In Sections 2 and 3, we
briefly review the structure ofH-matrices in H2Lib and introduce a high-level
algorithm for the LU factorization of an H-matrix, respectively. (A complete
review of H-matrices and H-arithmetic can be found, for example, in [1, 3].)
In Section 4 we re-visit the parallelization of the H-LU factorization in [10],
exposing the limitations of those prototype codes. In Section 5 we describe
the new task-level parallelization of the hierarchical factorization, offering
details on the use of the skeleton structure to detect task dependencies and
the exploitation of fine-grained nested parallelism via weak dependencies.
Finally, in Section 6 we provide a complete experimental evaluation of the
task-parallel codes, and in Section 7 we close the paper with a few concluding
remarks.

2. Representation of H-Matrices in H2Lib

In this section we briefly introduce the structure of H-matrices and how
they are implemented in H2Lib.1 This sequential library, written in C, offers
a state-of-the-art implementation of H-matrix techniques, including sophis-
ticated data structures, support for H-arithmetic operations such as mul-
tiplication, inversion and factorization, compression schemes for non-local
operators, and fast re-compression algorithms.

The main idea behind H-matrices relies on finding a partition over a
matrix into blocks which are either small in dimension or admissible in the
sense that they can be stored efficiently using low-rank data structures instead
of dense ones. Utilizing low-rank matrices is a prerequisite for reducing the
storage and computational costs down to log-linear functions on the number
of elements and flops, respectively.

Before we can find a partition of the matrix into a set of subblocks, we
need to “organize” the degrees of freedom (DoFs) into sets, which can be
handled efficiently via a tree-like structure called clustertree. Therefore, we
assume that we know the geometric extent of every degree of freedom that
appears in our application. This frequently reduces to the support of fi-
nite element basis functions. Armed with that information, we can setup an
axis-parallel bounding box Bt, which contains the union of all extents corre-
sponding to the cluster t. This box will now be splitted into two parts along

1http://www.h2lib.org/
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some geometrical dimension, which yields two independent boxes Bt1 , Bt2 .
From there, we can sort each and every DoF into one of these boxes accord-
ing to their position in space. Next we process both boxes recursively until
the number of DoFs located in a box falls below a prescribed constant, which
we denote by leafsize (Clf ). In order to handle all these boxes efficiently, we
organize these clusters into a tree structure expressed by sons(t) = {t1, t2}.
This procedure is summarized in Algorithm 1.

Algorithm 1 Clustertree construction

Require: Geometric information about the degrees of freedom is stored
within an array dofs of length size.

Ensure: A hierarchical partition of the DoFs is returned via the clustertree
t.
procedure setup clustertree(dofs, size)

if size > Clf then
d← find splitting dimension(dofs, size)
sons ← 2
t← new cluster(dofs, size, sons)
{dofs1, dofs2, size1, size2} ← sort dofs(dofs, size, d)
t1 ← setup clustertree(dofs1, size1)
t2 ← setup clustertree(dofs2, size2)
sons(t)← {t1, t2}

else
t← new leaf cluster(dofs, size)

end if
return t

end procedure

This hierarchical structure is realized with the following C data structure
cluster within H2Lib:

1 struct cluster {

2 uint size;

3 uint *dofs

4 uint *bbox_min;

5 uint *bbox_max;

6 cluster *son;

7 uint sons;

8 }
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Here size is the number of elements associated with this cluster and dofs

is an array referring to the degrees of freedom. The bounding box Bt for a
cluster t is stored within the arrays bbox min and bbox max, respectively. In
addition, son and sons represent the tree structure of the clusters.

In order to identify subblocks of the matrix, which can be approximated
by a low rank representation, we need some admissibility condition, which
ensures that we can find an approximation to some prescribed accuracy. For
many cases, particularly for tensor-interpolation, the condition

min{diam(t), diam(s)} ≤ dist(t, s)

guarantees this. Here diam and dist denote the Euclidean diameter of some
cluster and the Euclidean distance between two clusters, respectively.

During the setup of the H-matrix, the partitioning is performed recur-
sively as stated in Algorithm 2, returning a tree-like block structure. For a
detailed construction of such block partition, see [1, 3].

Algorithm 2 Blocktree construction

Require: row cluster t, column cluster s.
Ensure: A blocktree b is returned for the pair (t,s).
procedure setup blocktree(t, s)

if admissible(t, s) then
b ← new admissible block(t, s)

else
if sons(t) 6= ∅ ∧ sons(s) 6= ∅ then

b ← new partitioned block (t, s)
for all t’ ∈ sons(t), s’ ∈ sons(s) do

b[t’][s’] ← setup blocktree(t’, s’)
end for
return b

else
b ← new inadmissible block(t, s)

end if
end if
return b

end procedure

In agreement with the three cases occurring in Algorithm 2, the appli-
cation of Algorithm 2, at a given level of the recursion, can produce either
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a low-rank block (i.e., a new admissible block), a new recursive partitioning
(via the same algorithm), or a conventional dense (inadmissible) block. To
handle these cases, the C data type representing a H-matrix in the H2Lib
follows this structure:

1 struct hmatrix {

2 cluster rc , cc;

3 rkmatrix r;

4 amatrix f;

5 hmatrix *son;

6 uint rsons , csons;

7 }

In this data type, rc and cc respectively correspond to the row cluster and
column cluster of he current matrix block. Low-rank matrices are stored
in the structure rkmatrix, whereas dense matrices are stored in amatrix.
Partitioned matrices are accommodated using an array pointing to the sons.
The structure also provides the amount of sons per row and column, stored
in rsons and csons, respectively.

3. LU Factorization of H-Matrices

3.1. Algorithm for the H-LU factorization

We open this section with a brief review of the algorithm for the H-LU
factorization. For this purpose, consider a sample H-matrix A ∈ Rn×n, par-
titioned as shown in Figure 1. The factorization procedure can be formulated
as a generalization of the blocked right-looking (RL) algorithm for the LU
factorization [14] that exploits the hierarchical structure of the matrix.

4,3
A

1:2,3:4
A

1,2
A

2,1
A

3:4,1:2
A

3,3
A

3,4
A

1,1
A

A
4,4

A
2,2

Figure 1: 2× 2 partitioning of a simple H-matrix.
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In particular, the following sequence of operations computes the H-LU
factorization of A:

Sequence of operations for the H-LU factorization of A:

O1.1 : A1,1 = L1,1U1,1

O1.2 : U1,2 := L−1
1,1A1,2

O1.3 : L2,1 := A2,1U
−1
1,1

O1.4 : A2,2 := A2,2 − L2,1 · U1,2

O1.5 : A2,2 = L2,2U2,2

O2 : U1:2,3:4 := L−1
1:2,1:2A1:2,3:4

O3 : L3:4,1:2 := A3:4,1:2U
−1
1:2,1:2

O4 : A3:4,3:4 := A3:4,3:4 − L3:4,1:2 · U1:2,3:4

O5.1 : A3,3 = L3,3U3,3

O5.2 : U3,4 := L−1
3,3A3,4

O5.3 : L4,3 := A4,3U
−1
3,3

O5.4 : A4,4 := A4,4 − L4,3 · U3,4

O5.5 : A4,4 = L4,4U4,4

Dense blocks. Assuming all blocks are dense, these operations correspond
to three basic linear algebra building blocks (or computational kernels):

• LU factorization (e.g., O1.1, O1.5 and O5.1);

• triangular system solve (e.g., with unit lower triangular factor in O1.2

and O2; or upper triangular factor in O1.3 and O3); and

• matrix-matrix multiplication (O1.4, O4, etc.).

In the dense case, the triangular factors L and U overwrite the corresponding
entries of A so that, for example, in O2, the output U1:2,3:4 overwrites the
input A1:2,3:4. Furthermore, the diagonal of the unit triangular matrix L
only contains ones and it is not explicitly stored.

Low-rank blocks. In the H-LU factorization, if any of the matrix blocks is
represented in low-rank factorized form, the storage will have to be special-
ized (see section 2) and the operations involving this block will need to be
performed in H-arithmetic.

In typical H-matrix implementations, low-rank matrices are represented
in the factorized form X = AB∗, where A and B have only k columns, so
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the rank of X is bounded by k. In practice, k is significantly smaller than
the dimensions of the original matrix X.

The H2Lib packages use the following data type to store low-rank matri-
ces:

1 typedef struct rkmatrix {

2 uint k; /* Maximal rank */

3 amatrix A; /* Left factor A */

4 amatrix B; /* Right factor B */

5 }

Basic operations for low-rank matrices X ∈ Rn×m include:

• matrix-vector multiplication y := Xz, performed using y := Xz =
A(B∗z);

• multiplication of X by an arbitrary matrix Z ∈ R`×n, using Y := ZX =
(ZA)B∗,

• triangular system solve LY = X or Y L = X; by applying forward
or backward substitution to the k columns of A or the k rows of B,
respectively.

Adding two low-rank matrices poses a challenge, since the sum of two ma-
trices X1 = A1B

∗
1 and X2 = A2B

∗
2 , of ranks k1 and k2, may have a rank of

k1 + k2. Fortunately, in typical applications a low-rank approximation can
be constructed by computing, e.g., a singular value decomposition of

X1 +X2 = A1B
∗
1 + A2B

∗
2 =

(
A1 A2

) (
B1 B2

)∗
and discarding small singular values. The same approach can be employed
to convert an arbitrary matrix into a factorized low-rank matrix.

From the point of view of peak floating-point performance, working with
factorized low-rank matrices poses a challenge. Concretely, while the mul-
tiplication of two n × n-matrices requires 2n3 operations, i.e., n operations
for each coefficient transferred from main memory, only 2kn2 operations are
required if one of the factors is a factorized low-rank matrix, i.e., only k
operations for each coefficient. Therefore we have to deal with the fact that
the speed of operations involving low-rank matrices and, in consequence, H-
matrices, is generally limited by the memory bandwidth, instead of by the
floating-point throughput.
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3.2. Nested dependencies in the factorization

Figure 2 provides a graphical representation of the dependencies among
the operations in the H-LU factorization of the sample matrix A, exposing
the recursion implicit in the operation. Concretely, the factorization can be
initially decomposed into 5 tasks: O1, O2, O3, O4 and O5, with the depen-
dencies among them displayed in the figure. The first and last (macro-)tasks,
O1 and O5, corresponding to the factorizations of the diagonal blocks of A,
can themselves be decomposed into 5 (sub-)tasks each, and reproduce the
same dependency pattern as that of the initial factorization.

O5.1 O5.2

O5.3

O5.4 O5.5

O5

O2

O1.2 O1.4 O1.5

O1.3

O1.1

O1

O3

O4

Figure 2: Data dependencies in the blocked RL algorithm for the H-LU factorization.

We close this section by noting that the presence of low-rank blocks does
not affect the dependencies, only the particular implementation of the in-
ternal operations. Also, the sample matrix employed in this section was
specifically chosen to be simple yet useful enough to expose the existence of
nested parallelism in the H-LU factorization (and discuss how to tackle it
in the following sections). The dependency graph in Figure 2 seems to show
that there is little task-parallelism to be exploited as, for this particular ex-
ample, we can only run in parallel O1.2 with O1.3; O2 with O3; and O5.2 with
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O5.3. However, this is a direct consequence of the simplicity of the selected
example. In contrast, an H-matrix/block with a division (partitioning) into
b× b subblocks yields a rapid explosion of the degree of task-level parallelism
that is cubic in b, featuring a richer set of dependencies.

4. Leveraging Task-Parallelism in OmpSs

Section 3 and Figure 2 expose the recursive character of the H-LU fac-
torization and the presence of nested task-parallelism. In particular, coming
back to our sample H-LU factorization in the previous section, a natural
approach to exploit nested task-parallelism is to annotate O1, O2, O3, O4,
O5 each as a task using the OpenMP/OmpSs task construct [11, 12]. Inside
O1, we can then annotate O1.1, O1.2,. . . ,O1.5 each as a task; and a similar
argument applies to the decomposition of O5 into O5.1, O5.2,. . . ,O5.5.

This section briefly reviews the drawbacks of our prototype task-parallel
H-LU implementation in [10] due to the limited support for nested task-
parallelism and hierarchical data structures in OpenMP (version 4.5) and
OmpSs (version 16.06).

4.1. Using representants

The OpenMP and OmpSs runtimes identify task dependencies, at run-
time, via the analysis of the memory addresses of the task operands (varia-
bles) and their directionality. In order to specify the dependencies between
tasks, in dense linear algebra operations we can often use a “representant”
for each task operand, which is then passed to the runtime system in order
to detect these dependencies [7]. (This representant is the memory address
of the matrix block computed by the corresponding operation; that is, the
top-left entry of the output matrix block.) We next discuss the problem with
this approach in the context of hierarchical matrices.

Let us consider, for example, the dependency O1.1→O1.2, between the
LU factorization

O1.1 : A1,1 = L1,1U1,1,

and the triangular system solve

O1.2 : U1,2 := L−1
1,1A1,2;

and the dependency O1→O2, between the LU factorization

O1 : A1:2,1:2 = L1:2,1:2U1:2,1:2,
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and the triangular system solve

O2 : U1:2,3:4 := L−1
1:2,1:2A1:2,3:4.

(We note here that the composition of the operations O1.1–O1.5 yields the
LU factorization of A1:2,1:2 specified in O1.)

For simplicity, let us assume that all the blocks involved in these oper-
ations are dense. (The analysis of the dependencies for low-rank blocks is
analogous.) The problem with the use of representants is that it is not pos-
sible to distinguish a dependency with input A1:2,1:2 from one that has its
origin in the input A1,1. In particular, since both A1:2,1:2 and A1,1 share the
same representant, with this technique it is not possible to know whether
O1.2 and O2 depend either on O1.1 or O1.

4.2. Leveraging regions

OmpSs offers flexibility to specify the shapes/dimensions of the input/out-
put operands passed to a task as regions, which can then be used to detect
dependencies between the tasks. In principle, it might seem that this mech-
anism could be leveraged to avoid the ambiguity due to the use of represen-
tants. However, the following discussion illustrates that this is still insuffi-
cient for H2Lib.

To expose the problem, consider again the dependencies O1.1→O1.2 and
O1→O2 where, for simplicity, we still assume that all blocks involved in these
operations are dense. To tackle this case, it might seem that we could simply
specify the dimensions of the operands. For example, in OmpSs, the lower
triangular system solves O1.2 and O2 could be annotated as

1 #pragma omp task in( L[0;M*M] ), inout( B[0;M*P] )

2 void task_ltrsm( int M, int P, double *L, int LDL ,

3 double *B, int LDB )

where L is (the memory address of) the M×M lower triangular factor and B is
(the memory address of) the M×P right-hand side.

The problem with this solution is that, in H2Lib, the entries of a (dense)
block which is further partitioned into subblocks (as is the case for A1:2,1:2)
are not stored contiguously in memory. Therefore, the use of a region to
specify the memory address of the contents of such block is useless. The
same problem appears for partitioned low-rank blocks.

Our workaround to this problem in [10] was to divide the triangular sys-
tem solve in O2 into four tasks, each updating one of the four blocks of
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U1:2,3:4. Unfortunately, this solution implies the need to explicitly decom-
pose all tasks in the H-LU factorization to operate with blocks of the “base”
granularity, so that a region only spans data which is contiguous in mem-
ory. The practical consequence is that, with that approach, it was not truly
possible to exploit nested task-parallelism. Furthermore, in case of small leaf
blocks, the overhead introduced by the dependency-detection mechanism can
be considerable, reducing the performance of the solution.

5. Extended Support for Nested Task-Parallelism in OmpSs-2

5.1. Dealing with non-contiguous regions

The (end of the) previous section identified a major problem when tack-
ling nested parallelism and hierarchical data structures which do not lie con-
tiguously in memory. This issue is difficult to address, as it is rooted on
the hierarchical nature of the problem and the use of H-arithmetic, which
derives in the need to embody a data structure that can vary at runtime.
With these premises, it becomes necessary to maintain a tree-like structure
of the matrix contents (see Section 3), where only the “leaf” blocks (either
dense or low-rank) store their data contiguously in memory. As a result, we
cannot leverage this data structure to specify dependencies between tasks
involving non-leaf blocks.

Our solution to this problem is application-specific (but can be leveraged
in scenarios involving dynamic and/or complex data structures [8]) and con-
sists of an auxiliary skeleton data structure that reflects the block structure
of the H-matrix. In particular, this data structure can be realized using an
array with one representant per leaf (i.e., non-partitioned) block in the orig-
inal matrix, where the representants that pertain to the same block appear
in contiguous positions of memory. For the particular simple example in Fig-
ure 1 this means that, in order to detect dependencies, we use an additional
array with representants for

A1,1 A1,2 A2,1 A2,2 A3:4,1:2 A1:2,3:4 A3,3 A3,4 A4,3 A4,4

appearing in that specific order. Operating in this manner, we decouple the
mechanism to detect the dependencies (based on the previous array) from the
actual layout of the data in memory, which can vary during the execution.

With this solution, the ambiguity between O1.1 and O1 when dealing
with the dependencies O1.1→O1.2 and O1→O2 is easily tackled. Concretely,

13



although both operands share the same base address in memory (that of A1,1

in the skeleton array), the region for O1.1 comprises a single representant
while that of O1 comprises four representants in the skeleton array. We
emphasize that these representants are stored contiguously in memory and
this skeleton data structure does not vary during the execution (in contrast
with the structure storing the actual data). Therefore, it can be built before
the operations commence, and the cost of assembling it can be amortized
over enough computation.

5.2. Weak dependencies and early release

The tasking model of OpenMP 4.5 supports both nesting and the defini-
tion of dependences between sibling tasks. Many operations with H-matrices
are recursive, so the natural strategy to parallelize them is to leverage task
nesting. However, this top-down approach has some drawbacks since com-
bining nesting with dependencies usually requires additional measures to
enforce the correct coordination of dependencies across nesting levels. For
instance, most non-leaf tasks need to include a taskwait construct at the
end of their code. While these measures enforce the correct order of execu-
tion, as a side effect, they also constrain both the generation and discovery
of task parallelism. In this paper we leverage the enhanced tasking model re-
cently implemented in OmpSs-2 [13] to exploit both nesting and fine-grained
data-flow parallelism.

The OmpSs-2 tasking model introduces two major features: weak depen-
dencies and early release of dependencies. The dependencies due to task
operands annotated as weak are ignored by the runtime when determining
whether a task is ready to be executed. This is possible because operands
marked as weak can only be read or written by child tasks. Using weak
dependencies, subtasks can be thus instantiated earlier and in parallel. The
early release of dependencies allows a fine-grained release of dependencies to
sibling tasks. Concretely, with this advanced release, when a task ends, it
immediately releases the dependencies that are not currently used by any of
its child tasks. Furthermore, as soon as child tasks finish, they release the
dependencies that are not currently used by any of their sibling tasks.

To further clarify this, we remark that the correct use of task nesting
and dependencies has to obey the following rule to avoid data-races between
tasks that are second (or above)-degree relative: the dependency set of a
child task has to be a subset of the dependency set of its parent task. Only
dependencies declared on data that is not available in the scope of the parent
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task, such as data dynamically allocated when the body of the parent task
is executed, are excluded from this rule. Although this rule guarantees the
correctness of the execution, it usually introduces artificial coarse-grained
dependencies between sibling tasks, which are only required to enforce the
proper synchronization of their sibling tasks.

To address the previous issue, we can leverage weak dependencies because
this type of dependencies are just ignored by the runtime when determining
whether a task is ready to be executed. This is possible because operands
marked as weak can only be read or written by child tasks. Using weak
dependencies, more tasks can be thus instantiated earlier and in parallel,
and we can avoid the insertion of a taskwait construct, at the end of each
parent task, to enforce a barrier which synchronizes all the child tasks before
releasing all the dependencies.

By combining these two contributions, dependencies can cross the boun-
daries initially set up by the nesting contexts. The resulting behavior is
equivalent to performing all the dependency analysis on a single domain.
Achieving a similar effect in OmpSs eliminated the possibility of nesting. In
addition, that approach also reduced the programmability and restricted the
instantiation of tasks to a single generator. In constrast, the dependency
model of OmpSs-2 can extract the same amount of task parallelism, without
impairing programmability and without the loss of the parallel generation of
work that is possible through nesting.

4,3
A

3:4,1:2
A

3,3
A

3,4
A

1,2
A

2,1
A

1,1
A

A
2,2

1,4
A

2,3
A

A
4,4

A
2,4

A
1,3

Figure 3: Alternative 2× 2 partitioning of a simple H-matrix.

In order to discuss the implications of these two advanced features of
OmpSs-2 on the H-LU factorization, let us consider the re-partitioning of
the initial sample matrix A as shown in Figure 3. (Compared with the initial
case in Figure 1, an additional 2 × 2 partitioning has been imposed here

15



on the top-right block A1:2,3:4.) Correspondingly, the initial update (see the
sequence of operations for the H-LU factorization in Section 3)

O2 : U1:2,3:4 := L−1
1:2,1:2A1:2,3:4

can be further decomposed into the six suboperations:

O2.1 : U1,3 := L−1
1,1A1,3,

O2.2 : U1,4 := L−1
1,1A1,4,

O2.3 : A2,3 := A2,3 − L21 · U1,3,

O2.4 : A2,4 := A2,4 − L21 · U1,4

O2.5 : U2,3 := L−1
2,2A2,3, and

O2.6 : U2,4 := L−1
2,2A2,4.

In the application of nested parallelism to this scenario, we again assume
that O1, O2, O3, O4, O5 are each annotated as a (coarse-grain) task, and the
decompositions of O1, O2, O5 respectively produce the operations in O1.1–
O1.5, O2.1–O2.6, O5.1–O5.5, each annotated as a (fine-grain) task.

A rapid analysis of the new scenario reveals that, for example, the coarse-
grain dependency O1→O2 boils down (among others) to the finer-grain cases
O1.1→{O2.1, O2.2}, as the former operation (LU factorization)

O1.1 : A1,1 := L1,1U1,1

yields the unit lower triangular factor L1,1 required by the latter two opera-
tions (triangular solves) O2.1, O2.2.

The problem with OmpSs and OpenMP 4.5 is that ensuring a correct
result requires the introduction of a taskwait at the end of the code of O1

in order to guarantee a correct result. In contrast, the support for weak de-
pendencies and early release in OmpSs-2 implies that (provided the operand
L1:2,1:2 for O2 is annotated as weak,) the boundaries between the coarse-grain
tasks O1 and O2 can be crossed and the execution of O2.1 and O2.2 can com-
mence as soon as O1.1 is computed. In order to attain this effect, in OmpSs-2
we should annotate O2 as a task with weak operands (via the corresponding
representants):

1 #pragma oss task weakin( RepL [0;S] ), weakinout( RepB [0;S] )

2 void task_ltrsm( int M, int P, double *L, int LDL ,

3 double *B, int LDB )
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while O2.1, O2.2 are both specified as tasks with strong operands:

1 #pragma oss task in( L[0;M*M] ), inout( B[0;M*P] )

2 void task_ltrsm( int M, int P, double *L, int LDL ,

3 double *B, int LDB )

This simple example illustrates that the use of weak dependencies and
early release can unleash a higher degree of task-parallelism during the exe-
cution of the H-LU factorization as, for example, the execution of O2.1, O2.2
can proceed in parallel with that of O1.2–O1.5; and O2.3, O2.4 in parallel with
O1.2, O1.4, O1.5; see Figure 4.

O1.2 O1.4 O1.5

O1.3

O1.1

O1

O2.2

O2.1 O2.3 O2.5

O2.6O2.4

O2

Figure 4: Data dependencies between tasks O1 and O2 of the blocked RL algorithm for
the H-LU factorization. The black solid lines specify “internal” strong dependencies; the
pink solid lines, strong dependencies crossing task boundaries; and the blue dashed line,
the weak dependency.

6. Numerical Experiments

In this section we first describe the problem setup and target architecture
employed in our experiment. Next we analyze the concurrency of the parallel
implementations of the code for the H-LU factorization in H2Lib.

6.1. Mathematical problems

The usage of H-matrices often appears in the context of Boundary Ele-
ment Methods (BEM) [15]. The reason for this is that the discretization of
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boundary integral equations often yields matrices that are densely populated
and have to be stored efficiently, where H-matrices come in handy. There is
also a need of constructing efficient preconditioners for this type of equations,
which can be carried out in H-arithmetic. In particular, in the experiments
in this section we consider integral equations of the form∫

Γ

g(x, y)u(y) dy = f(x), for almost all x ∈ Ω,

where Ω can be some d-dimensional bounded domain for d ∈ {1, 2, 3}. By
choosing suitable test-and-trial spaces Uh and Vh, equipped with some bases
(ϕi) , i ∈ I, and (ψj) , j ∈ J , we can apply a Galerkin discretization and
obtain a variational formulation of the kind∫

Ω

vh(x)

∫
Γ

g(x, y)uh(y) dy dx =

∫
Ω

vh(x) f(x) dx , for all vh ∈ Vh.

Employing finite element basis functions for these spaces we directly obtain
a system of linear equations

Gu = f,

where all the entries of the matrix

gij =

∫
Ω

ϕi(x)

∫
Γ

g(x, y)ψj(y) dy dx , for all i ∈ I, j ∈ J ,

are non-zero.
In particular, we consider the Laplace equation in d ∈ {1, 2, 3} dimen-

sions. In these cases the underlying kernel functions are

g : Rd × Rd → R , g(x, y) =


− log |x− y| : d = 1,

− 1
2π

log ‖x− y‖2 : d = 2,
1

4π
‖x− y‖−1

2 : d = 3.

For the construction of low-rank blocks within our experiments, we choose
the analytical method of tensor-interpolation [16], which is applicable in all
dimensions. For the sake of lighter storage requirements and faster setup
times of the H-LU, we further re-compress all low-rank blocks by a fast
singular value decomposition (SVD) [14].
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6.2. Setup

All the experiments in this section were performed using ieee 754 double-
precision arithmetic, on a single node of the MareNostrum 4 system at
Barcelona Supercomputing Center. The node contains two Intel Xeon Pla-
tinum 8160 sockets, with 24 cores per socket, and 96 Gbytes per of DDR4
RAM. In Turbo frequency mode (3.7 GHz), the theoretical peak performance
for a single core is 59.2 GFLOPS (billions of floating-point operations per se-
cond) when using AVX2 instructions. This rate is reduced to 33.6 GFLOPS
when using a single core running in the base frequency (2.1 GHz). At this
point we note that the aggregated (theoretical) peak performance of this ma-
chine is a linear function of the operation frequency which, in turn, depends
on the specific type of vector instructions that are executed (AVX, AVX2,
AVX-512) and the number of active cores [17].

In the experiments we employed gcc 4.8.5, Intel MKL 2017.4 (with AVX2
instructions enabled), and OmpSs-2 (mcxx 2.1.0).

6.3. Matrix-matrix multiplication

Our first experiment is designed to assess the performance of the imple-
mentation of the matrix-matrix multiplication routine (dgemm) in Intel MKL.
This is relevant because it offers an upper bound of the actual performance
that can be obtained from the H-LU factorization of a hierarchical matrix.
This bound will be tight in case most of the blocks involved in the decompo-
sition are dense and the fragmentation of the blocks implicit to the matrix
hierarchy is not too fine-grained.

Figure 5 reports the GFLOPS per core attained by Intel’s dgemm routine
using 1, 4, 8,. . . , 24 cores (of a single socket) and square operands all of the
same dimension b. (Note that the limit of the y-axis in this plot and all subse-
quent ones is fixed to 60, which basically corresponds to the theoretical peak
performance with 1 core.) This experiment reveals two important aspects.
First, the execution of the sequential instance of dgemm delivers 57.0 GFLOPS
for a problem of order b = 150, and 58.9 GFLOPS for the largest problem
dimension, b = 1000. These values represent 96.2% an 99.4% of the peak
rate, respectively (when using AVX2 instructions). Thus, even for problems
that are rather small, it is already possible to attain a large fraction of the
peak performance when using a single thread. Second, as the number of
threads/cores grows, the multi-threaded instance of dgemm requires conside-
rably larger problems to attain a relevant fraction of the theoretical peak.
(As argued earlier, the peak rate of this processor is “variable” because it
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depends on the operation frequency and this parameter is constrained by the
number of active cores [17].)
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Figure 5: Performance of the matrix-matrix multiplication routine in Intel MKL.

6.4. Basic parallel solutions

The following experiment exposes the drawback of a parallelization that
simply relies on a multi-threaded instance of the BLAS, providing initial
evidence that a runtime-based approach can offer higher performance. In
order to do so, we compare three different parallelization strategies applied
to the H-LU factorization:

• MKL extracts fine-grain loop-parallelism from within the BLAS ker-
nels only. As argued in the introduction of this paper, this approach
is rather appealing in that it requires a low programming effort. In
particular, provided the sequential routine for the H-LU factorization
already casts most of its operations in terms of BLAS, the code can be
executed in parallel by simply linking in a multi-threaded instance of
this library such as that in Intel MKL. The downside of this approach
is that it constrains the parallelism that can be leveraged to that inside
individual kernels, which may be insufficient if the number of cores is
large.
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• OpenMP aims to exploit loop-parallelism (like MKL) but targets a
coarser-grain layer, by applying the parallelization to the loops present
in the H-LU routine. To clarify this, consider for example a single-
level hierarchical matrix that is decomposed into 8 × 8 blocks. After
the factorization of the leading block of the matrix, this approach will
compute in parallel the remaining 7+7 triangular system solves in the
same column+row of the matrix; and next update the 7×7 blocks of the
trailing submatrix in parallel. In summary, instead of extracting the
parallelism from within the individual BLAS kernels, this approach tar-
gets the parallelism existing between independent BLAS kernels (tasks)
comprised by a loop.

• OmpSs discovers tasks dynamically and takes into account the depen-
dencies among them to schedule their execution when appropriate; see
Section 4. (This version does not include the advanced features sup-
ported by OmpSs-2.)

To simplify the following analysis, we will employ a hierarchical matrix
with a 2× 2 recursive structure defined on the diagonal blocks. Concretely,
starting with a hierarchical matrix of order n, we define a 2× 2 partitioning,
which is recursively applied to the inadmissible blocks until a minimum leaf-
size is reached; see Figure 6. This type of data structure appears, for example,
in BEM with d = 1 as those described in subsection 6.1. For simplicity, we
will also consider dense blocks only. With these consideration, the cost of
the LU factorization of a hierarchical matrix of order n is (approximately)
the standard 2n3/3 flops.

Figure 7 reports the GFLOPS per core for the three different paralleliza-
tion strategies described above. The results there correspond to a square
H-matrix of dimension n = 10K, with r = 4, 5, 6 and 7 recursive par-
titionings applied to the inadmissible blocks until a minimum leafsize is
reached. This implies that the smallest blocks on the diagonal are of or-
der bmin = 10K/2r ≈ 625, 312, 156 and 78, respectively. This experiment
offers some interesting insights:

• The performance of MKL greatly benefits from problems with large
block sizes, which is consistent with the trends in the GFLOPS rates
observed for the multi-threaded instance of Intel’s dgemm in the pre-
vious experiment. This option is competitive with the task-parallel
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Figure 6: Hierarchical structures of the H-matrices employed in the evaluation of the
parallelization strategies (with 5 recursive partitionings of the diagonal blocks; note that
the colors remark the amount of levels defined in each structure: 7, 6, 5 and 4 respectively).

OmpSs-based routine when the number of cores is reduced or parti-
tioning features large diagonal blocks (r = 4, bmin = 625).

• The parallel performance of OpenMP is practically negligible as the
GFLOPS per core decrease linearly with the number of cores. This is
not totally a surprise as, due to the 2×2 organization of the H-matrix,
the operations that can be performed independently are reduced to the
two triangular system solves at each partitioning.

• When the number of cores is small, the OmpSs-based parallelization
attains mild GFLOPS rates. Here, the coarse-grain partitioning of the
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blocks and the existence of synchronization points constrain the degree
of parallelism that can be exploited and limit the performance of this
approach when the number of cores is large.
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Figure 7: Performance of basic parallelization strategies applied to an H-matrix of or-
der n = 10K, with dense blocks, and a recursive 2 × 2 hierarchical partitioning of the
inadmissible blocks; see Figure 6.

To complete the analysis of this experiment, we remark that a compa-
rative analysis of the GFLOPS observed in these executions with those of
dgemm is delicate. In particular, the execution using a single core can be
expected to set the processor to operate on a higher frequency than a pa-
rallel multi-threaded execution using several cores. Unfortunately, the exact
frequency is difficult to know as it depends on the number of cores as well as
the arithmetic intensity of the operations (and it can even vary at execution
time).
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6.5. Scalability of task-parallel routines
Our next experiments aim to demonstrate the benefits that the WD+ER

(weak dependency and early release) mechanism exerts on the scalability
of the task-parallel codes based on OmpSs-2. For this purpose, we next
conduct an analysis of the strong and weak scalabilies, using a complete
socket (24 cores) and the same hierarchical matrix, with a 2 × 2 recursive
structure defined on the diagonal blocks and dense blocks only, employed in
the previous study.

In the following analysis of strong scalability, we set the problem di-
mension to three different values, n =10K, 15K and 30K, and progressively
increase the amount of cores up to 24 while measuring the GFLOPS per
core. In this type of experiment, we can expect that the GFLOPS/core rates
eventually drop as the problem becomes too small for the volume of resources
that are employed to tackle it. Figure 8 confirms that this is the case for both
implementations, which exploit/do not exploit the new features in OmpSs-2
(lines labeled as with WD+ER and w/out WD+ER, respectively). In addi-
tion, the results also show that the exploitation of WD+ER, made possible
by OmpSs-2, offers a GFLOPS/core rate that clearly outperforms that of the
implementation that is oblivious of these options.

For the analysis of weak scalability, we utilize a problem of dimension n×n
that grows proportionally to the number of cores c, so that the ratio n2/c =
15K×15K holds while c grows to 24. As the problem size per core is constant,
we can expect that the GFLOPS/core remains stable, showing the possibility
of addressing larger problems by increasing proportionally the amount of
resources up to a certain point. (This is not totally exact, as the cost of the
factorization for dense matrices grows cubically with the problem dimension
while, in the conditions set for this experiment, the amount of resources only
does so quadratically.) Unfortunately, the results of this experiment reveal
that the weak scalability of both algorithms suffers an important drop as the
number of cores is increased, though in the variant equipped with WD+ER
this occurs in the transition from 8 to 12 cores while the implementation that
does not exploit this mechanism the gap is visible already in the increase
from 4 to 8 cores.

There are two aspects to take into account when considering the GFLOP-
S/core rates observed in the strong scaling analysis and, especially, the weak
scaling counterpart. The first one refers to the CPU frequency, which de-
creases with the number of cores which are active (see [17] and Figure 5)
and affect the performance of the task-parallel routines, reducing it with the
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Figure 8: Strong scalability of the advanced parallelization strategies applied toH-matrices
of order n = 10K, 15K and 30K (bmin =156, 234 and 234, respectively), with dense blocks,
and a recursive 2× 2 hierarchical partitioning of the inadmissible blocks; see Figure 6.

number of cores. The second one is a consideration of the structure of the
hierarchical matrix employed in these experiments (see Figure 6). In par-
ticular, when all the blocks are dense, and the matrix is decomposed into a
task per block in this partitioning, the result is a problem where a reduced
collection of coarse-grain tasks concentrate a large fraction of the flops. This
effect is exacerbated with the problem order (n) and its negative effect is
more visible when the number of cores is increased because the task-parallel
algorithms confront then a suboptimal scenario consisting of a very reduced
number of tasks (little task-parallelism) of (very) coarse-grain operations.

6.6. Parallelism of task-parallel routines with low-rank cases

Our final round of experiments assesses the performance of the WD+ER
(weak dependency and early release) mechanism using several BEM cases, of
dimensions d =1, 2 and 3, involving low-rank blocks. The “sparsity” pattern
of these blocks is controlled via a parameter η that we set to four different
values, 0.25, 0.5, 1.0 and 2.0. The structure of these cases is illustrated in
Figure 10.

Table 1 reports the acceleration factors (or speed-ups) attained by the
task-parallel codes with respect to the corresponding sequential code/case,
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Figure 9: Weak scalability of the advanced parallelization strategies applied to an H-
matrix of dimension n×n = 15K×15K per core (bmin =234 in all cases, except with 8 cores
where bmin =166), with dense blocks, and a recursive 2× 2 hierarchical partitioning of the
inadmissible blocks; see Figure 6.

using problems of order n ≈ 30K and up to 24 cores. This final experiment
illustrates the performance advantage of exploiting the WD+ER also in case
of H-matrices with low-rank blocks. In general, the speed-up increases with
the ratio of dense blocks, reporting notably high values for d = 1 and 3
(provided the number of cores is not too large compared with the problem
dimension), and much lower for those cases with d = 2. In some cases we
even observe a super-linear speed-up, due to cache effects.

7. Concluding Remarks

We have demonstrated notable parallel efficiency for the calculation of
the H-LU factorization on a state-of-the-art Intel Xeon socket with 24 cores.
A key component to attain this high performance is the exploitation of weak
dependencies and early release, recently introduced in OmpSs-2. Armed
with these mechanisms, the OmpSs-based parallel codes can cross the de-
pendency domains, discovering and exploiting a notably higher degree of
task-parallelism, which results in higher performance in the execution of 1D,
2D and 3D cases arising from BEM. As part of future work, we would like
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Figure 10: Hierarchical structure of the H-matrix employed in the evaluation of the task-
parallel routines. The red areas denote dense blocks and the number inside the white
blocks specifies the rank of the corresponding (low-rank) block. From top to bottom:
d =1, 2 and 3; and from left to right: η =0.25, 0.5, 1.0 in the first two rows, and η =0.5,
1.0, 2.0 in the last one.

to investigate hybrid parallelization schemes that combine the extraction of
multi-threaded parallelism from highly tuned libraries such as Intel MKL
with task-parallelism exploited by a runtime. Moreover, we will investigate
new strategies to extract additional levels of task-parallelism.
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WD+ Seq. Speed-up with #cores
η d ER? time 4 8 12 16 20 24

0.25
1

No
89.2

3.51 5.24 5.58 5.70 5.70 5.69
Yes 4.05 7.82 11.56 14.62 17.37 19.04

2
No

118.9
3.70 6.12 7.28 7.79 7.88 8.02

Yes 3.96 7.64 10.99 13.55 17.36 18.49

0.50

1
No

38.1
2.60 2.74 2.73 2.71 2.71 2.70

Yes 3.92 7.45 9.57 9.74 9.69 9.45

2
No

37.0
3.04 3.68 3.82 3.90 5.74 3.92

Yes 3.96 6.87 8.81 9.68 10.18 10.44

3
No

1,099.2
4.00 7.83 13.48 14.44 16.88 18.71

Yes 4.00 7.99 11.85 15.63 19.13 21.57

1.00

1
No

12.6
1.55 1.58 1.57 1.57 1.56 1.57

Yes 2.50 2.46 2.48 2.46 2.44 2.43

2
No

12.0
1.92 1.99 2.00 2.00 1.99 2.00

Yes 3.31 4.22 4.38 4.50 4.44 4.36

3
No

1,049.8
3.96 7.54 10.84 13.28 15.64 17.63

Yes 4.03 7.91 14.32 15.55 18.99 21.73

2.00 3
No

204.1
3.59 5.78 7.39 7.88 8.26 8.44

Yes 4.99 7.87 11.27 14.65 17.33 17.83

Table 1: Execution time of the sequential algorithm in H2Lib (in sec.) and parallel speed-
up of the advanced parallelization strategies applied to an H-matrix of order n ≈ 30K
(bmin =234), with dense and low-rank blocks; see Figure 10.
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