
A thesis submitted for the Master of Science degree in

Geospatial Technologies

Interoperability Enhancement of

IoT devices Using Open Web

Standards in a Smart Farming Use

Case

Composed by Daniel Marsh-Hunn

Supervised by Ph.D Sergio Trilles

Co-supervised by Prof. Joaqúın Huerta & Prof. Roberto Henriques

Universitat Jaume I

04.02.2019

Abstract

Since its first appearance the Internet of Things has been subject to constant evolu-

tion, development and change. Now it has stepped out of its infancy with billions of

devices embedded in the world wide web. However, IoT providers mostly define their

own data formats and protocols and there is still a lack of a common standard that

connects these devices in an interoperable manner. There are several organisations

dedicated to developing common standards for IoT devices and research is focusing

on defining an effective standard to be used by embedded devices. Unsurprisingly,

IoT has also found its way into the spatial web and into environmental monitoring

and sensing platforms connected over the web by wireless sensor networks are now a

common way to monitor natural phenomena. This study compares three open Web

Standards in the use case of SEnviro for Agriculture, a full stack IoT for monitoring

vineyards. The interoperability potential of the OGC’s Sensor Observation Service

and SensorThings API are evaluated by integrating Web Standard implementa-

tions for each standard and contrasting their qualitative and quantitative traits.

In a further step the Mozilla Corporation’s Web Thing API was implemented and

evaluated in an environmental monitoring and Smart Farming context. The results

of the study show that the SensorThings API proves to be the most adequate Web

Standard for SEnviro and IoT applications for environmental monitoring and Smart

Farming in terms of interoperability. It outperforms the contesting Web Standards

in terms of flexibility and scalability, which strongly impacts on developer and user

experience.

I

Acknowledgements

I would like express my gratitude to all the people involved in the process of this

study. First I would like to thank my supervisor Ph.D. Sergi Trilles for his support.

Sergi’s advice, feedback, knowledge and dedication proved to be crucial for the

success of this thesis. I also want to thank Alberto Gonzales for taking the time

to aid me in technical challenges. My thanks also go to my co-supervisors Prof.

Joaquin Huerta and Prof. Roberto Henriques for providing valuable feedback. I

further wish to express my appreciation for all dear friends who aided me with their

advice, their motivation and their good spirit. My special thanks go to my fellow

students, with whom I shared this precious life experience. Lastly I want to thank

my dear life partner Franziska for her encouragement, her patience, her council and

her love.

II

Contents

1. Introduction 1

1.1. Context . 1

1.2. Problem Definition . 3

1.3. Motivation and goals . 3

1.4. Structure . 4

2. Background 5

2.1. Internet of Things . 5

2.2. Sensing hardware . 6

2.3. Wireless Sensor Networks . 7

2.4. Machine-to-Machine Communication & MQTT 9

2.5. Interoperability . 10

2.6. Open & Sensor Web Standards . 11

2.6.1. Sensor Observation Service . 12

2.6.1.1. SOS data model . 12

2.6.1.2. SOS operations . 14

2.6.1.3. SOS implementations 14

2.6.2. SensorThings API . 15

2.6.2.1. SensorThings data model 15

2.6.2.2. SensorThings operations 17

2.6.2.3. SensorThings implementations 17

2.6.3. Web Thing API . 18

2.6.3.1. Web Thing data model 19

3. SEnviro for Agriculture 20

3.1. Smart Farming . 20

3.2. SEnviro components . 22

3.2.1. SEnviro nodes . 22

3.2.2. SEnviro Connect . 24

4. Methodology 28

4.1. Experimental Environment . 29

4.2. Deployed Web Standard Implementations 30

4.2.1. 52North-SOS . 30

4.2.2. FROST-Server . 33

III

Contents

4.3. SEnviro Web Standard Integration 33

4.3.1. SOS Adapter . 35

4.3.2. SensorThings Adapter . 35

4.3.3. Web Thing Adapter . 36

4.4. Comparative Analysis . 37

4.4.1. Performed operations . 37

4.4.1.1. Data management 37

4.4.1.2. Accessing metadata 37

4.4.1.3. Observation retrieval 38

4.4.2. Qualitative Analysis . 40

4.4.3. Quantitative Analysis . 41

4.4.3.1. Response times and sizes 41

4.4.3.2. Web service metrics 42

5. Web Standard Comparison 45

5.1. Web Thing API evaluation . 45

5.2. 52North-SOS & FROST qualitative evaluation 47

5.2.1. Service deployment & configuration 47

5.2.1.1. 52NorthSOS setup 47

5.2.1.2. FROST setup . 48

5.2.2. Data management . 48

5.2.2.1. 52North-SOS transactional operations 48

5.2.2.2. FROST Create-Update-Delete requests 53

5.2.3. Retrieving metadata . 55

5.2.3.1. 52North-SOS metadata operations 56

5.2.3.2. FROST metadata queries 56

5.2.4. Observation queries . 58

5.2.4.1. 52North-SOS queries 58

5.2.4.2. FROST queries . 60

5.3. 52North-SOS & FROST performance evaluation 64

5.3.1. Response times and sizes . 65

5.3.2. Container metrics . 68

5.4. Discussion . 72

Conclusion & Future Work 78

Bibliography 82

Appendix 93

IV

List of Figures

2.1. WSN components overview (Mainetti et al., 2011) 8

2.2. O&M data model extract (Open Geospatial Consortium, 2007) 13

2.3. SensorThings data model (Open Geospatial Consortium, 2016) 16

2.4. Mozilla - Project Things . 18

3.1. Schema of SEnviro architecture; the pink section represents physical

components, the blue section represents software elements 22

3.2. SEnviro node core and power supply assembly 23

3.3. Fully assembled and deployed SEnviro node. 24

3.4. A screen-shot of the SEnviro Connect view to visualise observations

and alerts. 26

3.5. A screen-shot of the SEnviro Connect view to manage SEnviro nodes. 27

4.1. Schematic view of Web Standards SEnviro integration 29

4.2. 52North SOS Client interface . 30

4.3. Helgoland Map View . 31

4.4. Helgoland Diagram View . 32

4.5. SEnviro message queuing example schema 34

4.6. Postman Response Time Monitoring Interface 42

4.7. JMeter Performance Monitoring interface 43

4.8. cAdvisor interface . 44

5.1. Elcano specifications . 64

5.2. Average Postman response sizes . 66

5.3. Average Postman response times . 67

5.4. Above: Plots from 52North-SOS and FROST container CPU usage

in idle state and during requests of 1000 observations; Below: CPU

metric behaviour from both services during requests of 1000 observa-

tions . 69

5.5. Average CPU usage for different response sizes in FROST and 52North-

SOS . 70

5.6. Memory metrics for 52North-SOS and FROST requests of 1000 ob-

servations . 71

5.7. Memory usage for different request sizes in FROST and 52North-SOS 71

V

List of Tables

4.1. FROST OGC Compliance Testing Status 33

5.1. Built-in operators for the SensorThings Filter operator 61

5.2. Built-in functions for the SensorThings Filter operator 62

5.3. Average HTTP response sizes in Kilobytes [kb] for observation re-

trieval from Postman . 65

5.4. Average HTTP Response Times in Milliseconds [ms] for observation

retrieval from Postman . 67

5.5. 52North-SOS and FROST request types and approximated input and

output object sizes in bytes for SEnviro 74

VI

1. Introduction

The Internet revolution enabled the large-scale interconnection between people across

the globe. Today, technological advance allows objects to interact over the Internet

without the aid of human intervention, creating an Internet of Things. The concept

of the Internet of Things (IoT) first emerged in 1999 and has since been subject to

constant evolution, redefinition and expansion. It has stepped out of its infancy and

is transforming the current Internet into fully integrated future Internet, connecting

billions independent, intelligent devices (Gubbi et al., 2013).

1.1. Context

Rapidly developing device-to-cloud technologies and the increasing deployment of

devices connected to the Internet bring along a new dimension of possibilities and

applications in various fields of human activities, but also imply new challenges in

making disparate solutions and heterogeneous data sources and formats interact

seamlessly, enabling a large-scale IoT (Sutaria and Govindachari, 2013). Widely de-

fined as “a world-wide network of interconnected uniquely addressable objects, based

on standard communication protocols” (Bassi and Horn, 2008), predictions estimate

the IoT will consist of 50 billion connected devices exchanging information over

the Internet by 2020 with an economic impact of 2 trillion US$ (Weinberg, 2014).

IoT applications are developing in major sectors such as smart business, inventory

management, smart homes, transportation and logistics, health-care, security and

surveillance and environmental monitoring. This vast number of ”things” is able to

access and acquire data about devices and their environment, independent of human

interaction (Lazarescu, 2013).

IoT environmental and earth monitoring applications have received increased at-

tention in the recent decades, since they have become a key factor of sustainable

growth world-wide. Among outdoor environment monitoring, observing open na-

ture phenomena can be challenging due to harsh climatic conditions and difficulty of

physical access to the field, resulting in high costs for sensor deployment and main-

tenance (Lazarescu, 2013). These challenges have been addressed by technological

advances in low power integrated circuits and wireless communication. Modern

sensing devices have drastically decreased in size, in cost and in power consump-

tion, resulting in the viability of deploying networks of intelligent sensors. These

Wireless Sensor Networks (WSN) may consist of a large number of nodes with lim-

1

1. Introduction

ited processing capability and storage, and can be equipped with several different

sensors, capable of observing multiple natural phenomena (Gubbi et al., 2013).

The advance in technology for environmental monitoring has also extended into

agriculture and farming (Kamilaris et al., 2016). Highly accurate embedded envi-

ronmental sensors have paved the way for precision agriculture, which applies more

efficient irrigation, targeted use of fertilisers and pesticides and more precise use of

fodder and antibiotics for livestock. This enhanced form of farming potentially leads

increased productivity, greater yields and a reduced environmental footprint. Taking

precision farming even further in an IoT context, the concept of Smart Farming has

emerged for decision-support for farmers. Smart Farming focuses on real-time data

gathering, processing and analysis and on the automation of farming procedures for

an overall improvement of farming operations and management (Kamilaris et al.,

2016).

Modern web technology is advancing at a tremendous rate and demand for re-

search in specialised fields is increasing in order to stay up to date with state-of-the-

art technology. Web-based solutions for environmental and agricultural monitoring

are no exception and researchers are designing and developing new implementations

to enhance precision and efficiency of monitoring systems. A challenge, in the IoT

domain in general as well as in specialised domains, is to achieve system interoper-

ability. Globally defined as ”The ability of two or more systems or components to

exchange information and to use the information that has been exchanged.” (IEEE,

1991), this is a key concept to make environmental monitoring information accessible

to a larger community and is a necessary step to take towards open data. Since IoT

emerged a large variety of vendors, researchers and interested parties have been de-

veloping IoT solutions in parallel and although several device types and protocols for

IoT are available on the market, only few interoperate among each other (Weinberg,

2014). With the growing number of IoT devices the importance of interoperability

is becoming more evident. While the world-wide Internet relies on standard tech-

nologies and protocols like HTTP, SSH etc., these solutions are not designed for

devices with severe power and data loss constraints. Efforts are currently being

made to produce well defined open standards-backed protocols compatible with IoT

environments (Sutaria and Govindachari, 2013).

2

1. Introduction

1.2. Problem Definition

Although the concept of IoT is already established and implementations are mush-

rooming manifold, it still lacks a widely accepted standard model to enable large

scale interoperability. Standardisation bodies and alliances are working on defin-

ing Web Standards and Protocols, and their adoption requires user and developer

consensus through trials and testing. Currently there are several proposed open

standard solutions already available, each differing in slightly in functionality, spe-

cialisation and structure, but having interoperability as a primary goal. With IoT

also having found its way into environmental monitoring, Smart Farming and the

Spatial Web, it is crucial to investigate the potential of existing Web Standards in

an interoperability context within these domain. This includes testing and compar-

ing different standards in order to find the most efficient Web Standard solution.

This study will investigate openly available Web Standards to answer the following

research questions:

”How can Open Web Standards increase interoperability of Smart Farming IoT

solutions?”

”Which Web Standard is the most adequate to enhance interoperability in Smart

Farming IoT solutions?”

1.3. Motivation and goals

In 2015 a prototype for a sensorised platform WSN using open hardware and open

standards was developed in the scope of the SEnviro project (Trilles et al., 2015) at

Universitat Jaume I in Castellón de la Plana, Spain. Three years later SEnviro for

Agriculture (Trilles et al., 2018) was launched, furthering the development of a new

prototype based on the SEnviro platform in an agricultural context to monitor en-

vironmental parameters in vineyards. While it is planned to include open standards

into the project, this task is still pending and will be the focus in this master thesis.

This master thesis aims at investigating potential open Web Standard solutions

for environmental monitoring applications in the IoT. The main contribution of

this study lies in producing an in-depth, contrasting juxtaposition of a selection of

openly available, up-to-date web standard solutions. Open source implementations

of these standards are deployed and adapted to the needs of SEnviro for Agriculture,

then they are compared on performance, on semantic, on flexibility and on scala-

bility levels. The results help determine the most suitable candidate for SEnviro

for Agriculture and potentially for other environmental monitoring and agricultural

3

1. Introduction

IoT applications. A further goal of the study is to enhance the interoperability of

the already established SEnviro for Agriculture web platform.

1.4. Structure

The remainder of this document consists of the following chapters:

2. Background: This chapter contains a full literature review covering topics

relevant to this paper. The chapter will provide insight into previous and

state-of- the-art research in WSN, open standards, communication protocols

and interoperability.

3. SEnviro for Agriculture: The document continues with a detailed sum-

mary of the SEnviro for Agriculture project. This includes information about

the area and context of experimentation, the included hardware and software

architecture and the applied web technologies.

4. Methodology: The Methodology section sheds light on the methodology

used to evaluate the potential of applying open Web Standards in SEnviro. It

focuses first on the selection of open-source Web Standard implementations,

followed up by their deployment in the experimental environment. The chapter

then describes the methods of comparing the deployed instances used in the

study.

5. Web Standard Comparison: This chapter presents the results of the com-

paring methods. The deployed open standard entities are compared on mul-

tiple levels. Performance is assessed quantitatively, Web Standard semantics

will be contrasted and aptitude for SEnviro and Smart Farming projects is

determined.

The terminal section Conclusion & Future Work provides a summary of the

project results and specifies on future work in this field of study.

4

2. Background

This chapter aims to provide an overview of the topics included in this research, in-

vestigates the key concepts and explores work relevant to this study. Furthermore,

it will focus on several technologies crucial to the realisation of this research. While

many of these technologies can be applied in several application fields, this docu-

ment will primarily refer to their application in an environmental and agricultural

monitoring context, since the study was applied to a Smart Farming use case.

Like several other application fields, environmental and agricultural monitoring

have evolved with the technological revolution of the recent decades. While in the

past environmental monitoring depended on the manual collection of field data and

laboratory analyses, smarter, smaller and inexpensive sensors and wireless commu-

nication technology now enable continuous monitoring and real-time applications.

The following sections provide insight into state-of-the-art technologies and key

concepts included in this study’s work.

2.1. Internet of Things

The term Internet of Things was first introduced in supply chain management by

Kevin Ashton in 1999, but in the past two decades the definition evolved to include

a wide range of fields like health care, utilities, transport etc. (Gubbi et al., 2013).

Typically, it is described as a framework of interconnected, uniquely identifiable

devices within the Internet. In the IoT concept every physical thing is reflected in

the information world by its unique virtual identity, enabling it to interconnect and

communicate with each other (Huang and Wu, 2016).

Unique identifiers are key to any kind of communication and transaction among

devices, which in IoT environments are represented by IP addresses in a global net-

work of devices. Furthermore, Uniform Resource Identifiers (URI) are considered

as the primary identifiers in the Physical Web, which consists of devices within the

IoT which are directly accessed and managed by web technologies. Key enabling

technologies for communication among IoT devices are Radio Frequency Identifica-

tion (RFID), Bluetooth Low-Energy beacons (BLE) and optical tags such as quick-

response codes (QR-Codes). These technologies enable power-efficient and remote

device identification (Want et al., 2015).

5

2. Background

The two main capabilities of the IoT are Sensing and Tasking. The sensing

capability enables users to monitor device’s statuses (e.g. On-Off status, battery

status, etc.) and environmental properties of their surroundings (e.g. temperature,

humidity, location etc.). The tasking capability enables users and other devices to

control devices remotely, making the device execute tasks or adjusting its properties.

The integration of these capabilities forms the base of various automatic and efficient

IoT applications (Huang and Wu, 2016).

2.2. Sensing hardware

Sensor nodes in WSN consist of four essential components: one or multiple sensing

units, a processor, a transceiver and a power supply (Trilles et al., 2015). Research in

environmental sensing has furthered the development of these components, resulting

in prolonged node operation time and WSN lifetime (Moiş et al., 2018).

Sensors are devices able to detect changes in the environment, measuring phys-

ical phenomena (e.g. temperature, humidity etc.) transforming them into electric

signals (Spann et al., 2018). Rapid development in sensing technologies is one of

the primary drivers for the IoT. Decreasing cost, higher accuracy, greater power

efficiency and smaller size of sensing devices has led to a large variety of sensor so-

lutions and smart devices for several application fields on the market (Swan, 2012).

Since Smart Farming focuses widely on monitoring plant health, sensors typically

include hardware for measuring soil and air temperature and humidity and optical

sensing units for monitoring plant leaf colour and light intensity.

Environmental monitoring mostly requires humidity and temperature measure-

ment, resulting in a high demand for affordable, easy-to-use integrated humidity

and temperature sensors (Lee and Lee, 2005). Examples for low-cost air tempera-

ture and humidity sensors are the DHT11 and the DHT22, which are small in size

(up to 15.5x25x7.7 mm), in many cases sufficiently accurate (humidity accuracy

2-5%, temperature accuracy up to ±0.5ºC) and costs under 10 US$ on the market.

For effective monitoring in the field, sensors are complemented by microcontroller

boards. Microcontrollers contain all the necessary components which allow it to op-

erate standalone, such as the microprocessor (CPU), memory, interface controllers,

timers and one or multiple input-output pins (Gridling and Weiss, 2007). Several

microcontroller boards are now available on the market, including specific features

and functionalities depending on their field of usage. Among the most popular

boards are the Arduino Uno and the Raspberry Pi 2 (Spann et al., 2018).

6

2. Background

2.3. Wireless Sensor Networks

The advances in monitoring hardware go hand in hand with more effective ways

for devices to connect and communicate among each other. While environmental

monitoring was traditionally based on field sampling, on laboratory analysis or on

off-line sensors and field loggers requiring manual data downloading, Web technology

now enables real-time monitoring with sensor networks (Kotamäki et al., 2009).

Environmental monitoring forms the backbone of Smart Farming, and the bulk of

monitoring applications rely on WSN due to their flexibility, scalability and reduced

installation and maintenance costs (Moiş et al., 2018). Originally mostly based

on closed or proprietary systems with limited communication to the outside world,

modern WSNs use the Internet Protocol to connect WSN nodes to the IoT (Mainetti

et al., 2011).

WSN include generic nodes and gateway nodes. Generic (multi-purpose) nodes

are equipped with devices capable of taking measurements from the environment.

Gateway nodes receive data from generic nodes and transmit them to a central

station, which requires the nodes to have greater processing power and power supply.

As shown in Figure 2.1, key to enabling WSN applications to connect to sensor

technologies can be classified into three component groups: system, communication

protocols and services (Yick et al., 2008).

Every node is a self-organising, self-managing system. WSN platforms are de-

signed to support a a variety of sensors, radio components, processors and storage.

The system software, such as the operating system, has to be designed to support

the varying sensor platforms. Further core system features must include automatic

management, longevity optimization and distributed programming. Organisations

like the Institute of Electrical and Electronics Engineers (IEEE) and the Ameri-

can National Standards Institute (ANSI) develop technology standards for IoT ad-

dressing these issues, with standards like IEEE 802.15.4, ZigBee, WirelessHART,

ISA100.11, IETF 6LoWPAN, IEEE 802.15.3 and Wibree being among the most fre-

quently used. These standards typically include dedicated communication protocols

and aim at increasing IoT interoperability. WSN nodes use communication protocols

to communicate with one another, which need to be energy-efficient and reliable in

transporting data packages. Network services include node localisation (e.g. GPS,

RIPS etc.), synchronisation, coverage and data compression and aggregation (Yick

et al., 2008).

7

2. Background

Figure 2.1.: WSN components overview (Mainetti et al., 2011)

8

2. Background

2.4. Machine-to-Machine Communication &

MQTT

Machine-to-Machine (M2M) communication is essential in the IoT, enabling intel-

ligent devices communicate and make decisions without human interaction. M2M

applications impose new limitations on communication solutions due to the type of

data traffic generated. M2M data traffic typically transfers small data packages,

but they are large in number and involve a many connected devices. Even though

the messages are usually short, M2M services need to be highly reliable and able to

handle delays. Further challenges are potential computing and power constraints,

which depend on device hardware (Latvakoski et al., 2014).

Devices in the IoT are exposed on the World Wide web using the lingua franca,

namely the Hyper Text Transfer Protocol (HTTP), and their accessibility typically

builds on Representational State Transfer (REST) principles. While HTTP was

designed for client-server communication and transferred data packages are gener-

ally large, embedded devices usually can’t handle high-level protocols and require

lightweight binary protocols and bidirectional communications (Collina et al., 2012).

The websocket protocol, standardised by the Internet Engineering Task Force

(IETF) in 2011, allows bidirectional communications and several M2M messaging

protocols are now available. Research in REST-like applications in constrained

environments have produced protocols like the Constrained Application Protocol

(CoAP), which enables resource constrained applications to use HTTP interac-

tion methods (GET, POST, PUT, DELETE). Furthermore, standards like 6lowpan

(IPv6 Low Power wireless Area Networks) can handle Maximum Transmission Unit

(MTU) sizes and compress IPv6 headers from 60 bytes to 7 bytes. Message protocols

can be broker-based, such as Data Distribution Service (DDS), Advanced Message

Queuing Protocol (AMQP) and STOMP, or broker-less, such as ZeroMQ. Finally,

the Message Queuing Telemetry Transport (MQTT) protocol enables M2M appli-

cations to exchange lightweight messages in publish/subscribe patterns (Latvakoski

et al., 2014). MQTT messages are binary based, meaning the control elements are

binary bytes instead of being text strings. Byte messages have considerably smaller

payloads than e.g. JSON strings and therefore ensure messages remain lightweight.

The MQTT protocol implements various levels of Quality of Service and boasts

high speed and power efficiency. It is based on the concept topics to which clients

can publish updates or subscribe for receiving updates from other clients. With

rapidly increasing popularity, MQTT libraries now support major IoT development

platforms (e.g. Arduino), programming languages and for iOS and Android mobile

platforms. The MQTT community claims that a publish/subscribe protocol is the

9

2. Background

key component to build the future IoT (Collina et al., 2012).

2.5. Interoperability

The number of embedded devices within the IoT is increasing drastically and many

IoT producers develop distinct web service protocols, only supported by their pro-

prietary IoT devices. This results in closed IoT silos, each having its complete IoT

frameworks, including devices, gateways, services and applications. An upcoming is-

sue in IoT is that elements in different IoT silos cannot connect, leading to scattered

IoT solutions with incompatible, co-existing protocols (Huang and Wu, 2016).

Interoperability in the rapidly growing IoT ecosystem is a challenging yet cru-

cial aspect of successful IoT. Highly interoperable protocols must address several

challenges. Firstly, the translation solution must not impose any pre-configuration

of applications. Furthermore, it should be scalable, capable of running hundreds

of connections within cloud environments. There are also security and verifiability

requirements to uphold. Finally, the interoperability solution must be capable of

verbose reporting and supporting Quality of Service parameters (Derhamy et al.,

2017).

Approaches to address IoT interoperability have been made by numerous research

projects in industry and academia. Solutions include the development of Middleware

(e.g. Starlink, INDISS, uMiddle) and protocol proxies (e.g. MuleSoft, IBM MQ,

Artix), yet they shift the interoperability dilemma rather than solving it. Currently,

it is improbable that a single IoT communication protocol prevails as a globally

accepted solution, yet there have been efforts to do so as proposed in Derhamy et al.

(2017).

An important actor in interoperability research in the geospatial field is the Open

Geospatial Consortium (OGC), an organisation of over 260 members from the aca-

demic and industrial sectors, as well as governmental agencies. Their primary goal

is to find participatory concensus for openly available interfaces and encodings for

the Geospatial Web. The OGC provides a set of Geospatial Abstract Specifications

for different types of geographical data, upon which the OGC’s interoperability

standards build on (Reed, 2004).

10

2. Background

2.6. Open & Sensor Web Standards

Geo-scientists have been uploading geographical data for sharing and exploration

since the dawn of the World Wide Web. M2M data harvesting has led to community-

adopted frameworks, common standards and enriched metadata, significantly im-

proving observational accuracy, sensor discovery and configurability (Fredericks and

Botts, 2018). Sensor systems contribute to a large part of geospatial data and gen-

erally include in-situ sensors, moving sensor platforms or networks of static sensors

(Open Geospatial Consortium, 2007).

The Open Geospatial Consortium (OGC) is one of the main actors in the field

of Sensor Web Standards. The OGC Sensor Web Enablement (SWE) supports

the ability to fully describe the processes used in producing observations and their

corresponding sensors. Furthermore, it includes machine-actionable access to web-

accessible observations and sensor tasking capabilities. SWE builds on machine-

readable encoding like Sensor Model Language (SensorML), Observation & Mea-

surement (O&M) and Geography Markup Language (GML)(Fredericks and Botts,

2018).

OGC Web Standards are a tempting choice for Smart Farming applications,

since this organisation specialises in publicly available standards development to

geo-enable the web. In the scope of the OGC’s SWE, the organisation released

a set of services to facilitate the exchange of sensor data between SWE enabled

nodes and to allow clients and servers to arrange, encode and transfer sensor data in

a semantically enabled way (Open Geospatial Consortium, 2019). This document

will consider the well- established Sensor Observation Service (see 2.6.1 Sensor Ob-

servation Service and the more recent SensorThings API (see 2.6.2 SensorThings

API).

Although the OGC offers the most complete open standards for sensor observation

and boast most features and functionality, there are also non-OGC solutions for

environmental monitoring currently available. Some more recent solutions address

challenges more related to the IoT paradigm, designed for connecting devices to

the World Wide Web in a light-weight and flexible, machine-readable format. This

study provides a closer look into the Web Thing API (see 2.6.3 Web Thing API), a

proposed data model and API by the Mozilla Corporation and intends to investigate

its potential in environmental monitoring applications like SEnviro.

11

2. Background

2.6.1. Sensor Observation Service

The Sensor Observation Service (SOS) was approved by the OGC in 2007 as an offi-

cial open standard for handling sensor data in the World Wide Web. SOS provides a

standardised interface using SOAP XML binding for managing and retrieving meta-

data and observations from heterogeneous sensor systems. It is part of the OGC

Sensor Web Enablement framework of standards and leverages the SWE data mod-

els and XML encodings for Observation & Measurement (O&M), Transducer Model

Language (TransducerML) and Sensor Model Language (SensorML). The SOS devel-

opment approach aims to describe sensing devices, sensor systems and observations

in a way that supports all types of sensors and the requirements of users of sensor

data. SOS is therefore designed to match the O&M data model (see Figure 2.2)

(Open Geospatial Consortium, 2007).

2.6.1.1. SOS data model

The essential components in SOS are the following:

• Procedure: Produces the measured value of an observation. This can be a

single sensor, a sensor platform or a numerical simulation process.

• Offering : Logical grouping of observations related to each other and belong to

a common service. For example, the relation can be spatial (share the same

location or platform), temporal (created in the same time interval) or due to

corresponding properties (e.g. measure the same phenomena)

• ObservableProperty : A procedure can have multiple observed properties, which

represent the physical phenomena measured by a sensor (e.g. temperature,

humidity etc.)

• FeatureOfInterest : Features of interest (FoI) represent identifiable objects on

which sensor systems are making observations. These should include spatial

information to allow the location to be harvested by OGC service registries.

• Observation: Contains a measurement value for an observed property of an

object under observation (FoI). Observation must include the time stamp when

the observation was created.

12

2. Background

Figure 2.2.: O&M data model extract (Open Geospatial Consortium, 2007)

13

2. Background

2.6.1.2. SOS operations

SOS includes a set of operations for retrieving sensor data and metadata. The three

mandatory core operations are:

• GetCapabilities : This operation provides access to metadata and details about

the service’s capabilities. Either an HTTP GET or POST request is used to

retrieve the service Capabilities document, an XML file containing metadata

about the service, like unique identifiers, unique groupings of observations

(offerings) and physical phenomena measured by the sensors (observedProp-

erties)

• DescribeSensor : The unique identifiers retrieved in the Capabilities document

can be used in the DescribeSensor operation to request sensor metadata in

SensorML format if the procedure with the identifier is present in the service.

• GetObservation: This operation provides access to the observation data made

by sensors in the service. A request file containing information from the Ca-

pabilities document must be sent via HTTP POST to the server, which then

returns the requested observations. Details such as the offerings or the ob-

servedProperties, as well as spatial and temporal filters can be included as

query parameters. SOS returns the requested observation data in O&M for-

mat.

To make SOS configurable for any type of sensor observation project, it also

provides transactional operations to insert sensors and observations:

• RegisterSensor : This operation allows users to register sensors in SOS. An

XML file containing the information about the new sensor in SensorML en-

coding is sent to the service via HTTP POST request.

• InsertObservation: Observation data from sensors is inserted into SOS via

HTTP POST, using an XML file following the O&M specification. The file

must specify the procedure which produced the measurement, which in turn

must be present within the service.

2.6.1.3. SOS implementations

There are currently several open source implementations of SOS. Among the most

developed, openly available SOS-implementations are:

• istSOS : SOS server implementation written in python, developed at the Insti-

14

2. Background

tute for Earth Sciences at SUPSI1 (University of Applied Sciences and Arts

of Southern Switzerland). It a user-friendly interface for service configuration,

a REST API and data exploration. The latest istSOS2 release (istSOS-2.3.1)

was in February 2016. istSOS3 is in development, but still in its early stages.

• 52North-SOS : This Java implementation of SOS is developed at 52North

GMBH2, based in Münster, Germany. It includes a variety of extended fea-

tures, including support for INSPIRE download service and specialised XML

encodings (e.g. WaterML 2.0, GroundWaterML 2), code translators for re-

quests in JSON, SOAP, KVP and POX, a REST API and an extensive client

interface for service configuration and data exploration. 52North releases new

versions of the software every few months, the latest one (SOS 4.4.4) available

since December 6, 2018.

2.6.2. SensorThings API

In 2016 the OGC approved the SensorThings API as an official Web Standard. It

provides an open standard-based and geospatial-enabled framework to store, manage

, expose and use IoT-based sensor observation data over the web. The SensorThings

developers boast it furthers the development of premium quality, light-weight ser-

vices that cover a broader spectrum of applications. This lowers the risks, time and

cost across IoT device life cycles and enhances compatibility in device-to-device and

device-to-application connections (Open Geospatial Consortium, 2016).

2.6.2.1. SensorThings data model

The SensorThings API data model is based on the OGC Observation & Measure-

ment model. It consists of a set of interrelated entities, depicted in Figure 2.3. In

contrast to SOS, entities are encoded using JSON format.

Brief specifications of the entities as described in the SensorThings API manual

in Open Geospatial Consortium (2016) are provided below:

• Thing : The Thing entity follows the definition by the International Telecom-

munication Union (ITU): ”...with regard to the Internet of Things, a thing is an

object of the physical world (physical things) or the information world (virtual

things) that is capable of being identified and integrated into communication

networks”.

1http://www.supsi.ch/ist (Accessed 19.02.2019)
2https://52north.org (Accessed 19.02.2019)

15

2. Background

• Location: Contains information about the location associated with a corre-

sponding Thing and includes geographical information using GeoJSON en-

coding.

• HistoricalLocation: Provides the times of the current and previous Locations

of a Thing.

• ObservedProperty : Specifies the observed phenomenon of measurements.

• Datastream: Represents the logical grouping of a set of observations and are

associated with a single Thing, a single observedProperty and a single Sensor.

• Sensor : Represents the instrument that observes a property or phenomenon.

A Sensor can be associated with multiple datastreams.

• FeatureOfInterest : The Feature of Interest (FoI) is the feature being observed.

In many cases the FoI can be identical to the Location of a Thing. In the case

of remote sensing, it can be the geographical area or volume being sensed.

• Observation: Representation of the act of measuring the value of a property

at a specified time. Each Observation is associated with a single datastream.

Figure 2.3.: SensorThings data model (Open Geospatial Consortium, 2016)

16

2. Background

2.6.2.2. SensorThings operations

SensorThings API data and metadata can be created, read, updated and deleted

with the HTTP protocol (POST, GET, PATCH, DELETE). Each entity has a

unique ID and is accessible through the REST API using URLs. The URLs can

be chained to access interrelated entities and can be extended using a large set of

query parameters to pinpoint the desired JSON objects, as in the example query

URL below.

http://elcano.init.uji.es:8082/FROST-Server/v1.0/Things(2)/

Datastreams(12)/Observations?$select=phenomenonTime,result&$

filter=overlaps(phenomenonTime,2018-11-28T00:00:00.000Z/

2018-12-10T00:00:00.000Z)

The example URL presented above requests the observations produced in the

Datastream with ID = 12, associated with the Thing with ID = 2. Furthermore, it

will only consider observations between 2018-11-28 and 2018-12-10 and only select

the phenomenonTime and result attributes for the output JSON.

2.6.2.3. SensorThings implementations

There are several server implementations of the SensorThings API available as open

source software. Among the most established are the following:

• GOST : Go SensorThings was developed by Geodan 3 in Golang (Go) pro-

gramming language. The implementation development is still ongoing, but

it features the complete SensorThings Sensing functionality and includes a

dashboard for data visualisation.

• Mozilla-SensorThings : The Mozilla Corporation started developing a Node

implementation of SensorThings, but the development has been stalled since

February 2017.

• FROST : The Fraunhofer Open-Source SensorThings (FROST) was devel-

oped by the Fraunhofer IOSB 4 (Institute of Optronics, System Technologies

and Image Exploitation) in Java. FROST-developers are still working on the

project to extend its features in accordance to the OGC SensorThings API

3www.geodan.com (Accessed 19.02.2019)
4www.iosb.fraunhofer.de (Accessed 19.02.2019)

17

2. Background

Web Standard.

2.6.3. Web Thing API

In June 2017 the Mozilla Corporation revealed their activity in building the Web of

Things. In February 2018, it announced the kick-off of Project Things, an experi-

mental framework of software and services for connecting IoT devices to the web.

Project Things consists of three core components: The Things Gateway, the Things

Cloud and the Things Framework.

Figure 2.4.: Mozilla - Project Things5

In order to connect these services Mozilla is developing the Web Thing API. The

Web Thing API proposes a plain JSON serialisation to describe Things and a HTTP

and WebSockets protocol binding. Both are meant to complement W3C abstract

data model and API for the Web of Things. Mozilla’s Project Things provides utility

for the Web Thing API for major programming languages including Java, Node.Js,

Python and Arduino. While the plain standard does not support time series data

storing and exploration, there have been projects to extend the API to use time

series databases.

5hacks.mozilla.org/2017/06/building-the-web-of-things (Accessed 11.02.2019)

18

2. Background

2.6.3.1. Web Thing data model

The Web Thing API is designed to make a highly configurable device network. Web

Thing API defines embedded devices as Things. Things can be assigned unlimited

Properties, Actions and Events :

• Thing : Representation of a physical device within the World Wide Web.

• Properties : Web Thing properties represent a single property of a device.

These can be configured to be read-only or writable. A property can take

different data types (boolean, integer, array etc.) in JSON format, but can

also be images or video streams.

• Actions : Actions represent functions that can be carried out on a device. This

can be to adjust device properties or to affect a required change of state.

• Events : A device can emit events that may occur at a certain change of state,

for example when a device property reaches a certain value.

19

3. SEnviro for Agriculture

Agriculture has been a fundamental industry since the dawn of humanity. Over mil-

lennia it has been subject to constant change due to human efforts of improvement.

Today, the global human population is greater than ever before and the importance

of developing more efficient agricultural systems is considered of paramount im-

portance. Innovative agricultural systems apply integration of various technologies,

such as automated systems, wireless communication, sensor systems and mobile ap-

plications, eventually enabling the IoT in the agricultural domain (Kamilaris et al.,

2016).

This chapter contains an introductory section for state of the art IoT applica-

tions for Smart Farming, then provides a detailed description of the SEnviro for

Agriculture project, which was selected as use case scenario for the development of

this master thesis.

3.1. Smart Farming

Like in several other fields the IoT shows great potential in transforming the agri-

cultural industry by connecting it to the web. Embedded WSN enable new methods

to observe and interact with physical objects and promise unprecedented ways to

obtain, organise and consume information. Research projects in IoT and WSN

applications for agriculture have been numerous in recent decades.

In an example project for monitoring vineyards, Burrell et al. (2004) developed

a prototype for sensing nodes communicating with farmers using Short Message

Service (SMS) communication. The system focuses on temperature and humidity

readings and is built on open software and hardware. An Arduino1 board with an

added GPRS shield2 provides GSM digital cellular network support.

A further example using Arduino microcontrollers in smart farming is presented in

Devi et al. (2018), an irrigation support system for farmers in India. The developed

WSN nodes include temperature and humidity sensors and a WiFi module to send

observations to a web server, which farmers can access remotely. A GSM module

also sends SMS notifications when observations reach threshold levels.

1www.arduino.cc (Accessed on 12.02.2019)
2http://wiki.seeedstudio.com/GPRS Shield V2.0 (Accessed on 12.02.2019)

20

3. SEnviro for Agriculture

Zhou et al. (2011) propose a sensor network system that connects agriculture to

the IoT, focusing on system reliability, longevity, remote management, interoper-

ability and low cost. Sensor nodes in farmlands and greenhouses periodically take

relevant environmental measurements, which are collected by a relay node and sent

to the communication server via a gateway instance. On the server data is stored

in a database, where it is analysed by a Decision Support System (DSS) that pub-

lishes relevant guidance for farmers such as notification and alerts. The system

hardware and software rely mostly open source products. The ATmega1281 3 mi-

croprocessor unit and AT86RF230 4 RF transceiver ensure power-efficient processing

and long-range communication in sensor and relay nodes. TinyOS 5 low-power proto-

cols guarantee resource efficiency on software level. The study shows high potential

in open-source products for agricultural IoT applications, especially for setting up

links among agronomists, regardless of their geographical location.

Smart Agriculture has also been applied in plant disease detection, such as in the

research done in Mauri et al. (2011). This project takes a remote sensing approach

to detect disease indicators in vineyard foliage. The proposed WSN consists of nodes

equipped with sensors taking pictures of vines, which then are processed by the node

in the field. If leaf status anomalies, such as a high percentage of brown leaves, are

detected the node sends a message to the farmer via a relay node. The Netgear

WNDR3700 6 wireless router provides the necessary processing capacity for on-site

image processing.

In a further application of smart farming in viniculture by Anastasi et al. (2009).

The system combines two WSNs, one for monitoring vineyards and other for moni-

toring the wine cellars. Field node sensors measure temperature, light exposure (e.g.

Photosythetically Active Radiation) and humidity and additional sensing units on

the border of the field measure wind speed and direction. Nodes in the winery mea-

sure temperature and relative humidity, which are necessary parameters to control

ambient conditions for wine aging. Field nodes are built on the TelosB7 due to its

broad transmission range. Cellar nodes consist of MICAz 8 motes coupled with an

MTS310 9 sensor board. Data from both networks is sent to a central storage unit

and analysed for further decision support. The project results triggered farmers to

perform corrective actions on their agricultural fields.

3www.microchip.com/wwwproducts/en/ATmega1281 (Accessed on 12.02.2019)
4www.microchip.com/wwwproducts/en/AT86rf230 (Accessed on 12.02.2019)
5http://webs.cs.berkeley.edu/tos (Accessed on 12.02.2019)
6www.netgear.com/support/product/WNDR3700v1.aspx#docs (Accessed on 12.02.2019)
7www.advanticsys.com/shop/mtmcm5000msp-p-14.html (Accessed on 12.02.2019)
8www.memsic.com/userfiles/files/Datasheets/WSN/micaz datasheet-t.pdf (Accessed on

12.02.2019)
9www.memsic.com/wireless-sensor-networks/MTS310 (Accessed on 12.02.2019)

21

3. SEnviro for Agriculture

3.2. SEnviro components

Based on the SEnviro project from 2015, SEnviro for Agriculture takes the previ-

ously developed environmental monitoring system further and puts it into an agri-

cultural context. The primary objective of SEnviro for Agriculture is to design and

develop a full system for monitoring crops to improve the production quality and

yield. The SEnviro for Agriculture monitoring system specialises in observing vine-

yards. For the sake of simplicity, the remainder of this chapter refers to SEnviro for

Agriculture merely as SEnviro.

Figure 3.1 shows an overview of the SEnviro architecture and components.

Figure 3.1.: Schema of SEnviro architecture; the pink section represents physical
components, the blue section represents software elements

3.2.1. SEnviro nodes

At hardware level (represented in the pink section in Figure 3.1), the SEnviro sen-

sorised platform was designed as a smart object, consisting of a similar hardware

assembly as the platform presented in Trilles et al. (2015). SEnviro node compo-

nents can be categorised into four groups depending on their functions: core, sensors,

power supply, and communication.

The current SEnviro node design differs from its predecessor mainly in its com-

22

3. SEnviro for Agriculture

ponents. More concretely, SEnviro nodes were enhanced by using the Electron

Particle10 board as a core. The Electron board has an open source design with high

performance. Figure 3.2 shows the core of the proposed node.

Figure 3.2.: SEnviro node core and power supply assembly

Among other improvements to the system presented in Trilles et al. (2015), SEn-

viro nodes in SEnviro for Agriculture most significantly excel in communication

capabilities. The Electron Particle provides 2G and 3G connectivity, rendering it

possible for SEnviro nodes to be successfully deployed in any area with mobile data

coverage.

SEnviro nodes support Over-The-Air updates for internal software. This feature

enhances node maintenance profoundly, allowing nodes to support potential future

functionalities and behaviours without having to visit nodes at their locations and

do updates manually. To offer an energetically efficient solution a 3.4W solar panel

with a lithium battery of 2200 mA provides power to the system. An energy policy

for standalone nodes is used to optimise the battery life. The Particle API exposes

the battery readings, which are used to adapt the rate of data deliveries depending

on the rate of charging and the battery level. To ensure unique node identification,

a Quick Response (QR) code is assigned to each SEnviro node, which is used by

SEnviro Connect (see 3.2.2 SEnviro Connect) to register a device and start collecting

data. A 3D model was designed for a 3D-printable protective box, which encloses

hardware components and shields them from external hazards.

10docs.particle.io/electron (Accessed on 12.02.2019)

23

3. SEnviro for Agriculture

SEnviro nodes contain sensors for measuring eight meteorological phenomena

directly related to plant diseases. These include soil and air temperature, soil and

air humidity, atmospheric pressure, rainfall, wind direction and speed. The fully

assembled and deployed SEnviro node is represented in Figure 3.3.

Figure 3.3.: Fully assembled and deployed SEnviro node.

3.2.2. SEnviro Connect

The blue section in Figure 3.1 represents all the elements of SEnviro Connect with

their corresponding relations. SEnviro Connect can be divided into three layers:

data, services and applications. The most important part resides in the services

layer, which can be split into five different components: broker, micro-services

(RESTful API), persistence module, analytics module and cloud functions.

Firstly, the broker is used as a bridge to connect SEnviro nodes with the soft-

ware platform. The broker is based on a RabbitMQ11 instance, which supports

MQTT publish-subscribe messaging (see 2.4 Machine-To-Machine Communication

& MQTT).

11www.rabbitmq.com (Accessed on 12.02.2019)

24

3. SEnviro for Agriculture

The micro-services component is used to provide various functionalities or capa-

bilities that SEnviro Connect offers as a platform. In the current state of develop-

ment, three functionalities have been considered: ingestion, query and alert. The

ingestion ensures the access and importation of sensor data for immediate use, ergo

for analysis or storage in a database. The query micro-service can retrieve sensor

data to be consumed by clients from the application layer using a RESTful API.

Finally, alert micro-service collects all alerts produced by the analytics module to

transfer this information to final layer.

All micro-services were developed using Micro12. Micro can build cloud-native appli-

cations with ease and provides an opinionated framework for developing applications

with a pluggable architecture.

The third component is the persistence module, which is responsible for storing

and retrieving data from SEnviro nodes. Ingestion and query micro-services are con-

nected to this module. Both components are provided by InfluxDB13, an open-source

time series database. InfluxDB Go-based database management system optimised

for fast, high-availability storage and retrieval of time series data.

The analytics module’s primary objective is to define and execute analytics over

the incoming sensor data from SEnviro nodes. The alert micro-service connects with

this module, since alerts may depend on results from the analytics. This feature was

installed using Kapacitor, an extension of InfluxDB for alerting and data processing.

SEnviro Connect provides two kinds of analytics: one type focuses on the SEnviro

node to monitor the node state, such as the battery or last connection, while the

other type handles the vineyard use case. The latter bases its analytics on disease

models and is supported by a task alert in the analytics module. These task alerts

are defined using bibliographic works and depend on meteorological phenomena.

All the analytics work in real-time. When a new observation arrives, it is used to

calculate each task alert and triggers an alarm for certain types of events. Each task

alert is defined using TICKscript.

To conclude with the service layer, different cloud functions were defined to

manage and build some ancillary features, such as user, device or notification man-

ager. The user manager allows creating, editing, and removing users and assigning

SEnviro nodes. The device manager creates, edits and removes SEnviro nodes.

Moreover, the notification manager can launch notifications to clients, such as new

alerts detected by the analytics module.

The data layer is responsible for the storage of all required data for the system,

including data from the nodes, from analytics or from auxiliary data. It consists

12https://micro.mu (Accessed on 19.02.2019)
13www.influxdata.com (Accessed on 12.02.2019)

25

3. SEnviro for Agriculture

of two Influx databases for time-series data and a Firebase database, following a

serverless approach.

Finally, the applications layer exposes the system on the client side. An Angular14

web application built on modern web technologies, such as HTML5, JavaScript or

Cascading Style Sheets (CSS) includes a responsive client that adapts to a device’s

properties (desktop, mobile or wearable). The web application provides two basic

functionalities. One focuses on data visualisation, including a map and graph view

of nodes and historical sensor data, and alerts from the disease models. The other

provides a node management interface where users can insert nodes and edit their

details.

Figure 3.4.: A screen-shot of the SEnviro Connect view to visualise observations
and alerts.

14https://angularjs.org (Accessed 20.02.2019)

26

3. SEnviro for Agriculture

Figure 3.5.: A screen-shot of the SEnviro Connect view to manage SEnviro nodes.

27

4. Methodology

As mentioned in section 2.6 Open & Sensor Web Standards, there are currently sev-

eral organisations doing research in IoT standards and many solutions for a variety

of use cases are now openly available on the Internet. Although it is planned to

increase interoperability by open standard integration in SEnviro for Agriculture,

this feature is still missing in the project. This study aims at increasing SEnviro’s

interoperability by integrating a selection of Web Standards, contrasting the results

and selecting the most adequate.

For this project it was decided to select one implementation each for the OGC’s

SOS and SensorThings API Web Standards and integrate them into the present

SEnviro architecture. These two standards fulfil the needs of environmental mon-

itoring applications, which require spatial referencing and time series functionality

in order to see how observed phenomena behave over time on the monitored feature

of interest. The experiment was taken further by deploying the Web Thing API by

Mozilla. In contrast to OGC Sensor Web Standards, Web Thing does not support

time series data storing. Nevertheless, it was considered of importance to evaluate

the feasibility of extending this still emerging Web Standard for environmental mon-

itoring applications. To embed the instances into the SEnviro architecture, adapter

scripts were created that connect them with the SEnviro message broker.

For determining the suitability of the individual standards, the three standards

instances were deployed in a dedicated experimental environment and compared in

an in-depth contrasting juxtaposition. Section 4.1 Experimental Environment de-

scribes the environment and architecture for the instance deployment. In section 4.2

Deployed Web Standard Implementations, the Open Web Standard implementations

included in the study are described, highlighting their key features, semantics and

characteristics. The final section of this chapter explains the process of comparing

the Web Standard deployments.

28

4. Methodology

4.1. Experimental Environment

All Web Standard implementations and their adapters were deployed on Elcano,

a Linux server provided by the Institute for New Imaging Technologies (INIT) at

Universitat Jaume I.

Elcano hosts webapps for several projects, which run on the Docker Enterprise

Container Platform, a powerful open source tool for operating-system level virtu-

alisation. Docker allows developers to create, deploy and run applications in con-

tainers. Containers package applications with all the necessary components, such

as libraries, files and other dependencies, avoiding incompatibilities and assuring

that the application runs smoothly in any other Docker environment. Further-

more, unlike conventional Virtual Machines, Docker containers are run by a single

operating-system kernel, making them more lightweight.

A Docker container for each Web Standard application (see 4.2 Deployed Web

Standard Implementations) was deployed on Elcano. Web standard adapter scripts

(see 4.3 SEnviro Web Standard Integration) connecting the applications to SEnviro

RabbitMQ Broker (located on a dedicated SEnviro server) were also deployed as

separate Docker containers, distributing the incoming observations from SEnviro

nodes to the corresponding services. In Figure 4.1 the highlighted section represents

the addition to the already established SEnviro architecture.

Figure 4.1.: Schematic view of Web Standards SEnviro integration

29

4. Methodology

4.2. Deployed Web Standard Implementations

The following sections shed light on the Web Standard applications deployed for

this project. The first section introduces 52North-SOS, based on the OGC’s Sensor

Observation Service. It is followed up by FROST, an implementation of the OGC’s

SensorThings API. For the Web Thing API there was no need to deploy a previously

established implementation, so it was omitted in this section.

4.2.1. 52North-SOS

Creating an application that makes use of the Sensor Observation Service would

demand time and resources which are outside of the scope of this study. Instead,

an existing SOS-implementation was selected and deployed.

During the selection process istSOS 2.3.1 and 52North-SOS 4.4.2 were deployed

and tested for SEnviro in separate Docker containers. istSOS was favoured at the

beginning since it is written in Python, which was also used for the development of

the adapter scripts. Eventually 52North-SOS was selected due to several reasons.

Figure 4.2.: 52North SOS Client interface

30

4. Methodology

52North-SOS features the SOS test client (see Figure4.2), a tool for generating

and testing sample documents for HTTP requests using several formats including

JavaScript Object Notation (JSON). Since JSON objects are structured the same

way as Python dictionaries, process automation could be rendered more efficiently in

the SEnviro integration. The decision was also influenced by the fact that 52North-

SOS includes tested Docker configuration files, while with istSOS2 the Docker files

had to be created using outdated installation manuals, making the deployment prone

to errors. A further reason for the selection of 52North-SOS was the lack of istSOS2

documentation concerning certain necessary operations. Lastly, also the fact that

52North-SOS is under ongoing development implies more promising support by the

developer community.

52North-SOS runs on an Apache Tomcat1 web server and stores data in a PostGIS

extended PostgreSQL database. The downloadable bundle also includes a user-

friendly data exploration tool, the Helgoland Client. The extensive and user-friendly

application includes map and diagram visualisation for SOS data (see Figures 4.3

and 4.4). After some trials with the latest SOS version at the time of the selection

process (52North-SOS 4.4.3) and encountering some inconsistencies with the setup

in Docker, 52North-SOS 4.4.2 was successfully deployed. The updates in version

4.4.3 were considered as irrelevant to the scope of this study.

Figure 4.3.: Helgoland Map View

1http://tomcat.apache.org (Accessed 19.02.2019)

31

4. Methodology

Figure 4.4.: Helgoland Diagram View

32

4. Methodology

4.2.2. FROST-Server

After some in-depth research about potential SensorThings implementations, FROST

was eventually selected for the integration into SEnviro. The decision was mostly

based on the fact that FROST includes all the features in the OGC compliance

test suite and passed it with a full success rate (see Figure4.1). It includes MQTT

extensions for creating and updating data. Furthermore, FROST provides extensive

documentation and deployment resources for easy deployment in Docker environ-

ments.

Conformance Class Reference Implemented
Test

Status
Sensing Core A.1 Yes 6/6

Filtering Extension A.2 Yes 42/42
Create-Update-Delete A.3 Yes 14/14

Batch Request A.4 Yes 0/0
Sensing MultiDatastream Extension A.5 Yes 18/18

Sensing Data Array Extension A.6 Yes 3/3
MQTT Extension for Create and

Update
A.7 Yes 4/4

MQTT Extension for Receiving
Updates

A.8 Yes 13/13

Table 4.1.: FROST OGC Compliance Testing Status2

By default the java-based FROST-Server application launches an Apache Tom-

cat, but there are also options to configure web server specifications. The application

stores all data in a PostGIS extended PostgrSQL database. Fraunhofer IOSB pro-

vides several FROST packages, which either comprise HTTP and MQTT operations

together or keep them as individual bundles. FROST-Server does not include data

visualisation applications, focusing more on the core functionalities of the API.

4.3. SEnviro Web Standard Integration

As mentioned in chapter 3 SEnviro for Agriculture, SEnviro nodes transmit new

values for observed phenomena using MQTT within a RabbitMQ broker. In order

to store data in real-time, incoming messages from SEnviro must caught, decoded,

processed and posted to the deployed open standard instances. In turn, the deployed

standard instances have to be configured for SEnviro beforehand in order to correctly

store the data. This involved general service configuration and inserting stations and

2www.github.com/FraunhoferIOSB/FROST-Server (Accessed 11.12.2018)

33

4. Methodology

their properties, which was automated using setup scripts and JSON files containing

the information for each station.

For the integration of Web Standards into SEnviro, adapters had to be created for

each Web Standard. In the case of the the OGC standards, SOS and SensorThings,

this consisted connecting to the SEnviro Broker to intercept messages, decode them,

convert them into the right format and post them to the corresponding service via

the REST API. Scripts were created to in Python for these operations, making use

of Pika, a Python library to connect to RabbitMQ brokers.

RabbitMQ uses topics to categorise messages, which can be chained into routing

keys. Pika uses the routing key to intercept messages with specific topics by using

* (star) to substitute exactly one word and # (hash) to substitute zero or more

words. SEnviro routing keys are structured as current/stationID/phenomenon. For

instance, a SEnviro routing key could be:

current/4e0022000251353337353037/SoilHumidity

Figure 4.5.: SEnviro message queuing example schema

In the example in Figure 4.5, queues Q1 and Q2 within SEnviro Connect inter-

cept messages from SEnviro nodes for the message consumers C1 and C2. Q1 queues

all messages from station 270043001951343334363036. Q2 queues all messages from

all stations.

As mentioned above, the SEnviro node ID and the phenomenon specification

is included in the routing key. SEnviro byte messages are structured in a JSON

manner and contain only a time and a value attribute, as demonstrated in the

following routing key and example message:

current/4e0022000251353337353037/AirTemperature

{"time":"2019-01-17 13:43:00","value":"6.581871"}

Web Standard adapter scripts catch and decode SEnviro byte messages from all

34

4. Methodology

deployed SEnviro nodes and access the node and phenomenon details via the routing

key. Using this information, a new message is created and sent to the corresponding

web service.

4.3.1. SOS Adapter

After establishing the connection with the SEnviro broker and decoding the message

and routing key of incoming messages, there are several steps necessary to create

an insertObservation request. 52North-SOS supports JSON encoding for inserting

observations and a JSON template for this operation is available on the test client

of the 52North-SOS interface. This file is loaded into the adapter script and the

mandatory information for a successful request inserted. Details about procedures

(sensor ID), offerings and observed properties are retrieved from the intercepted

messages. However, some essential information for a successful insertObservation

request could not be extracted. Therefore, some workarounds had to be included in

the adapter.

Firstly, the unit of measurement in SOS is required in each encoded observation

document. This requires including a Python dictionary within the adapter script,

matching each phenomenon with the corresponding unit of measurement. Secondly,

SOS observation insertions also require the coordinates where the observation was

created. Therefore, an external JSON file containing objects with the station ID

and the corresponding coordinates as attributes has to be loaded into the script.

Once all the information for the observation insertion is complete it is posted to

SOS via HTTP POST request.

4.3.2. SensorThings Adapter

Similar to the SOS adapter, the FROST adapter establishes a connection with the

SEnviro broker, reads the incoming messages and uses information from the messages

to create a JSON object to post to the FROST server with a HTTP POST. Here

the challenge lies in posting to the correct datastream.

In order to post to the correct datastream, the corresponding datastream ID is

required in the target URL. The script does this by first requesting all datastream

IDs with their corresponding names via HTTP GET request. Datastream names

in the SEnviro FROST instance are defined as a combination of the node ID and

the measured phenomenon, which are both present in incoming byte messages. The

35

4. Methodology

script selects the datastream ID by matching the information from the message with

the datastream name. The following example target URL posts observations to the

datastream with ID = 11:

http://elcano.init.uji.es:8082/FROST-Server/v1.0/

Datastreams(11)/Observations

4.3.3. Web Thing Adapter

The Web Thing Adapter created for SEnviro data combines the Python libraries

Pika by RabbitMQ and Webthing by Mozilla IoT.

Before launching the instances, the script defines a Thing class for SEnviro nodes.

Properties for the Thing’s location and for the observed phenomena were added to

this class, including details for data types, maximum and minimum values, units of

measurement and property descriptions. An action was also defined for changing the

Thing’s coordinates, allowing users to update a node’s location in case it is relocated.

This action can be executed with a HTTP POST of a JSON object containing the

new coordinates using the API’s REST interface.

Since the RabbitMQ connection and the Web Thing server must run simultane-

ously, the threading library was used to run both instances on two parallel threads.

When messages come in from the SEnviro Broker, the routing key from the incoming

messages is used to update property values for the corresponding SEnviro node.

36

4. Methodology

4.4. Comparative Analysis

The aim of this document is to provide insight into the potential of open standard

integration to enhance environmental monitoring application interoperability. This

is firstly achieved in a qualitative approach to explore the different Web Standard

implementations’ capabilities, comparing their core operations and identifying po-

tential strengths and weaknesses. Secondly a quantitative analysis is conducted to

quantify performance differences for the deployed instances. This involves mon-

itoring performance parameters on the server and contrasting the results of the

individual instances.

4.4.1. Performed operations

To compare the deployed Web Standard instances, a set of operations are executed

for the services. For the qualitative analysis the request semantics are contrasted

for data insertion, deletion, updates and retrieval. For the quantitative analysis,

observation retrieval requests were scaled to obtain increasing quantities of data.

4.4.1.1. Data management

The deployed services for the corresponding Web Standards needed to be config-

ured for SEnviro before any observations could be stored. This included inserting

instances representing stations and their properties. Once the services were set up

correctly, observations could be inserted using the corresponding adapters. Apart

from data insertion operations, basic operations for deleting and updating data were

investigated for the different services.

4.4.1.2. Accessing metadata

Accessing information about the sensors or sensor systems is a core operation for any

monitoring service, providing the means to identify the origin of observations, the

location of the monitoring station and information about the monitored parameters.

The two example operations below show ways to access detailed information about

procedures, representing sensor systems in SOS, and things, representing embedded

devices in the SensorThings API:

37

4. Methodology

• 52North-SOS:

– Operation: SOS - describeSensor (HTTP POST)

– URL:

http://elcano.init.uji.es:8084/52n-sos-webapp/service

– Post data:

{

"request":"DescribeSensor",

"service":"SOS",

"version":"2.0.0",

"procedure":"270043001951343334363036",

"procedureDescriptionFormat":

"http://www.opengis.net/sensorml/2.0"

}

• FROST (HTTP GET):

http://elcano.init.uji.es:8082/FROST-Server/v1.0/Things(2)

?$expand=Locations,HistoricalLocations,Datastreams/

ObservedProperty,Datastreams/Sensor

• Web Thing API (HTTP GET):

http://elcano.init.uji.es:5000/0

4.4.1.3. Observation retrieval

Arguably the most important feature in any monitoring service is accessing the

stored time series data to visualise phenomena’s behaviour over time. This is not

possible for the Web Thing API by default, since it does not support time series data

storing. FROST and 52North-SOS have different approaches obtain observations.

The operations were contrasted according to their semantics and on a performance

level.

52North-SOS supports all the standard SOS operations, but their data visuali-

sation tool, the Helgoland Client, uses its own request method and API to obtain

sensor data. Helgoland is therefore analysed separately to show its potential in

the response time analysis. The data retrieved by the Helgoland Client contains

38

4. Methodology

only information about time and value of observations, improving performance. An

equivalent FROST SensorThings query, limiting result details to observation time

and value, was created for comparison with Helgoland.

The test queries below obtain 1000 observations within the time span of 2019-

01-14 14:14:52 and 2019-01-21 11:20:52 for each service:

• 52North-SOS - getObservation: This query uses the standard SOS getOb-

servation request. A getObservation request file containing query parameters

for procedure (monitoring station), observed property and temporal filter, is

posted to the server via HTTP POST using the service URL. The server then

sends a response file with the corresponding observations. Standard SOS uses

XML encoding, but 52North-SOS supports JSON format, which is used in this

request.

– URL:

http://elcano.init.uji.es:8084/52n-sos-webapp/service

– Post data:

{

"request": "GetObservation",

"service": "SOS",

"version": "2.0.0",

"procedure": "270043001951343334363036",

"observedProperty": "Battery",

"temporalFilter": {

"during": {

"ref": "om:phenomenonTime",

"value": [

"2019-01-14T14:14:52.000Z",

"2019-01-21T11:20:52.000Z"

]

}

}

}

• 52North-SOS Helgoland Client: 52North-SOS Helgoland Client queries

are executed on the client interface. The query parameters are inserted by

selecting the procedure on a map, observed properties (phenomena) from a

list. The time parameters are selected in a consecutive step. The API URL is

then compiled and sends a HTTP GET request to the server, which returns the

requested values and time stamps and displays them in an interactive diagram.

39

4. Methodology

http://elcano.init.uji.es:8084/52n-sos-webapp/api/datasets/

quantity_9/data?expanded=true&format=flot&generalize=false

&locale=de×pan=2019-01-14T14:14:52%2B01:00

%2F2019-01-21T11:20:52%2B01:00

• FROST: FROST observations are obtained with a HTTP GET request. The

target URL is extended with the query parameters. This query URL uses

top to specify the number of obtained observations and filter to add time

contraints.

http://elcano.init.uji.es:8082/FROST-Server/v1.0/

Datastreams(18)/Observations?$top=1000&$filter=

phenomenonTime%20gt%202019-01-14T14:14:52Z%20

and%20phenomenonTime%20lt%202019-01-21T11:20:52Z

• FROST (reduced): Here the query URL from above is further extended

with the select operator, allowing the restriction of output attributes of the

obtained observations.

http://elcano.init.uji.es:8082/FROST-Server/v1.0/

Datastreams(18)/Observations?$top=1000&$select=

phenomenonTime,result&$filter=phenomenonTime%20gt%20

2019-01-14T14:14:52Z%20and%20phenomenonTime%20lt%20

2019-01-21T11:20:52Z

4.4.2. Qualitative Analysis

A crucial factor in the evaluation of the Web Standard instances is the quality of the

service. This strongly affects the flexibility, scalability and eventually, the developer

experience of applications. The quality of the services was assessed in multiple steps.

Firstly, the deployment and configuration process for each web service was de-

scribed and compared. Subsequently a comparison of available operations for dif-

ferent uses (see 4.4.1 Performed operations) was performed from data producer and

data consumer perspectives. On the data producer side are operations to insert,

update and delete entities like sensors, sensor platforms and observations. On the

consumer side are operations for querying and obtaining data and metadata. Web

Standard semantics were evaluated based on their encoding formats and data traffic

protocols. The results for each Web Standard were summarised and contrasted. The

40

4. Methodology

comparison was then used to determine the suitability for the use-case of SEnviro.

4.4.3. Quantitative Analysis

The quantification of differences in performance between the deployed web services

were monitored on various levels and using a selection of tools. These were used to

monitor response time, response size, CPU and Memory.

The following tools were used for performance monitoring:

• Postman: Postman3 is a powerful HTTP Client desktop application for testing

web services. Users can create both simple and complex HTTP requests, which

return the request status, response times and the size of returned file. Requests

are saved in collections and can be run at a regular schedule and monitored on

the Postman Dashboard, accessible in a user’s workspace on the web browser.

Postman informs the user when there are issues with collection monitors in

an email alert. Tests run up to two times per hour in the free version of the

software.

• JMeter : JMeter4 is a project by the Apache Software Foundation. It is an

open-source software Java application, designed for load testing functional

behaviour and measure performance in web applications. JMeter can simulate

heavy loads on a server, cluster or network with a large selection of application

and protocol types. There are several Plugins available that can add and/or

extend JMeter’s functions. Monitoring the metrics in the web service’s hosting

server required adding the PerfMon Metrics Collector plugin to JMeter and

deploying the PerfMon Server Agent tool on hosting server, which opens a

port for JMeter to connect to remotely.

• cAdvisor : cAdvisor is a simple tool provided by Google for monitoring Docker

container behaviour. Apart from a simple user interface showing graph visual-

isation of the container metrics, cAdvisor provides several APIs for accessing

container metrics data.

4.4.3.1. Response times and sizes

Response times and sizes are measured for all metadata and observation retrieval

operations using Postman Monitors. Since Postman Monitors run as cloud services,

3www.getpostman.com (Accessed 19.02.2019)
4https://jmeter.apache.org/download jmeter.cgi (Accessed 19.02.2019)

41

4. Methodology

test queries don’t depend on network connectivity once they have been deployed.

Requests for observations are monitored for 24 hours with 2 two requests per hour,

resulting in 48 values per query. Postman Monitors automatically calculate response

time averages, which are extracted and used for further analyses.

Figure 4.6.: Postman Response Time Monitoring Interface

4.4.3.2. Web service metrics

To compare the performance for obtaining observations, identical conditions were

created for different services. Queries using the same parameters request identical

sets of observations with the corresponding REST API of each service. This ap-

proach includes queries to obtain sets of 1, 100, 200, 400, 500, 600, 800 and 1000

observations. The maximum of 1000 observations was selected due to the FROST

default configuration, which sets the maximum number of FROST observations con-

tained in a single response file to 1000. This can be modified in the source code and

should be considered in further studies involving FROST.

The work flow for metrics monitoring relies on measuring the metrics of the in-

dividual Docker containers. cAdvisor provides the means to access the container

metrics data an API. The selected REST API5 returns JSON objects containing

metrics data. The API was configured to return a single measurement and a con-

tainer monitoring script was created in Python to send the API request every second

after the script is run. Since each service has separate containers for the web appli-

cations and databases, CPU and memory values from both the containers are added

to show the full amount of resources used by the corresponding standard implemen-

5https://github.com/google/cadvisor/blob/master/docs/api v2.md (Accessed 19.02.2019)

42

4. Methodology

tations. The container CPU values are divided by the server CPU usage to reflect

how many server resources the containers require in percent. Memory values are

calculated in bytes and then converted to megabytes for data visualisation.

Figure 4.7.: JMeter Performance Monitoring interface

The HTTP requests created in JMeter were configured to run for three minutes

launching an HTTP request per second. 52North-SOS and FROST requests for the

different quantities of observations were launched simultaneously to the container

monitoring script, resulting in approx. 180 values per query. The output CSV files

were eventually loaded into R, were data was analysed and plotted.

43

4. Methodology

Figure 4.8.: cAdvisor interface

44

5. Web Standard Comparison

In order to make a tangible comparison, the deployed Web Standard instances were

contrasted on multiple levels. It was determined that the core elements of compari-

son should be performance in a quantitative approach and semantics in a qualitative

analysis.

This chapter presents results of the quantitative evaluation methods, descriptive

sections about the semantic differences between the deployed instances and a discus-

sion concerning the aptitude of the deployed Web Standard instances, considering

the requirements of SEnviro for Agriculture, IoT and environmental monitoring ap-

plications in general.

5.1. Web Thing API evaluation

Eventually the Web Thing API was for the most part excluded from the Web Stan-

dard comparison. This was done due to its lack of features and low complexity,

making it mostly inapt for direct contrasting.

Firstly, the standard does not define all essential operations for environmental

monitoring applications. The Web Thing API adapter (see 4.3.3 Web Thing Adapter

for details) launches all the instances within the script by defining the Thing class

with its properties (observed phenomena, location). Once the service is running,

the standard does not provide operations to add further devices or properties. This

strongly collides with necessary SEnviro features, since adding new monitoring sta-

tions is an essential functionality of the service. Similarly, the Web Thing API does

not provide operations to remove devices.

Web Thing does provide means to access and update properties and metadata.

Information about devices and properties can be obtained using HTTP GET re-

quests with corresponding API URL. Available actions can be defined in the script

launching the server, which can be configured to update information via HTTP

POST requests. The following request obtains the current value of the observed

properties:

http://elcano.init.uji.es:5000/0/properties

45

5. Web Standard Comparison

{

"Coordinates": [

39.993934,

-0.073863

],

"AirTemperature": -46.581871,

"Humidity": 0.0,

"AtmosphericPressure": -9.99,

"Precipitation": 0.0,

"WindDirection": 5.0,

"WindSpeed": 4.32,

"SoilTemperature": 0.0,

"SoilHumidity": 2134.0,

"Battery": 58.84375

}

A crucial feature the Web Thing API does not include by default is support for

time series data, making it impossible to browse monitoring data over time. While

extending the standard to store data in a database could be an option for future

work, this would mean going beyond Web Thing’s functionalities and therefore would

not be compliant to the standard anymore. Attempts made by Mozilla to extend

Web Thing to support time series data is discussed in 5.4 Discussion.

46

5. Web Standard Comparison

5.2. 52North-SOS & FROST qualitative

evaluation

In this section of analysis results presents different aspects of the service quality

of 52North-SOS and FROST. These include the deployment process, service con-

figuration and adaptability. Subsequently several operations for the deployed open

standard implementations are described and contrasted. The operations were spec-

ified considering the requirements for SEnviro and Smart Farming projects in gen-

eral. The first subsection focuses on the deployment and configuration of the Web

Standard implementations. Subsequently, data producer operations, such as data

insertion (sensors, stations, observations) are described. Finally, operations for data

consumers are presented, which consist of metadata retrieval operations and several

variants of querying and obtaining observation data.

5.2.1. Service deployment & configuration

Since both 52North-SOS and FROST include Docker deployment files (Dockerfile,

docker-compose.yml), the deployments for 52North-SOS and FROST follow simi-

lar steps. However, the two Web Standard implementations have a distinct setup

process and service configuration. The following two subsections shed light on the

setup process for either service, including their configuration for SEnviro.

5.2.1.1. 52NorthSOS setup

52North-SOS includes a web user interface with a large set of service configuration

options. The interfaces enable users to configure most of the service’s specifications,

including among others the available SOS operations with their bindings and en-

codings, the datasource, the spatial reference system, the services’ and datasource’s

timezones, access rights and logging.

For the SEnviro configuration of 52North-SOS, transactional security was dis-

abled for Elcano’s IP address, enabling the transactional SOS operations for in-

serting sensors and observations. The SEnviro Nodes were inserted by posting a

preconfigured InsertSensor JSON object to the server for each node. The object

contains information about the service provider, the node ID, the measured phe-

nomena and the node location (see more details about inserting sensors into SOS

in section 5.2.2.1 52North-SOS Transactional Operations). As mentioned in section

4.3.1 SOS Adapter, creating the adapter to divert SEnviro observations into SOS

47

5. Web Standard Comparison

required an extra file containing the coordinates of the stations.

5.2.1.2. FROST setup

FROST is a mere implementation of the SensorThings API and does not include a

client interface. Service settings are configurable in the source code, but this was

not necessary for SEnviro integration.

Since SEnviro nodes all monitor the same phenomena and are composed of the

same sensor constellation, data about observed properties and sensors were inserted

in a first step. JSON objects relating to the sensors and observed properties were

subsequently used to insert things and datastreams (see 5.2.2.2 FROST Create-

Update-Delete operations for more details).

5.2.2. Data management

52North-SOS and FROST handle the insertion of data based on the corresponding

SOS or SensorThings API operations in order to remain OGC compliant. In SOS

these are the Transactional Operations, which are HTTP POST requests to the

SOS service URL and include RegisterSensor and the InsertObservation operations.

52North-SOS extends the transactional capabilities with the DeleteSensor and the

UpdateSensorDescription operations. The SensorThings API supports HTTP re-

quest types (GET, POST, PUT, DELETE) for creating, updating and deleting en-

tities. FROST has fully implemented the SensorThings API’s sensing functionalities

with no significant additions and therefore this section will refer to the SensorThings

API operations directly. Both services have their own features and capabilities.

5.2.2.1. 52North-SOS transactional operations

Before observations can be inserted into SOS, entities have to inserted representing

the devices generating the observation data and must also include information about

the phenomena they are measuring for a successful observation insertion.

52North-SOS supports several encoding formats including JSON, which is used

in this project due to its compatibility with Python, as mentioned in section 4.2.1

52North-SOS. The 52North-SOS equivalent to the RegisterSensor operation is In-

sertSensor. For this operation InsertSensor request file must be posted to the server.

The example JSON object below contains the mandatory information for a success-

48

5. Web Standard Comparison

ful insertion request.

{

"request": "InsertSensor",

"service": "SOS",

"version": "2.0.0",

"procedureDescriptionFormat": "http://www.opengis.net/sensorML/1.0.1",

"procedureDescription":

"<sml:SensorML xmlns:swes=\"http://www.opengis.net/swes/2.0\"

xmlns:sos=\"http://www.opengis.net/sos/2.0\"

xmlns:swe=\"http://www.opengis.net/swe/1.0.1\"

xmlns:sml=\"http://www.opengis.net/sensorML/1.0.1\"

xmlns:gml=\"http://www.opengis.net/gml\"

xmlns:xlink=\"http://www.w3.org/1999/xlink\"

xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"

version=\"1.0.1\"><sml:member><sml:System><sml:identification>

<sml:IdentifierList><sml:identifier name=\"uniqueID\">

<sml:Term definition=\"urn:ogc:def:identifier:OGC:1.0:uniqueID\">

<sml:value>270043001951343334363036</sml:value></sml:Term>

</sml:identifier><sml:identifier name=\"longName\">

<sml:Term definition=\"urn:ogc:def:identifier:OGC:1.0:longName\">

<sml:value>270043001951343334363036</sml:value></sml:Term>

</sml:identifier><sml:identifier name=\"shortName\">

<sml:Term definition=\"urn:ogc:def:identifier:OGC:1.0:shortName\">

<sml:value>270043001951343334363036</sml:value></sml:Term></sml:identifier>

</sml:IdentifierList></sml:identification>

<sml:capabilities name=\"offerings\"><swe:SimpleDataRecord>

<swe:field name=\"offering270043001951343334363036\">

<swe:Text definition=\"urn:ogc:def:identifier:OGC:offeringID\">

<swe:value>offering270043001951343334363036</swe:value></swe:Text>

</swe:field></swe:SimpleDataRecord></sml:capabilities>

<sml:capabilities name=\"featuresOfInterest\"><swe:SimpleDataRecord>

<swe:field name=\"featureOfInterestID\"><swe:Text>

<swe:value>featureOfInterest270043001951343334363036</swe:value>

</swe:Text></swe:field></swe:SimpleDataRecord></sml:capabilities>

<sml:position name=\"sensorPosition\">

<swe:Position referenceFrame=\"urn:ogc:def:crs:EPSG::4326\"><swe:location>

<swe:Vector gml:id=\"STATION_LOCATION\"><swe:coordinate name=\"easting\">

<swe:Quantity axisID=\"x\"><swe:uom code=\"degree\"/>

<swe:value>-0.061000</swe:value></swe:Quantity></swe:coordinate>

<swe:coordinate name=\"northing\"><swe:Quantity axisID=\"y\">

<swe:uom code=\"degree\"/><swe:value>40.133098</swe:value></swe:Quantity>

</swe:coordinate></swe:Vector></swe:location></swe:Position></sml:position>

<sml:inputs><sml:InputList><sml:input name=\"senviroNodePhenomena\">

<swe:ObservableProperty definition=\"senviroNodePhenomena\"/></sml:input>

</sml:InputList></sml:inputs><sml:outputs><sml:OutputList>

<sml:output name=\"AirTemperature\">

<swe:Category definition=\"AirTemperature\">

49

5. Web Standard Comparison

<swe:codeSpace xlink:href=\"AirTemperature\"/></swe:Category></sml:output>

<sml:output name=\"Humidity\"><swe:Category definition=\"Humidity\">

<swe:codeSpace xlink:href=\"Humidity\"/></swe:Category></sml:output>

<sml:output name=\"AtmosphericPressure\">

<swe:Category definition=\"AtmosphericPressure\">

<swe:codeSpace xlink:href=\"AtmosphericPressure\"/></swe:Category>

</sml:output><sml:output name=\"Precipitation\">

<swe:Category definition=\"Precipitation\">

<swe:codeSpace xlink:href=\"Precipitation\"/></swe:Category></sml:output>

<sml:output name=\"WindDirection\"><swe:Category definition=\"WindDirection\">

<swe:codeSpace xlink:href=\"WindDirection\"/></swe:Category></sml:output>

<sml:output name=\"WindSpeed\"><swe:Category definition=\"WindSpeed\">

<swe:codeSpace xlink:href=\"WindSpeed\"/></swe:Category></sml:output>

<sml:output name=\"SoilTemperature\">

<swe:Category definition=\"SoilTemperature\">

<swe:codeSpace xlink:href=\"SoilTemperature\"/></swe:Category></sml:output>

<sml:output name=\"SoilHumidity\"><swe:Category definition=\"SoilHumidity\">

<swe:codeSpace xlink:href=\"SoilHumidity\"/></swe:Category></sml:output>

<sml:output name=\"Battery\"><swe:Category definition=\"Battery\">

<swe:codeSpace xlink:href=\"Battery\"/></swe:Category></sml:output>

</sml:OutputList></sml:outputs></sml:System></sml:member></sml:SensorML>",

"observableProperty": [

"AirTemperature",

"Humidity",

"AtmosphericPressure",

"Precipitation",

"WindDirection",

"WindSpeed",

"SoilTemperature",

"SoilHumidity",

"Battery"

],

"observationType": [

"http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement",

"http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_CategoryObservation",

"http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_CountObservation",

"http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_TextObservation",

"http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_TruthObservation",

"http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_GeometryObservation",

"http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_ReferenceObservation"

],

"featureOfInterestType":

"http://www.opengis.net/def/samplingFeatureType/OGC-OM/2.0/SF_SamplingPoint"

}

The file must contain a list of details, including unique procedure ID, procedure

long name and short name, its offering and its observed properties. For each of these

50

5. Web Standard Comparison

details SML, SWE and GML tags are added to make it ensure its interoperability

with other entities of the sensor web. This becomes visible in the large string of XML

code in the procedureDescriptionFormat property of the JSON object, which is the

XML version of the InsertSensor operation and is mandatory in the JSON version

of the POST request. As a consequence, procedure insertion needs the XML version

of the operation, even if the SOS application uses the JSON version of the operation,

adding a full step to the workflow and inflating the size of the final JSON object

to post to the server to approx. 4829 bytes. The InsertSensor request creates all

the necessary entities for the insertion of observation, including its related offering,

observed property and feature of interest.

Since SOS 2.0 the Web Standard includes operations to delete or update details

of procedures, which 52North added as extended operations to enable these actions.

UpdateProcedureDescription enables the modification of station details, which re-

sembles the InsertSensor protocol. As in the example JSON code above, the file to

be posted to the server requires the full XML code as a string value of the corre-

sponding JSON property.

DeleteSensor allows procedures and their affiliated observations to be removed from

the service. This requires posting a request file containing the procedure unique

ID to the server. The file is comparatively small in size, as demonstrated in the

JSON version of the DeleteSensor request below. One detail worth noting is that

the mandatory SOS offering created with the procedure will remain in the service

even when the procedure it is linked to is deleted. Offering names act as unique

identifiers, which means if a procedure is reinserted it will need a new offering ID.

{

"request": "DeleteSensor",

"service": "SOS",

"version": "2.0.0",

"procedure": "012345678901234567890123"

}

After setting up sensors and their properties correctly within SOS, observations

can be inserted using the InsertObservation operation. Similarly, to the previously

described operations, this operation is executed by sending a JSON object containing

the necessary details for a successful insertion via HTTP POST to the service URL.

The object must include the ID of the procedure of origin, its offering ID, the

observed property ID, details about the feature of interest (ID, coordinates, spatial

reference system, sampled feature), unit of measurement and most importantly, the

time and value of the observation. The object size for SEnviro InsertObservation

requests is approx. 1185 bytes. The example JSON InsertObservation request below

shows all the mandatory details required.

51

5. Web Standard Comparison

{

"request": "InsertObservation",

"service": "SOS",

"version": "2.0.0",

"offering": "offering0123456789012345678901234",

"observation": {

"identifier": {

"value": "1",

"codespace": ""},

"type":

"http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement",

"procedure": "0123456789012345678901234",

"observedProperty": "AirTemperature",

"featureOfInterest": {

"identifier": {

"value": "featureOfInterest0123456789012345678901234",

"codespace": ""},

"name": [

{

"value": "0123456789012345678901234",

"codespace": ""

}

],

"sampledFeature": [

"parent"

],

"geometry": {

"type": "Point",

"coordinates": [

-0.073863,

39.993934

],

"crs": {

"type": "name",

"properties": {

"name": "EPSG:4326"

}

}

}

},

"phenomenonTime": "2018-11-30T16:53:43+00:00",

"resultTime": "2018-11-30T16:53:43+00:00",

"result": {

"uom": "°C",
"value": 84.621094

}

}

}

52

5. Web Standard Comparison

SOS observations can be assigned a unique identifier. When inserting observations

SOS rejects the request if an observation with the same identifier is already present

in the database. This detail is an optional property in the InsertObservation request,

but should always be added to facilitate calling specific observations from the service.

52North has included the DeleteObservation operation into the service. This op-

eration enables clients to remove observations from the service by posting a JSON

object to the server containing either details about the related entities (e.g.: proce-

dures, offerings...) or a temporal filter. Single observations can also be removed by

using the identifier mentioned above. Deleting observations does not remove items

from the database, but instead sets the attribute deleted of the the observation items

in the PostgreSQL database to from ”F” to ”T”. SOS then excludes these from the

service.

5.2.2.2. FROST Create-Update-Delete requests

The SensorThings API data model demands a different approach when inserting

data. Every entity within a SensorThings API has its unique ID and can be referred

to by its unique URL for creating further entities, updating their details and proper-

ties and also deleting them. This makes data management and system maintenance

highly flexible and efficient.

As in SOS, the devices generating the observation data, must be created be-

fore enabling the storage of observations. The five SensorThings key components

(Things, Datatreams, ObservedProperties, Sensors, Observations) are interrelated,

with the core entity linked with the rest being the Datastreams. Consequently, all

the other entities need to be predefined to start inserting Observations. JSON ob-

jects need to be sent to the server via HTTP POST using the corresponding target

URL to create entities. Target URLs are composed of the base URL and /entity.

The example URL below targets the Thing class:

http://elcano.init.uji.es:8082/FROST-Server/v1.0/Things

When new entities are created they are automatically assigned a unique ID. If

an entity is removed its ID remains stored in the system and cannot be used again.

All entities have mandatory properties that must be included when posting to the

server. Metadata about the specific Thing can be added in the properties property

related to specific Things are inserted in the properties. Furthermore, some entities

can be extended with their related entities as optional properties when creating

them. These extended entities can either be generated within the creating process

53

5. Web Standard Comparison

or they can refer to already existing entities. Extended properties can again be

extended, meaning all necessary entities can be created with a single HTTP POST

request. This is shown in the following example Thing object:

{

"name": "0123456789012345678901234",

"description": "A SensorThings station",

"properties": {

"owner":"Universitat Jaume I",

"maintainer":"student al374901"

},

"Locations": [{

"name": "carcagente26_1",

"description": "Carcagente 26",

"encodingType": "application/vnd.geo+json",

"location": {

"type": "Point",

"coordinates": [-0.031525, 39.980187]

}

}],

"Datastreams":[

{

"name": "AirTemperature-0123456789012345678901234",

"description": "Datastream for recording air temperature",

"observationType": "http://www.senviro.uji.es/",

"unitOfMeasurement": {

"name": "Degree Celsius",

"symbol": "°C",
"definition":

"http://www.qudt.org/qudt/owl/1.0.0/unit/Instances.html#DegreeCelsius"

},

"ObservedProperty": {

"name": "Si7021-A20",

"description": "Monolithic CMOS IC integrating humidity and

temperature sensor elements, an analog-to-digital converter,

signal processing, calibration data, and an I2C Interface",

"encodingType": "application/pdf",

"metadata":

"https://www.silabs.com/documents/public/data-sheets/Si7021-A20.pdf"

},

"Sensor": {

"@iot.id": 1

}

}

The example JSON object above creates a Thing with its mandatory properties

(name, description). It also creates its related Location and Datastream by adding

corresponding properties to the object. The embedded Datastream creates a related

54

5. Web Standard Comparison

observed property and links to an already registered sensor. Metadata about the

owner and maintainer are added in the object of the properties key value.

SEnviro nodes were created with no extended properties, since the observed prop-

erties and sensors were inserted in a previous step of the setup. The size for necessary

JSON object to create a SEnviro node with its complete set of datastreams is approx.

4731 bytes.

Inserting SensorThings observations is done by sending the observation JSON

object to the corresponding target URL, composed of the Datastream URL and

/Observations. The JSON object must include the result time as string in ISO 8601

format and the value of the measurement, as shown below. The approximate size of

SEnviro observations posted to FROST by the adapter is 65 bytes.

{"resultTime" : "2019-01-14T12:35:47.000Z" ,"result" : 0.327}

Properties of any SensorThings entity can be updated by executing a HTTP

Patch request its unique URL with a JSON object containing the properties to be

updated and the new values. Sending the example JSON object to the target URL

(both shown below) with a HTTP PATCH request updates the name and description

properties of a registered sensor with ID=7.

http://elcano.init.uji.es:8082/FROST-Server/v1.0/Sensors(7)

{

"name":"SparkfunSoilMoistureSensor",

"description": "Measures soil moisture"

}

Entities can be deleted by using its unique URL in a HTTP DELETE request.

Deleting Things will remove all their related Datastreams including their affiliated

observations, but will not remove sensors or observed properties.

5.2.3. Retrieving metadata

The values and time stamps of observations hold little value without knowing their

origin, their nature and the purpose why they are created. Therefore, it is crucial to

obtain not only the observations themselves, but also information about the sensors

and their locations, the features they are observing and the measured phenomena.

55

5. Web Standard Comparison

5.2.3.1. 52North-SOS metadata operations

SOS defines a set of operations to retrieve metadata from various sources within the

service. 52North-SOS includes these operations and features a couple of further op-

erations to add functionality. The most essential SOS operation for retrieving service

information is the getCapabilities operation, which provides clients with the com-

plete service metadata about the deployed service, including information about the

tightly-coupled data served (Open Geospatial Consortium, 2007). The code below

shows the 52North-SOS JSON version of the request. An example for 52North-SOS

getCapabilities response is not presented here, considering the size of the response

object (over 1600 lines of code).

{

"request": "GetCapabilities",

"service": "SOS",

"sections": [

"ServiceIdentification",

"ServiceProvider",

"OperationsMetadata",

"FilterCapabilities",

"Contents"

]

}

Further operations use similar requests to get information about station locations

(getFeatureOfInterest) and about the relations between measured phenomena, sta-

tions and features of interest (getDataAvailability). Finally, DescribeSensor gets the

complete details of a present SOS procedure, including the station owner and main-

tainer with contact details, the observed phenomena, the SOS offering, the location

and the time of registration in the service.

5.2.3.2. FROST metadata queries

HTTP Get requests in the SensorThings API are capable of accessing and obtaining

all the information of all the present entities by using the extendable URLs to target,

select, enrich output data. The most important query operators for metadata queries

are $expand and $select.

The $expand operator will add related entities to the output of the requested

entity provided they have a direct relationship (see Figure 2.3. The expanded entity

can again expand directly related entities, allowing users to dig into the data ar-

chitecture. This is shown in the following target URL and its corresponding JSON

56

5. Web Standard Comparison

output:

http://elcano.init.uji.es:8082/FROST-Server/v1.0/Things(2)

?$expand=Datastreams($expand=ObservedProperty)

{

"name" : "270043001951343334363036",

"description" :

"Senviro monitoring station with ID: 270043001951343334363036",

"Locations@iot.navigationLink" :

"http://elcano.init.uji.es:8082/FROST-Server/v1.0/Things(2)/Locations",

"HistoricalLocations@iot.navigationLink" :

"http://elcano.init.uji.es:8082/FROST-Server/v1.0/Things(2)

/HistoricalLocations",

"Datastreams@iot.navigationLink" :

"http://elcano.init.uji.es:8082/FROST-Server/v1.0/Things(2)/Datastreams",

"Datastreams" : [{

"name" : "Battery-270043001951343334363036",

"description" : "Datastream for recording battery status",

"observationType" : "http://www.senviro.uji.es/",

"unitOfMeasurement" : {

"name" : "Percent",

"symbol" : "%",

"definition" : "https://en.wikipedia.org/wiki/Percentage"

},

"phenomenonTime" : "2019-01-30T14:27:06.168Z/2019-01-30T14:46:55.060Z",

"resultTime" : "2019-01-30T14:26:27.000Z/2019-01-30T14:46:14.000Z",

"ObservedProperty" : {

"name" : "Battery",

"definition" : "https://en.wikipedia.org/wiki/Electric_battery",

"description" : "Battery readings in %",

"@iot.id" : 9,

"@iot.selfLink" :

"http://elcano.init.uji.es:8082/FROST-Server/v1.0/ObservedProperties(9)"

},

"@iot.id" : 22,

"@iot.selfLink" :

"http://elcano.init.uji.es:8082/FROST-Server/v1.0/Datastreams(22)"

}],

"MultiDatastreams@iot.navigationLink" :

"http://elcano.init.uji.es:8082/FROST-Server/v1.0/Things(2)/MultiDatastreams",

"@iot.id" : 2,

"@iot.selfLink" :

"http://elcano.init.uji.es:8082/FROST-Server/v1.0/Things(2)"

}

The Thing with ID=1 is returned with all its main properties and with its ex-

57

5. Web Standard Comparison

panded datastreams, which in this case is only ”Battery-270043001951343334363036”.

The expanded datastream is once again expanded to show its related observed prop-

erty.

In contrast to the $expand operator, the $select operator allows users to select

only certain properties of entities for the JSON output. This can be used to reduce

the size of the output files by selecting only specific information of entities.

5.2.4. Observation queries

As one of the core features in both 52North-SOS and FROST, the services store

observation data over time and make them available in the World Wide Web. Each

service has its own way to access the stored observation data.

5.2.4.1. 52North-SOS queries

SOS observations are obtained using the getObservation request. A JSON file con-

taining the query parameters is posted to the server, which delivers a response file

containing the requested observations. The query can include one or more param-

eters among procedure, offering, observedProperty, featureOfInterest, a spatialFilter

or a temporalFilter.

{

"request": "GetObservation",

"service": "SOS",

"version": "2.0.0",

"procedure": "270043001951343334363036",

"offering": "offering270043001951343334363036",

"observedProperty": "AirTemperature",

"featureOfInterest": "featureOfInterest270043001951343334363036",

"spatialFilter": {

"bbox": {

"ref": "om:featureOfInterest/sams:SF_SpatialSamplingFeature/sams:shape",

"value": {

"type": "Polygon",

"coordinates": [[

[-0.07902860641479492,39.99347896173187],

[-0.07259130477905273,39.9903390214231],

[-0.0714111328125,39.99696396205215],

[-0.07902860641479492,39.99347896173187]

]]

}

58

5. Web Standard Comparison

}

},

"temporalFilter": {

"during": {

"ref": "om:phenomenonTime",

"value": [

"2018-11-29T14:43:00+00:00",

"2018-12-13T15:32:12+00:00"

]

}

}

}

Adding query parameters will narrow down the output observations. Spatial

filters are provided in GeoJSON encoding and temporal filters must support ISO8601

format.

52North has added support for the GetObservationById, an operation to obtain

observation by its unique identifier. A file needs to be posted to the server containing

the observation identifier mentioned in section 5.2.2.1. This returns the observation

in the same format as GetObservation, but adds the identifier with its value as an

attribute. The identifier must be known to the client prior to invoking the operation.

Example request and response objects are presented below.

{

"request": "GetObservationById",

"service": "SOS",

"version": "2.0.0",

"observation": ["2"]

}

{

"type" :

"http://www.opengis.net/def/observationType/

OGC-OM/2.0/OM_Measurement",

"identifier" : {

"codespace" : "http://www.opengis.net/def/nil/OGC/0/unknown",

"value" : "2"

},

"procedure" : "270043001951343334363036",

"observableProperty" : "Battery",

"featureOfInterest" : {

"identifier" : {

"codespace" : "http://www.opengis.net/def/nil/OGC/0/unknown",

"value" : "featureOfInterest270043001951343334363036"

59

5. Web Standard Comparison

},

"name" : {

"codespace" : "http://www.opengis.net/def/nil/OGC/0/unknown",

"value" : "270043001951343334363036"

},

"sampledFeature" : "parent270043001951343334363036",

"geometry" : {

"type" : "Point",

"coordinates" : [

40.133098,

-0.061

]

}

},

"phenomenonTime" : "2018-12-26T13:47:58.000Z",

"resultTime" : "2018-12-26T13:47:58.000Z",

"result" : {

"uom" : "%",

"value" : 81.726563

}

}

5.2.4.2. FROST queries

Several SensorThings API query operators come in useful to query observations. The

$orderby operator is used to sort the output JSON objects, which can be extended

with suffixes for descending or ascending order (desc, asc). The number of output

objects is specified with the $top and the $skip operator allows the user to skip a

specified number of observations. The $count operator returns the number of queried

observations as a JSON property at the top of the output file. The above-mentioned

operators are used in the query URL below:

http://elcano.init.uji.es:8082/FROST-Server/v1.0/Datastreams(12)/

Observations?$count=true&$skip=500&$top=50&$select=resultTime,result

&$orderby=result

The query returns the top 50 observations from the Datatream with ID=12,

skipping the first 500 values and ordering by result value. The total amount of

observations is counted and the output file only returns the time stamps and the

result values of the observations.

SensorThings also features the filter operator. This highly configurable operator

is used to make complex queries using a set of over 35 in-built operators and func-

60

5. Web Standard Comparison

tions. Table 5.1 and Table 5.2 list built-in operators and functions that can be used

within a filter.

By using the operators and functions in Tables 5.1 and 5.2 the SensorThings API

has extensive possibilities of combining the various query operators and function as

filters for pinpointing specific data. The following example URL selects datastreams

containing ”SoilHumidity” as a substring in the name property and expands the

selected datastreams’ observations that have values lower than 2500 m3/m3.

http://elcano.init.uji.es:8082/FROST-Server/v1.0/Datastreams?$

filter=substringof('SoilHumidity',name)&$expand=

Observations($filter=result lt 2500)

Operator Description Example

eq Equal
/ObservedProperties?$filter=name eq ’Area

Temperature’

ne Not equal
/ObservedProperties?$filter=name ne ’Area

Temperature’

gt Greaterthan
/Datastreams(id)/Observations?$filter=result

gt 20.0

ge
Greater than

or equal
/Datastreams(id)/Observations?$filter=result

ge 20.0

lt Less than
/Datastreams(id)/Observations?$filter=result

lt 100

le
Less than or

equal
/Datastreams(id)/Observations?$filter=result

le 100

and Logical and
/Datastreams(id)/Observations?$filter=result

le 3.5 and FeatureOfInterest/id eq ’1’

or Logical or
/Datastreams(id)/Observations?$filter=result

gt 20 or result le 3.5

not
Logical

negation
/Things?$filter=not

startswith(description,’test’)

()
Precedence
grouping

/Datastreams(id)/Observations?$filter=(result
sub 5) gt 10

Table 5.1.: Built-in operators for the SensorThings Filter operator

61

5. Web Standard Comparison

String Functions
bool substringof(string

searchString,string
baseString)

substringof(’Sensor Things’,description)

bool endswith(string
baseString, string suffix)

endswith(description,’Things’)

bool startswith(string
baseString, string prefix)

startswith(description,’Sensor’)

int length(string p0) length(description) eq 13
string tolower(string p0) tolower(description) eq ’sensor things’
string toupper(string p0) toupper(description) eq ’SENSOR THINGS’

Date Functions
int year year(resultTime) eq 2015

int month month(resultTime) eq 12
int day day(resultTime) eq 8
int hour hour(resultTime) eq 1

int minute minute(resultTime) eq 0
int second second(resultTime) eq 0

Math Functions
round round(result) eq 32
floor floor(result) eq 32

ceiling ceiling(result) eq 33
Geospatial Functions

double geo.distance(Point p0,
Point p1)

geo.distance(location, geography’POINT (30
10)’)

double geo.length(LineString
p0)

geo.length(geography’LINESTRING (30 10, 10
30, 40 40)’)

bool geo.intersects(Point p0,
Polygon p1)

geo.intersects(location,geography’POLYGON
((30 10, 10 20, 20 40, 40 40, 30 10))’)

Spatial Relationship Functions
bool st equals st equals(location, geography’POINT (30 10)’)

bool st disjoint
st disjoint(location, geography’POLYGON

((30 10, 10 20, 20 40, 40 40, 30 10))’)

bool st touches
st touches(location, geography’LINESTRING

(30 10, 10 30, 40 40)’)

bool st within
st within(location, geography’POLYGON ((30

10, 10 20, 20 40, 40 40, 30 10))’)

bool st overlaps
st overlaps(location, geography’POLYGON

((30 10, 10 20, 20 40, 40 40, 30 10))’)

bool st crosses
st crosses(location, geography’LINESTRING

(30 10, 10 30, 40 40)’)

bool st intersects
st intersects(location,

geography’LINESTRING (30 10, 10 30)’)
bool st contains st contains(location,geography’POINT (3 1)’)

bool st relate
st relate(location, geography’POLYGON ((30

10, 10 20, 20 40, 40 40, 30 10))’, ’T****’)

Table 5.2.: Built-in functions for the SensorThings Filter operator

62

5. Web Standard Comparison

While the maximum number of observations in a single response file is limited in

the SenSorThings API, the output file always includes a link to the next set of ob-

servations until all the observations within the query parameters have been served.

Output objects for unmodified FROST observation requests have the following for-

mat:

{

"@iot.nextLink" :

"http://elcano.init.uji.es:8082/FROST-Server/

v1.0/Observations?$top=1&$skip=1",

"value" : [{

"phenomenonTime" : "2018-11-26T13:48:03.946Z",

"resultTime" : "2018-11-26T13:47:26.000Z",

"result" : 21.136395,

"Datastream@iot.navigationLink":

"http://elcano.init.uji.es:8082/FROST-Server/v1.0/

Observations(1)/Datastream",

"FeatureOfInterest@iot.navigationLink":

"http://elcano.init.uji.es:8082/FROST-Server/v1.0/

Observations(1)/FeatureOfInterest",

"@iot.id" : 1,

"@iot.selfLink" :

"http://elcano.init.uji.es:8082/FROST-Server/v1.0/

Observations(1)"

}]

}

63

5. Web Standard Comparison

5.3. 52North-SOS & FROST performance

evaluation

The results for the monitored performance parameters were extracted, stored and

analysed. Analysis results were then visualised on a set of plots, which were created

in R, a powerful tool for statistical computing and graphics. The following sections

present the the results from the parameters selected for the performance evaluation

of the deployed Web Standard implementations. Response times and file sizes were

measured using Postman collections, while JMeter and cAdvisor was used to monitor

CPU and memory. As mentioned in 4.1, all project instances were deployed on

Elcano server. Figure 5.1 shows Elcano’s core specifications.

Processor : 4x Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz

Memory : 16719MB (8458MB used)

Operating System : Ubuntu 16.04.4 LTS

Kernel : Linux 4.4.0-121-generic (x86_64)

Computer Name : elcano

Figure 5.1.: Elcano specifications

64

5. Web Standard Comparison

5.3.1. Response times and sizes

This section contains tables and graph visualisation for response time and size data

from the performance analysis.

Results

Observation
count

1 100 200 400 500 600 800 1000

52North-
SOS

1.25 114 228 456 570 684 912 1110

52North-
SOS

Helgoland
Client

0.34 2.56 4.8 9.29 11.54 13.79 18.28 22.77

FROST 0.593 56 111 223 279 334 446 557

FROST
(reduced)

0.567 8.55 16.64 32.8 40.88 48.96 65.12 81.28

Table 5.3.: Average HTTP response sizes in Kilobytes [kb] for observation retrieval
from Postman

Table 5.2 shows the sizes of the response files of the different queries by the

different services. The output file size for 52North-SOS is the largest, resulting in

1110 kb at 1000 observations.

Helgoland Client requests return the smallest file sizes, with returned files holding

22.77 kb at 1000 observations, though the files also contain the smallest amount of

metadata. Standard FROST requests reach up to 557 kb at 1000 observations,

which is reduced to 81.28 when reducing output files to contain only time stamps

and values. Figure 5.2 shows the file sizes growing at a linear rate.

65

5. Web Standard Comparison

Figure 5.2.: Average Postman response sizes

The results in Table 5.4 show the fastest response times for reduced FROST

requests at an average speed 218 ms, closely followed by 52North-SOS and Hel-

goland Client at 229 ms and 233 ms respectively. FROST requests hold the longest

response times with an average of 315 ms. This becomes visible in Figure 5.3.

Generic FROST observation requests have the highest response times in most of the

requests, peaking at 436 ms at the 600 observation mark. Standard 52North-SOS

getObservation requests are faster than FROST by an average of 86.12 ms, though

they take longest for a single observation, surpassing FROST by 75 ms. The Hel-

goland Client’s API shows a similar behaviour to 52North-SOS, but spikes when

requesting 800 observations with an average response time of 401 ms.

66

5. Web Standard Comparison

Results

Observation
count

1 100 200 400 500 600 800 1000 Avg

52North-
SOS

260 161 168 201 236 203 280 324 229

52North-
SOS

Helgoland
Client

138 180 211 208 199 235 401 294 233

FROST 185 251 238 285 336 436 381 410 315

FROST
(reduced)

169 150 189 204 228 253 280 272 218

Table 5.4.: Average HTTP Response Times in Milliseconds [ms] for observation
retrieval from Postman

Figure 5.3.: Average Postman response times

67

5. Web Standard Comparison

5.3.2. Container metrics

The query HTTP requests used for the response times and sizes analysis (see 5.3.1

Response times and sizes) for FROST and 52North-SOS were configured in JMeter

and executed in test runs of three minutes with approx. one request per second.

Using the cAdvisor API and the automated requests in JMeter, container CPU

usage and memory usage were extracted and written into CSV files by the con-

tainer monitoring script (see 4.4.3.2 Web service metrics). Figure 5.4 shows graph

visualisations of the CPU metrics output for both services.

When regarding the individual services and comparing the CPU metrics in idle

and active state in Figures 5.4 (a) and (b), a CPU increase in both services becomes

evident.

In FROST the difference is drastic, averaging 2.07% CPU in idle state in contrast

to 31.80% during requests of 1000 observations, resulting in an average increase of

29.72%. The CPU maximum in FROST reaches almost 100%, while showing further

spikes reaching between 50% and 75%. The FROST CPU maximum is almost 70%

higher than the average in active state.

In 52North-SOS the difference in CPU usage is more moderate, holding an average

of 1.96% when idle and an average of 4.75% when active, producing an average

increase of 2.80%. Maximum values for 52North-SOS reach 13.97%, 9.22% higher

than the average during requests.

Plotting the results for both services in active state (Figure 5.4 (c)) shows FROST’s

higher CPU usage becomes more evident. While holding similar CPU values in idle

state, FROST uses an average of 22.58% more processing power than 52North-SOS

during observation requests. The difference in the CPU maximum between the two

services lies at 86.03%.

68

5. Web Standard Comparison

(a) CPU metrics for 52North-SOS container
(idle and active)

(b) CPU metrics for FROST container (idle and
active)

(c) CPU metrics for both services in active state

Figure 5.4.: Above: Plots from 52North-SOS and FROST container CPU usage in
idle state and during requests of 1000 observations; Below: CPU

metric behaviour from both services during requests of 1000
observations

69

5. Web Standard Comparison

The results from the previous plots are mostly reflected in the CPU usage values

at different response sizes. Figure 5.5 shows the average CPU values of both FROST

and 52North-SOS increasing amounts of requested observations. FROST average

CPU usage shows all values for different response sizes between 27.8% and 38.%.

In 52North-SOS, average CPU values lie between 4.06% and 5.94%. Neither of the

services show a continuous increase of CPU usage with increasing response sizes in

observation requests, instead rising and falling seemingly at random.

Figure 5.5.: Average CPU usage for different response sizes in FROST and
52North-SOS

To sum up the CPU usage behaviour for FROST and 52North-SOS, both services

show a noticeable activity during constant observation requests. The usage does

not change with increasing response sizes up to 1000 observations though. Overall,

52North-SOS shows a lot lower and more stable CPU values.

In idle state, 52North-SOS uses approx. 2572MB RAM, while FROST requires

3116MB. These values include the RAM for the corresponding database containers,

which may increase with a growing amount of data. The graphs in Figure 5.6 show

the RAM behaviour under request activity of 1000 observations. Both graphs show

very little activity during the monitoring run, though the average values are higher

than in idle state. FROST average memory usage in active state lies at 3363MB,

which results in an increase of 247MB. Similarly, 52North-SOS memory usage lies

at 2741.7MB, incrementing RAM usage by 170MB.

70

5. Web Standard Comparison

Figure 5.6.: Memory metrics for 52North-SOS and FROST requests of 1000 observations

When looking at the RAM behaviour during different observation requests, aver-

age values do not show significant changes reflecting the response sizes. This testing

method was repeated several times and showed slightly different results every time,

indicating that the memory is not meaningfully affected by observation requests.

Figure 5.7.: Memory usage for different request sizes in FROST and 52North-SOS

71

5. Web Standard Comparison

5.4. Discussion

In the scope of this project the Web Thing API, 52North-SOS and FROST have been

intensively tested and experimented upon by integrating them into SEnviro project.

In this section of the document the application deployment process, their flexibility

and their adaptability are discussed. Furthermore, the previously presented analysis

results of qualitative and quantitative methodologies are used to determine the ap-

titude of the Web Standard implementations in SEnviro and other potential Smart

Farming applications. The insights from the discussion are also compared to other

related projects, adding value to the analysis.

The Web Thing API is an emerging Web Standard and has been in development

since early 2018. The Web Standard is still in its early days and is still very limited

in several aspects. Its features indicate that it is meant more as an IoT support

system for household devices. The service does not include operations to insert

new devices once the server is running, thereby lacking an essential feature for

applications like SEnviro. Moreover, the Web Standard does not include support

for storing observations, which further makes it unapt for time series data analysis.

Nevertheless, the Web Thing data model and its sensing and tasking capabilities can

be adapted for simple environmental monitoring applications. The adapter created

in this project updates the property values of the things inserted during the script

execution with the values from the SEnviro MQTT messages. The Web Thing API

includes action and event classes, which are designed for the inclusion system alerts

when device properties reach certain levels. This opens possibilities for monitoring

applications that inform users about the environment in the device’s environment

in real time. There is also potential for combining the action and event operations

for process automation within a system of devices.

There have been efforts by the Mozilla IoT community to extend the Web Thing

API for storing and visualising time series data. (Bobin, 2018) developed an ap-

plication that connects to things within the Web Thing API, reads their properties

and stores the values in a Prometheus1 time series database. Prometheus includes

a dashboard for graph visualisation where data can be plotted over time. Although

this implementation of the Web Thing API does show promising results for environ-

mental monitoring applications, it does not address the lack interoperability within

the IoT as long as it is not included as an official feature into the Web Standard.

52North started developing its SOS implementation in 2010. Over the past 9

years technology has advanced considerably and 52North has been adding features

regularly to stay up-to-date. This becomes evident in the multitude of encoding

1https://prometheus.io/ (Accessed 19.02.2019)

72

5. Web Standard Comparison

formats and bindings, the extended operations with added functionality and the

extent of configuration options. These extra features enhance the accessibility and

configurability of SOS in several ways, contributing to the interoperability of the

standard.

A significant addition to 52North-SOS is the support for JSON encoding format.

JSON has emerged as an extremely popular encoding format in recent years due

to its simple syntax and easy serialisation to JavaScript variables, making it more

compatible with present web browsers. Further arguments that favour the usage of

JSON are that it has little overhead and that less band width is required to transmit

messages (Tamayo et al., 2012). 52North-SOS supports JSON format for all the SOS

core and transactional operations and most of the enhanced SOS operations.

All encoding types for 52North-SOS operations including the JSON version are

HTTP POST requests. The objects posted to the SOS server for transactional

operations have different sizes, but are generally larger than data insertions into

FROST. Requesting observations also requires posting an object containing the

query parameters, while in FROST this can be done with a GET request to the

target URL using the API’s query extensions. Request output is also larger in SOS

for the most part than it is in FROST GET requests, leading to a general inflation

of data traffic. A list of the different operations, their request type input and output

sizes is shown in the Table 5.5 .

52North-SOS data can be accessed, visualised and maintained using an extensive

client interface. Particularly the integration of the Helgoland Client gives users

an effective, easy-to-use and resource efficient data visualisation tool, saving users

some effort in developing their own interfaces. However, SEnviro already has its

stand-alone web interface for data visualisation and analysis, therefore the Helgoland

Client is not necessary. Moreover, the 52North-SOS service interface may confuse

some users. The interface has so many options, settings and features that users

may easily be overwhelmed by the vastness of its possibilities. SWE standards like

SOS are as complex as needed, aiming to include support tasks ranging from the

management of in-situ stations to the control of satellites. 52North-SOS is designed

to support a very large spectrum of tasks, many of which are not necessary for IoT

environmental monitoring applications like SEnviro, where devices run with limited

resources.

Pradilla et al. (2015) developed SOSLite2, a lightweight SOS implementation us-

ing SOAP binding, XML encoding and storing data in a NoSQL database. SOSLite

reduces SOS to its operations to a minimum considering the OGC’s best practice

recommendations for a lightweight SOS profile for in-situ sensors (Open Geospatial

2https://github.com/Juanvx/SOSLite (Accessed 19.02.2019)

73

5. Web Standard Comparison

Consortium, 2014) and aiming to adapt SOS to IoT scenarios. The results show an

improvement in response times for several SOS operations. In SOSFul3 (Pradilla

et al., 2018), the authors developed SOSLite further, proposing a REST API using

JSON encoding format which handles core, transactional and enhanced SOS oper-

ations via the core HTTP request types (GET, POST, PUT, DELETE). SOSFul

and SOSLite are openly available and were both considered for SEnviro during the

SOS implementation selection process. They were eventually discarded due to the

lack of documentation and recent development activity, with stalled development in

both projects since three and four years respectively.

In terms of performance 52North-SOS getObservation requests outperformed

FROST GET requests. This came as a surprise, since the data traffic in SOS is

heavier given the number of objects transferred and the object’s sizes (see Table

5.5). Furthermore, 52North’s Helgoland client uses an API that improves response

speed even further by reducing output information.

52North-SOS FROST

Operation
Request

type
Size
In

Size
Out

Request
type

Size
In

Size
Out

Insert single
device

POST 4829 202 POST 4731 223

Request
device

information
POST 671 15986 GET - 10103

Insert single
observation

POST 1168 88 POST 105 65

Request
single

observation
POST 105 1361 GET - 616

Delete
device

POST 105 230 DELETE - 230

Update
single device

property
POST 5733 226 PATCH 41 148

Table 5.5.: 52North-SOS and FROST request types and approximated input and
output object sizes in bytes for SEnviro

As the name implies, the development of SensorThings API is grounded on the

requirements of of an IoT environment. SensorUp4, founded by Steve Liang, one of

the chief developers of SensorThings, has published several research papers compar-

ing SOS and SensorThings and describes the differences between the Web Standards

in an article on their web site (SensorUp, 2016). The developers claim they designed

3https://github.com/Juanvx/SOSFul (Accessed 19.02.2019)
4https://sensorup.com/ (Accessed 19.02.2019)

74

5. Web Standard Comparison

the API to provide better scalability, performance, discoverability, real-time capa-

bility and developer experience.

A feature that strongly favours SensorThings over other standards is its data

publish/subscribe support via MQTT, avoiding heavier data traffic via the HTTP

protocol. FROST includes this service, making it possible for devices to publish di-

rectly to the FROST-server. This feature was not experimented on in this research

because of the preconfiguration of SEnviro Nodes and SEnviro Connect. Including

the FROST MQTT support would include modifying the existing SEnviro architec-

ture, which is outside the scope of this project but should definitely be considered

in future work.

The SensorThings API (and FROST) surpasses 52North-SOS by a large margin in

terms of flexibility and scalability. While 52North-SOS transactional operations can

be configured to some extent, the input data must follow strict formats and semantics

in order for requests to be successful. Once inserted many of the service properties

are difficult or impossible to update. In contrast, the SensorThings data model and

API makes inserting data extremely flexible. Since multiple types of related entities

can be inserted within the same request, clients can construct the JSON objects

to be inserted in a ”building block” fashion, assembling related entities as a single

object. Additionally, the entities can be inserted separately and consequently linked

with HTTP PATCH requests. This also allows any property of any entity within

the service (apart from the unique ID) to be updated in an easy, developer-friendly

way.

SensorThings also provides a multitude of scaling possibilities for data output.

52North-SOS queries can be configured using up to five query parameters (e.g.:

spatial, temporal, properties) to narrow down output observations, which always

include the full observation object and cannot be modified. SensorThings queries

can consist of an almost unlimited amount of query operators, which can be used to

query any property of any entity within the service. The operators can be chained

within the target URL, so no object needs to be posted to the server.

The fact that FROST does not include a user interface is irrelevant in a project

like SEnviro, since a custom client interface has already been developed. Further-

more, Fraunhofer IOSB is developing FROST-Client and FROST-Dashboard client

applications that provide user interfaces connecting to FROST-Server. Nonetheless,

the SensorThings API’s flexibility makes it easy to connect custom client interfaces

to the service. SensorThings’ usage of frequently used data standards like ISO8601

for dates and GeoJSON for spatial data combined with JSON encoding format facili-

tates spatial web development in countless ways, demonstrating the Web Standard’s

superiority over other standards and showing off its interoperability.

75

5. Web Standard Comparison

In terms of response times FROST did not excel 52North-SOS, instead showing

longer response times for getting observations with the minimum number of query

operators. When applying query filters to reduce the size of data requested the

response times are reduced to similar response times as SOS getObservation requests.

The results from the CPU and RAM usage show 52North-SOS as being less ”re-

source hungry” than FROST, both in idle as in active states. This did come as

a surprise, since the FROST functionalities are more focused on the essential data

exposure using the REST API and does not include the array of different features

52North-SOS has (e.g. binding and encoding formats, client interface, configurable

settings etc.). To fully understand the reason for 52North-SOS’ superior perfor-

mance, further investigations are necessary, analysing the core mechanisms of the

services in detail. It was eventually concluded that 52North-SOS has been devel-

oped for a longer period of time than FROST and therefore performance could be

optimised.

Unmodified response sizes from observation requests are smaller in FROST. This

promises reduced data traffic when requesting sensor data, for example in web appli-

cations for visualising large amounts of observations. As mentioned in 4.4.3.2 Web

service metrics, to make a tangible quantitative comparison requests were limited

to 1000 observations within the performance analysis. Attempts to retrieve larger

amounts of observations were made though. 52North-SOS would frequently freeze

or crash when requested amounts of data were too large. FROST on the other hand

can handle any amount of requested observations due to the approach of limiting

file output but providing web links to the still pending data.

FROST and 52North-SOS CPU and memory usage do not increase proportionally

to the amount of observation requests. However, this may change when requesting

larger data sets.

Although the performance analysis does not favour FROST over 52North-SOS,

it was nonetheless concluded that FROST’s advantages in the qualitative analysis

sufficiently outweigh 52North-SOS. Finally, it is important to note that the perfor-

mance results do not only derive from the Web Standards themselves, but rather

from their implementations. When looking past FROST and 52North-SOS at the

mere Web Standards, the SensorThings API’s data model and operations comply

more fully with the IoT concept and and with the requirements of current environ-

mental monitoring and Smart Farming applications.

76

Conclusion & Future Work

In this study the potential of Web Thing API, Sensor Observation Service (SOS)

and SensorThings API open standards for interoperability enhancement of envi-

ronmental monitoring and Smart Farming IoT applications has been investigated.

Implementations of each standard were deployed (52North-SOS, FROST) or devel-

oped (Web Thing API), tested and results were contrasted in terms of performance

and web service quality. The experiment was done in the scope of the SEnviro for

Agriculture project, an IoT full stack for monitoring vineyards.

Due to its various limitations and and lacking support for time series data the Web

Thing API was discarded as candidate for SEnviro interoperability enhancement.

The Web Thing API can be used for simple real-time monitoring of environmental

parameters and shows high configurability. Future work could include extending the

standard to include time series data support.

Investigating SOS it was concluded to be outdated in a lot of aspects, lacking sup-

port for modern web technology trends, such as the use of JSON, RESTful binding

and MQTT. For these reasons the well-established SOS implementation 52North-

SOS was deployed. 52North-SOS has compensated many of these shortages with

a multitude of features and has the capabilities to integrate with a large range of

device types and can be applied to a wide spectrum of use cases. However, many

of these features are workarounds for the outdated SOS data model and operations.

What 52North-SOS adds in functionality it lacks in flexibility and scalability, which

has a strong impact on the developer and user experience. Furthermore, the myriad

of configurations and settings in the client interface render the software overwhelm-

ing. Since SEnviro has it’s own client interface the extensive front-end features of

SOS are not relevant to SEnviro, but may be useful in projects in need of an effective

data visualisation tool such as the 52North-SOS Helgoland Client.

The SensorThings API proves to be an excellent choice for interoperability en-

hancement for SEnviro and environmental monitoring applications in the IoT field.

FROST implements the complete SensorThings data model and functionalities of

the standard as a back-end server instance, making it suitable for the integration

into SEnviro. The API is flexible, scalable and follows modern web development

trends. It focuses on the essential functionalities required in an IoT environment.

Interoperability is guaranteed by using up-to-date technologies. Data is stored in

compact JSON encoding and can be easily inserted, updated and removed via HTTP

requests. Stored entities can be accessed by HTTP GET requests and data output

77

Conclusion & Future Work

can be customised by large variety of query parameters. A good developer experi-

ence is ensured by making the service flexible and scalable. While showing higher

resource consumption and response times than SOS, performance issues can easily

be overcome by using URL extensions to select only the required data, maintaining

a low overhead.

This study did not only answer questions about the researched topic, but also

revealed some further issues and possible future work. Firstly, more Web Standards

are bound to be released in the coming years and should be investigated. Sec-

ondly, the potential of the Web Thing API extension with Prometheus time series

databases should be considered researching, since it might be a feasible solution for

different types of environmental monitoring applications. The SensorThings API

shows great potential as it stands, but also needs to be further tested, especially

considering the OGC’s release of the SensorThings API’s Tasking capabilities in

January 2019. FROST should also be further experimented upon, focusing on its

MQTT publish/subscribe capabilites, since they could bypass resource intensive

HTTP requests for publishing observations in the service.

78

Bibliography

Anastasi, G., Farruggia, O., Re, G. L., and Ortolani, M. (2009). Monitoring high-

quality wine production using wireless sensor networks. In 2009 42nd Hawaii

International Conference on System Sciences, pages 1–7.

Bassi, A. and Horn, G. (2008). Internet of Things in 2020: A Roadmap for the

Future. European Commission: Information Society and Media, 22:97–114.

Bobin, J. (2018). Visualizing Your Smart Home Data with the Web of

Things. https://hacks.mozilla.org/2018/05/visualizing-your-smart-home-data-

with-the-web-of-things/. Accessed: 2019-02-02.

Burrell, J., Brooke, T., and Beckwith, R. (2004). Vineyard computing: Sensor

networks in agricultural production. Pervasive Computing, IEEE, 3:38– 45.

Collina, M., Corazza, G. E., and Vanelli-Coralli, A. (2012). Introducing the QEST

broker: Scaling the IoT by bridging MQTT and REST. IEEE 23rd International

Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC).

Derhamy, H., Eliasson, J., and Delsing, J. (2017). IoT Interoperability—On-Demand

and Low Latency Transparent Multiprotocol Translator. IEEE Internet of Things

Journal, 4(3).

Devi, M., Reddy, M., and Reddy, G. (2018). Iot based agricultural system. In-

ternational Journal of Innovations & Advancement in Computer Science, 7:412–

416.

Fredericks, J. and Botts, M. (2018). Promoting the capture of sensor data prove-

nance: a role-based approach to enable data quality assessment, sensor manage-

ment and interoperability. Open Geospatial Data, Software and Standards, 3(1).

Gridling, G. and Weiss, B. (2007). Introduction to Microcontrollers. Vienna Uni-

versity of Technology, Institute of Computer Engineering, Embedded Computing

Systems Group.

Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. (2013). Internet of Things

(IoT): A vision, architectural elements, and future directions. Future Generation

Computer Systems.

Huang, C.-Y. and Wu, C.-H. (2016). A Web Service Protocol Realizing Interoperable

Internet of Things Tasking Capability. Sensors.

79

Bibliography

IEEE (1991). IEEE Standard Computer Dictionary: A Compilation of IEEE Stan-

dard Computer Glossaries. IEEE Std 610, pages 1–217.

Kamilaris, A., Gaoy, F., Prenafeta-Boldú, F. X., and Ali, M. I. (2016). Agri-IoT: A

Semantic Framework for Internet of Things-enabled Smart Farming Applications.

2016 IEEE 3rd World Forum on Internet of Things (WF-IoT).

Kotamäki, N., Thessler, S., Koskiaho, J., Hannukkala, A. O., Huitu, H., Huttula,

T., Havento, J., and Järvenpää, M. (2009). Wireless in-situ Sensor Network for

Agriculture and Water Monitoring on a River Basin Scale in Southern Finland:

Evaluation from a Data User’s Perspective. Sensors 2009.

Latvakoski, J., Iivari, A., Vitic, P., Jubeh, B., Alaya, M. B., Monteil, T., Lopez, Y.,

Talavera, G., Gonzalez, J., Granqvist, N., Kellil, M., Ganem, H., and Väisänen,

T. (2014). A Survey on M2M Service Networks. Computers 2014, 4:130–173.

Lazarescu, M. T. (2013). Design of a WSN Platform for Long-Term Environmental

Monitoring for IoT Applications. IEEE Journal on Emerging and Selected topics

in Circuits and Systems, Vol. 3, NO. 1.

Lee, C.-Y. and Lee, G.-B. (2005). Humidity Sensors: A Review. IEEE Sensor

Letters.

Mainetti, L., Patrono, L., and Vilei, A. (2011). Evolution of Wireless Sensor Net-

works towards the Internet of Things: a Survey. SoftCOM 2011, 19th IEEE.

Mauri, J. L., Bosch, I., Sendra, S., and Serrano, A. (2011). A Wireless Sensor

Network for Vineyard Monitoring That Uses Image Processing. In Sensors.

Moiş, G. D., Sanislav, T., Folea, S. C., and Zeadally, S. (2018). Performance Evalu-

ation of Energy-Autonomous Sensors Using Power-Harvesting Beacons for Envi-

ronmental Monitoring in Internet of Things (IoT). Sensors.

Open Geospatial Consortium (2007). Sensor Observation Service. Open Geospatial

Consortium.

Open Geospatial Consortium (2014). Best Practice for Sensor Web Enablement

Lightweight SOS Profile for Stationary In-Situ Sensors. Open Geospatial Consor-

tium.

Open Geospatial Consortium (2016). OGC SensorThings API - Sensing. Open

Geospatial Consortium.

Open Geospatial Consortium (2019). opengeospatial.org.

http://www.opengeospatial.org. Accessed: 2019-01-14.

80

Bibliography

Pradilla, J., Esteve, M., and Palau, C. (2015). SOSLite: Lightweight Sensor Obser-

vation Service (SOS). IEEE LATIN AMERICA TRANSACTIONS, 13.

Pradilla, J., Esteve, M., and Palau, C. (2018). SOSFul: Sensor Observation Service

(SOS) for Internet of Things (IoT). IEEE LATIN AMERICA TRANSACTIONS,

16.

Reed, C. (2004). Data integration and interoperability: Iso/ogc standards for geo-

information. Development directions.

SensorUp (2016). Comparison of SensorThings API and Sensor Observation Service

– Part 1. https://sensorup.com/iot/comparison-of-sensorthings-api-and-sensor-

observation-service/. Accessed: 2019-02-02.

Spann, T., Lawrence, C., Azzola, F., G.Simmons, D., Styger, E., and Smith, T.

(2018). The 2018 DZONE Guide to Internet of Things - Harnessing Device Data,

volume V. DZONE.

Sutaria, R. and Govindachari, R. (2013). Making sense of Interoperability: Protocols

and Standardization Initiatives in IoT. The 2nd ComNeT-IoT workshop in the

14th International Conference on Distributed Computing and Networking (ICDCN

2013).

Swan, M. (2012). Sensor Mania! The Internet of Things, Wearable Computing,

Objective Metrics, and the Quantified Self 2.0. Journal of Sensor and Actuator

Networks.

Tamayo, A., Granell, C., and Huerta, J. (2012). Using SWE Standards for Ubiqui-

tous Environmental Sensing: A Performance Analysis. Sensors 2012.

Trilles, S., Gonzáles Pérez, A., Zaragoza-Soria, F. J., and Huerta, J. (2018). SEnviro

for Agriculture: An IoT full stack for monitoring vineyards – Early steps. AGILE.

Trilles, S., Luján, A., Belmonte, O., Montoliu, R., Torres-Sospedra, J., and Huerta,

J. (2015). Senviro: A sensorized platform proposal using open hardware and open

standards. Sensors, 15(3):5555–5582.

Want, R., Schilit, B. N., and Jenson, S. (2015). Enabling the Internet of Things. In

2015 IEEE Computer, Volume: 48 , Issue: 1. Google.

Weinberg, B. (2014). The Internet of Things and Open Source (Extended Abstract).

In Interoperability and Open-Source Solutions for the Internet of Things, SoftCOM

2014.

Yick, J., Mukherjee, B., and Ghosal, D. (2008). Wireless sensor network survey.

Computer Networks, 52:2292–2330.

81

Bibliography

Zhou, X., Li, Z., Li, S., and Ma, J. (2011). Connecting agriculture to the inter-

net of things through sensor networks. In 2011 IEEE International Conference

on Internet of Things and 4th IEEE International Conference on Cyber, Phys-

ical and Social Computing (iThings/CPSCom 2011)(ITHINGS/CPSCOM), vol-

ume 00, pages 184–187.

82

Appendix

The following code blocks can also be found on Github on https://github.com/danji90/senviro

(Accessed 22.02.2019)

FROST-Server SEnviro Adapter:

1 import pika

2 import requests

3 import json

4 import sys

5 import ast

6 from datetime import datetime

7

8 # FROST-Server baseUrl

9 baseUrl = "http://elcano.init.uji.es:8082/FROST-Server/v1.0"

10

11 connection =

pika.BlockingConnection(pika.ConnectionParameters(host='senviro.init.uji.es',

credentials=pika.credentials.PlainCredentials(username='senvmq',

password='senviro.2018')))

↪→

↪→

↪→

12 channel = connection.channel()

13

14 channel.exchange_declare(exchange='amq.topic',

15 exchange_type='topic',

16 durable=True)

17

18 result = channel.queue_declare(exclusive=True)

19 queue_name = result.method.queue

20

21 binding_keys = sys.argv[1:]

22

23 if not binding_keys:

24 sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])

25 sys.exit(1)

26

27 for binding_key in binding_keys:

28 channel.queue_bind(exchange='amq.topic',

29 queue=queue_name,

30 routing_key=binding_key)

31

32

33 print(' [*] Waiting for logs. To exit press CTRL+C')

34

35 def insertObservation(nodeID, phenomenon, body):

83

https://github.com/danji90/senviro

Appendix

36

37 # Datastreams base url

38 url = baseUrl + '/' + 'Datastreams'

39

40 # Load name and id of present datastreams

41 dataStreams = requests.get(url + '?$select=name,id').json()

42

43 # Empty variable for holding the target datastream id

44 sendingDatastreamID = None

45

46 # Get correct datastream id using the routing key parameters of the

message, save it in variable↪→

47 for stream in dataStreams['value']:

48 if stream['name'] == phenomenon+'-'+nodeID:

49 sendingDatastreamID = stream['@iot.id']

50

51

52 date = datetime.strptime(str(body['time']), '%Y-%m-%d %H:%M:%S')

53

54 # Create observation object to post

55 postObs = {"resultTime" : str(date.isoformat()) ,"result" :

float(body['value'])}↪→

56 print(postObs)

57

58 # Post object to url/datastreams(id)/observations

59 try:

60 req = requests.post(url + '(' + str(sendingDatastreamID) + ')' + '/' +

'Observations', json = postObs)↪→

61 req.raise_for_status()

62 print(req, "####", phenomenon, " observation for station " + nodeID + "

inserted at " + str(datetime.now().isoformat()))↪→

63 except:

64 print(req, "####", "Could not insert observation at " +

str(datetime.now().isoformat()))↪→

65

66 def callback(ch, method, properties, body):

67

68 # Extract thing unique name and observable property from message routing

key↪→

69 thingName = str(method.routing_key).split('.')[2]

70 obsPropName = str(method.routing_key).split('.')[3]

71

72 # Decode byte message, throw error if decodification fails

73 try:

74 msg = ast.literal_eval(body.decode('utf-8'))

75 except:

76 print("Error: Message decodification failed, corrupted byte message

(time: " + str(datetime.now().isoformat()) + ")")↪→

84

Appendix

77

78 # Call insertObservation function, posts observations to frost db

79 insertObservation(thingName, obsPropName, msg)

80

81 # Message acknowledgement

82 ch.basic_ack(delivery_tag = method.delivery_tag)

83

84 channel.basic_consume(callback, queue=queue_name)

85

86 channel.start_consuming()

52North-SOS SEnviro Adapter:

1 import pika

2 import requests

3 import json

4 import sys

5 import ast

6 from datetime import datetime

7

8 # SOS baseUrl

9 baseUrl = "http://sos:8080/52n-sos-webapp/service"

10

11 with open('thingsSOS.json') as json_data:

12 things = json.load(json_data)

13

14 with open('insertObservation.json') as json_data:

15 observationTemplate = json.load(json_data)

16

17 uoms = {"AirTemperature":"°C","Humidity":"%","AtmosphericPressure":"Pa",
18 "Precipitation":"mm","WindDirection":"","WindSpeed":"m/s",

19 "SoilTemperature":"°C","SoilHumidity":"m^3/m^3","Battery":"%"}
20

21 connection = pika.BlockingConnection(pika.ConnectionParameters(host=

22 'senviro.init.uji.es',credentials=pika.credentials.PlainCredentials(username=

23 'senvmq', password='senviro.2018')))

24 channel = connection.channel()

25

26 channel.exchange_declare(exchange='amq.topic',

27 exchange_type='topic',

28 durable=True)

29

30 result = channel.queue_declare(exclusive=True)

85

Appendix

31 queue_name = result.method.queue

32

33 binding_keys = sys.argv[1:]

34

35 if not binding_keys:

36 sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])

37 sys.exit(1)

38

39 for binding_key in binding_keys:

40 channel.queue_bind(exchange='amq.topic',

41 queue=queue_name,

42 routing_key=binding_key)

43

44

45 print(' [*] Waiting for logs. To exit press CTRL+C')

46

47 def insertObservation(nodeID, phenomenon, body):

48

49 # Create timestamp from message

50 timestamp = str(datetime.strptime(str(body['time']), '%Y-%m-%d

%H:%M:%S').isoformat())+"+00:00"↪→

51

52 # select correct thing from stations

53 coordinates = list(filter(lambda x: x["id"] == str(nodeID), things))

54

55 # Create observation object to post

56 postObs = observationTemplate

57 postObs["offering"] = "offering"+str(nodeID)

58 postObs["observation"]["procedure"] = str(nodeID)

59 postObs["observation"]["observedProperty"] = phenomenon

60 postObs["observation"]["featureOfInterest"]["identifier"]["value"] =

"featureOfInterest"+str(nodeID)↪→

61 postObs["observation"]["featureOfInterest"]["name"][0]["value"] =

str(nodeID)↪→

62 postObs["observation"]["featureOfInterest"]["sampledFeature"] =

["parent"+str(nodeID)] # SampledFeature important for

core operations

↪→

↪→

63 postObs["observation"]["featureOfInterest"]["geometry"]["coordinates"] =

coordinates[0]["location"]↪→

64 postObs["observation"]["phenomenonTime"] = timestamp

65 postObs["observation"]["resultTime"] = timestamp

66 postObs["observation"]["result"]["uom"] = uoms[str(phenomenon)]

67 postObs["observation"]["result"]["value"] = float(body["value"])

68

69 # Post object to service url

70 try:

71 req = requests.post(baseUrl, json = postObs)

72 req.raise_for_status()

86

Appendix

73

74 print(req, "####", phenomenon, " observation for station " + nodeID + "

inserted at " + str(datetime.now().isoformat()))↪→

75 except:

76 print(req, "####", "Could not insert observation at " +

str(datetime.now().isoformat()))↪→

77

78 def callback(ch, method, properties, body):

79

80 # Extract thing unique name and observable property from message routing

key↪→

81 thingName = str(method.routing_key).split('.')[2]

82 obsPropName = str(method.routing_key).split('.')[3]

83

84 # Decode byte message, throw error if decodification fails

85 try:

86 msg = ast.literal_eval(body.decode('utf-8'))

87 except:

88 print("Error: Message decodification failed, corrupted byte message

(time: " + str(datetime.now().isoformat()) + ")")↪→

89

90 # Call insertObservation function, posts observations to sos db

91 insertObservation(thingName, obsPropName, msg)

92

93 # Message acknowledgement

94 ch.basic_ack(delivery_tag = method.delivery_tag)

95

96 channel.basic_consume(callback, queue=queue_name)

97

98 channel.start_consuming()

WebThing SEnviro Adapter:

1 from asyncio import sleep, CancelledError, get_event_loop

2 from webthing import (Action, Event, MultipleThings, Property, Thing, Value,

3 WebThingServer)

4 # from multiprocessing import Process

5 import logging

6 import random

7 import time

8 import uuid

9 import threading

10 import sys

87

Appendix

11 import pika

12 import requests

13 import json

14 import ast

15 from datetime import datetime

16

17 ### WebThing setup

18 # Define Action class

19

20 class updateLocation(Action):

21 # Allows users to update a node's coordinates

22 def __init__(self, thing, input_):

23 Action.__init__(self, uuid.uuid4().hex, thing, 'updateCoords',

input_=input_)↪→

24

25 def perform_action(self):

26 self.thing.set_property('Coordinates', self.input['Coordinates'])

27

28 # Define class for things (nodes) with properties and available actions

29 class senviroNode(Thing):

30

31 def __init__(self, name, latlon):

32 type = []

33 description = "This monitoring station is an assemlby of sensors

measuring environmental parameters in agricultural fields"↪→

34 Thing.__init__(self,

35 name,

36 type,

37 description)

38

39 self.add_property(

40 Property(self,

41 'Coordinates',

42 Value(latlon),

43 metadata={

44 '@type': 'LevelProperty',

45 'label': 'Coordinates',

46 'type': 'array',

47 'description': 'Latitude and longitude coordinates of

the station',↪→

48 'unit': 'degree'

49 }))

50

51 self.AirTemperature = Value(0.0)

52 self.add_property(

53 Property(self,

54 'AirTemperature',

55 self.AirTemperature,

88

Appendix

56 metadata={

57 '@type': 'LevelProperty',

58 'label': 'AirTemperature',

59 'type': 'number',

60 'description': 'The degree or intensity of heat

present in the area',↪→

61 'unit': 'degree celsius'

62 }))

63

64 self.Humidity = Value(0.0)

65 self.add_property(

66 Property(self,

67 'Humidity',

68 self.Humidity,

69 metadata={

70 '@type': 'LevelProperty',

71 'label': 'Humidity',

72 'type': 'number',

73 'description': 'Ratio of the partial pressure of water

vapor to the equilibrium vapor pressure of water

at a given temperature',

↪→

↪→

74 'minimum': 0,

75 'maximum': 100,

76 'unit': 'percent'

77 }))

78

79 self.AtmosphericPressure = Value(0.0)

80 self.add_property(

81 Property(self,

82 'AtmosphericPressure',

83 self.AtmosphericPressure,

84 metadata={

85 '@type': 'LevelProperty',

86 'label': 'AtmosphericPressure',

87 'type': 'number',

88 'description': 'Pressure within the atmosphere of

Earth',↪→

89 'unit': 'pascal'

90 }))

91

92 self.Precipitation = Value(0.0)

93 self.add_property(

94 Property(self,

95 'Precipitation',

96 self.Precipitation,

97 metadata={

98 '@type': 'LevelProperty',

99 'label': 'Precipitation',

89

Appendix

100 'type': 'number',

101 'description': 'Product of the condensation of

atmospheric water vapor',↪→

102 'unit': 'millimeters'

103 }))

104

105 self.WindDirection = Value(0.0)

106 self.add_property(

107 Property(self,

108 'WindDirection',

109 self.WindDirection,

110 metadata={

111 '@type': 'LevelProperty',

112 'label': 'WindDirection',

113 'type': 'number',

114 'description': 'Wind direction in integer values

(0-7)',↪→

115 'unit': 'null'

116 }))

117

118 self.WindSpeed = Value(0.0)

119 self.add_property(

120 Property(self,

121 'WindSpeed',

122 self.WindSpeed,

123 metadata={

124 '@type': 'LevelProperty',

125 'label': 'WindSpeed',

126 'type': 'number',

127 'description': 'Wind speed readings in m/s',

128 'unit': 'meters per second'

129 }))

130

131 self.SoilTemperature = Value(0.0)

132 self.add_property(

133 Property(self,

134 'SoilTemperature',

135 self.SoilTemperature,

136 metadata={

137 '@type': 'LevelProperty',

138 'label': 'SoilTemperature',

139 'type': 'number',

140 'description': 'The degree or intensity of heat

present in the soil',↪→

141 'unit': 'degrees celsius'

142 }))

143

144 self.SoilHumidity = Value(0.0)

90

Appendix

145 self.add_property(

146 Property(self,

147 'SoilHumidity',

148 self.SoilHumidity,

149 metadata={

150 '@type': 'LevelProperty',

151 'label': 'SoilHumidity',

152 'type': 'number',

153 'description': 'Water content per soil ratio present

in the soil',↪→

154 'unit': 'm^3/m^3'

155 }))

156

157 self.Battery = Value(0.0)

158 self.add_property(

159 Property(self,

160 'Battery',

161 self.Battery,

162 metadata={

163 '@type': 'LevelProperty',

164 'label': 'Battery',

165 'type': 'number',

166 'description': 'Battery readings in %',

167 'unit': 'percent'

168 }))

169

170 self.add_available_action(

171 'updateCoords',

172 {

173 'label': 'updateCoords',

174 'description': 'Update station coordinates',

175 'input': {

176 'type': 'object',

177 'required': [

178 'Coordinates'

179],

180 'properties': {

181 'Coordinates': {

182 'type': 'array',

183 'unit': 'degree'

184 },

185 },

186 },

187 },

188 updateLocation)

189

190

191 # Create nodes for present stations, takes node ID and coordinates as

arguments↪→

91

Appendix

192 node270043001951343334363036 = senviroNode("270043001951343334363036",

[40.133098,-0.061000])↪→

193 node4e0022000251353337353037 = senviroNode("4e0022000251353337353037",

[39.993934,-0.073863])↪→

194

195 ### Rabbitmq configuration

196 def rabbitReceiver():

197

198 connection = pika.BlockingConnection(pika.ConnectionParameters(host=

199 'senviro.init.uji.es',

credentials=pika.credentials.PlainCredentials(username=↪→

200 'senvmq', password='senviro.2018')))

201

202 channel = connection.channel()

203 channel.exchange_declare(exchange='amq.topic',

204 exchange_type='topic',

205 durable=True)

206

207 result = channel.queue_declare(exclusive=True)

208 queue_name = result.method.queue

209

210 binding_keys = ['#']

211 channel.queue_bind(exchange='amq.topic',

212 queue=queue_name,

213 routing_key=str(binding_keys[0]))

214

215 print("Waiting for messages...")

216

217 def callback(ch, method, properties, body):

218

219 # Decode byte message, throw error if decodification fails

220 try:

221 msg = ast.literal_eval(body.decode('utf-8'))

222 except:

223 print("Error: Message decodification failed, corrupted byte message

(time: " + str(datetime.now().isoformat()) + ")")↪→

224

225 thingName = str(method.routing_key).split('.')[2]

226 obsPropName = str(method.routing_key).split('.')[3]

227

228 node = globals()['node'+thingName]

229

230 try:

231 node.set_property(obsPropName, float(msg['value']))

232 print("inserted: ", thingName, obsPropName, float(msg['value']))

233 except:

234 print("Could not insert ", obsPropName, " values for ", thingName,)

235

92

Appendix

236

237 ch.basic_ack(delivery_tag = method.delivery_tag)

238

239 # return updateMsg(dummy)

240

241 channel.basic_consume(callback, queue=queue_name)

242

243 channel.start_consuming()

244

245 # Define RabbitMQ connection as simultaneous thread

246 mq_recieve_thread = threading.Thread(target=rabbitReceiver)

247

248 def run_server():

249

250 # Define webthing server, add the two predefined nodes

251 server = WebThingServer(MultipleThings([node270043001951343334363036,

node4e0022000251353337353037],'senviroWeb'),port=5000)↪→

252

253 # Start RabbitMQ thread

254 mq_recieve_thread.start()

255

256 try:

257 # Start WebThing server

258 print('starting the server')

259 server.start()

260 except KeyboardInterrupt:

261 logging.debug('canceling the sensor update looping task')

262 # node270043001951343334363036.cancel_update_level_task()

263 print('stopping the server')

264 server.stop()

265 print('done')

266

267 # Run server

268 run_server()

93

	Introduction
	Context
	Problem Definition
	Motivation and goals
	Structure

	Background
	Internet of Things
	Sensing hardware
	Wireless Sensor Networks
	Machine-to-Machine Communication & MQTT
	Interoperability
	Open & Sensor Web Standards
	Sensor Observation Service
	SOS data model
	SOS operations
	SOS implementations

	SensorThings API
	SensorThings data model
	SensorThings operations
	SensorThings implementations

	Web Thing API
	Web Thing data model

	SEnviro for Agriculture
	Smart Farming
	SEnviro components
	SEnviro nodes
	SEnviro Connect

	Methodology
	Experimental Environment
	Deployed Web Standard Implementations
	52North-SOS
	FROST-Server

	SEnviro Web Standard Integration
	SOS Adapter
	SensorThings Adapter
	Web Thing Adapter

	Comparative Analysis
	Performed operations
	Data management
	Accessing metadata
	Observation retrieval

	Qualitative Analysis
	Quantitative Analysis
	Response times and sizes
	Web service metrics

	Web Standard Comparison
	Web Thing API evaluation
	52North-SOS & FROST qualitative evaluation
	Service deployment & configuration
	52NorthSOS setup
	FROST setup

	Data management
	52North-SOS transactional operations
	FROST Create-Update-Delete requests

	Retrieving metadata
	52North-SOS metadata operations
	FROST metadata queries

	Observation queries
	52North-SOS queries
	FROST queries

	52North-SOS & FROST performance evaluation
	Response times and sizes
	Container metrics

	Discussion

	Conclusion & Future Work
	Bibliography
	Appendix

