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The Mediterranean basin is especially sensitive to the adverse outcomes of climate
change and especially to variations in rainfall patterns and the incidence of extremely
high temperatures. These two concurring adverse environmental conditions will surely
have a detrimental effect on crop performance and productivity that will be particularly
severe on woody crops such as citrus, olive and grapevine that define the backbone
of traditional Mediterranean agriculture. These woody species have been traditionally
selected for traits such as improved fruit yield and quality or alteration in harvesting
periods, leaving out traits related to plant field performance. This is currently a
crucial aspect due to the progressive and imminent effects of global climate change.
Although complete genome sequence exists for sweet orange (Citrus sinensis)
and clementine (Citrus clementina), olive tree (Olea europaea) and grapevine (Vitis
vinifera), the development of biotechnological tools to improve stress tolerance still
relies on the study of the available genetic resources including interspecific hybrids,
naturally occurring (or induced) polyploids and wild relatives under field conditions. To
this respect, post-genomic era studies including transcriptomics, metabolomics and
proteomics provide a wide and unbiased view of plant physiology and biochemistry
under adverse environmental conditions that, along with high-throughput phenotyping,
could contribute to the characterization of plant genotypes exhibiting physiological
and/or genetic traits that are correlated to abiotic stress tolerance. The ultimate goal
of precision agriculture is to improve crop productivity, in terms of yield and quality,
making a sustainable use of land and water resources under adverse environmental
conditions using all available biotechnological tools and high-throughput phenotyping.
This review focuses on the current state-of-the-art of biotechnological tools such as high
throughput –omics and phenotyping on grapevine, citrus and olive and their contribution
to plant breeding programs.
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IMPACT OF CLIMATE CHANGE ON THE
MEDITERRANEAN AREA: A FOCUS ON
TRADITIONAL AGRICULTURE AND ITS
ECONOMIC IMPORTANCE

Climate change is defined as identifiable long-term changes in the
state of the climate, such as increased temperatures, atmospheric
CO2 levels, precipitations, etc. (Korres et al., 2016). It is also
important to note that although there are several natural causes
behind climate change that occurred over Earth’s history, the
‘Climate Change’ concept refers to variations in climatic patterns
occurring over the last century and caused by anthropogenic
activities that release greenhouse gasses (e.g., CO2, CH3, NO2,
etc.). Studies on climate change over the last two decades have
rendered consistent projections that predicted a net increase of
average temperatures and a significant variation in the patterns
of precipitation (Lobell and Gourdji, 2012). Despite changes
in the climatic patterns differ among world regions increasing
evidence points that the Mediterranean area will be one of the
most sensitive to the effects of climate change, the primary effects
of which will be a decrease in rainfall and a sharp increase in
temperatures (IPCC, 2014; Korres et al., 2016).

The increase in summer temperatures is projected to be very
large in south-western parts of Europe (exceeding 6◦C in some
parts of France and the Iberian Peninsula) by the end of the 21st
century. Annual rainfall is expected to decrease by 10% in this
area compared with values recorded in the period comprising
years 1961–1990 (Olesen et al., 2011).

These adverse conditions will influence productivity by
affecting overall plant performance but also influencing
phenology (especially relevant to perennial crops). To this
respect, alteration of the climatic patterns leading to an
extended growth season with no quiescence period (cold season)
could dramatically reduce productivity and/or quality of the
production (Gordo and Sanz, 2010). Nevertheless, not all changes
in the environmental conditions pose a threat, an example being
increased atmospheric CO2 fertilization and the extension of
growing season which could improve yields in some species or
circumstances (Kimball, 2016).

Regarding the effects of increasing average temperatures on
perennial cropping systems, it is important to note that the
severity of the effects will depend on the phenological state: (a)
in winter, these increases will affect early phenological events
such as flower bud induction, (b) in spring, elevated temperatures
could affect the persistence of already developed flowers and (c)
during the fruit development phase, comprising fruit expansion
and maturation, higher temperatures coupled to extreme isolated
events could affect final yield and quality as well as plant
performance (Figure 1).

Changes in atmospheric CO2 concentrations will be
accompanied by severe water limitation and increases in average
temperatures, posing several stress combinations with different
outcomes (Zandalinas et al., 2017). For instance, Medlyn
(2011) showed that stomatal conductance and transpiration
in woody plant species could decrease up to a 21% in
parallel to CO2 concentration rise, implying an increase in

water use efficiency and subsequently an improvement of
plant performance under water stress conditions. However,
a concomitant increase of ambient temperature will increase
evapotranspiration. Under these circumstances, the potential
gain in yield caused by the higher CO2 levels (Vara Prasad et al.,
2005) would be compensated and even turned in net losses due
to the negative effect of high temperature once the optimum
values are surpassed (Fares et al., 2017; Zandalinas et al., 2017).
Therefore, the identification of traits associated to greater yields
under high ambient CO2 constitute a desirable breeding target
in order to compensate losses due to episodes of extremely high
temperatures (Bunce, 2017).

The influence of changes in CO2 and temperature on
plant performance and/or productivity is genotype-dependent.
Comparing responses of rice, soybean and citrus to combined
high CO2 and temperature, (Baker and Allen, 1993) showed
that citrus displayed the greatest increase in growth due to
enhanced water use efficiency and photosynthetic rate associated
to CO2 enrichment. More recently, Vu et al. (2002) showed
that ‘ambersweet’ orange trees grown at high CO2 (720 ppm)
and temperature (up to 6◦C above ambient) showed improved
overall photosynthetic rate suggesting a good acclimation
capacity of citrus to climate change conditions. In grapevine,
FACE experiments (Free Air CO2 Enrichment) had shown that
increased CO2 may stimulate wine grape production without
causing negative repercussions in table grape or wine quality
(Bindi et al., 2001; Moutinho-Pereira et al., 2009). Similarly to
citrus, the combination of high temperature and CO2 had no
deleterious effect in grapevine yield (Kizildeniz et al., 2018),
contrary to water stress that significantly affected yield when
applied along with elevated temperature. The available reports
on olive trees indicate a similar behavior to atmosphere CO2
enrichment (Tognetti et al., 2002).

Crop productivity in Southern Europe is already limited,
mainly due to water scarcity and elevated temperatures. Taking as
an example the heat wave that occurred in 2003, with temperature
rises of 3–5◦C and annual precipitation deficit of 300 mm
that led to a decrease in gross agricultural production over a
30% in Europe, it is likely that climatic conditions similar to
those of the year 2003 will be more frequent in the future
(Samaniego et al., 2018).

Besides the decrease in productivity and plant performance,
alterations in fruit quality will also impact farmers’ income and
competitiveness. Harvesting periods of certain fruit varieties (e.g.,
citrus) are established in relation to their optimal ripening and so
are the farmers’ efforts and distribution networks. This is likely
to be dramatically altered by climate change conditions (Fitchett
et al., 2014). To this respect, alteration in the climatic patterns,
defined by the alternation in cold and warm periods, has already
had a significant effect on flowering and ripening of several
perennial species (Figure 1), in some cases occurring 2 or 3 weeks
earlier than in previous cropping seasons (Fitchett et al., 2014).

This review focuses on three major woody crops from the
Mediterranean area: grapevine, olive and citrus. Despite having
diverse botanical origins, their impact on Mediterranean region
has shaped economy and culture for centuries. These iconic fruit
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FIGURE 1 | Summary of changes in phenology and fruit quality in grapevine, citrus and olive in response to drought and high temperatures derived from climate
change conditions. Black arrows indicate advances in the phenological state, blue–red coloring in the month scale indicates incidence of high (red) and low
(blue) temperatures.

crops face the challenge of remaining productive delivering the
highest quality in a climate change scenario. This can be achieved
following two strategies: one aimed at optimizing the available
natural resources and the other at providing novel plant material
better adapted to unfavorable conditions.

(a) Irrigation management, which aims at improving the
efficiency or the volume of water used by the plant
in relation with the total amount applied, and also
water productivity, the ratio between crop yield and
water used, which is normally increased by applying less
water than the potential evapotranspiration demand of
the crop. However, this reduction needs to be carefully
applied to maintain yield (Fereres and Soriano, 2007). For
Mediterranean woody crops, deficit irrigation not only
enhances water productivity as it decreases transpiration,
but also improves fruit quality and reduces excessive
vegetative growth (Fernández et al., 2018).

(b) Breeding programs for drought-tolerant cultivars. The
recent advances in phenotyping and genomics offer
the possibility to find new cultivars that can achieve
acceptable yields with less water. However, improvement
in tolerance to water deficit is particularly elusive
due to the complexity of plant responses to drought,
in particular concerning with grain and fruit yield.
A correct definition of the drought scenario and the
crop species physiology under drought is crucial for an

efficient selection (Tardieu et al., 2011). Once determined
the key processes conferring drought tolerance for a
certain species in the target drought scenario, the genes
associated to those processes can be identified to assist in
breeding. This highlights the role of crop ecophysiology
in modern breeding for drought tolerance, which is often
neglected (Lawlor, 2013).

In the following lines, the state-of-the-art of the application of
biotechnological tools to boost up breeding programs to produce
more resilient plant material will be reviewed and discussed.

GRAPEVINE, CITRUS AND OLIVE,
TRADITIONAL MEDITERRANEAN
WOODY CROP SPECIES

Grapevine
The grapevine (Vitis vinifera) belongs to the family Vitaceae.
The Vitis genus includes about 60 species distributed in Europe,
North America, and Asia under temperate Mediterranean
and subtropical climatic conditions. Vitis is separated in two
subgenera, Euvitis and Muscadinia characterized by different
chromosome number (2n = 38 and 2n = 40, respectively). Sexual
compatibility is wide within each subgenus but most of the
inter-sub-generic hybrids are sterile. Nearly all grape cultivars
produced for fruit, juice and wine are classified as Vitis vinifera
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L. subsp. vinifera (or sativa) or are hybrids of V. vinifera. Current
knowledge points toward its domestication from the wild relative
of the same species: Vitis vinifera L. subsp. sylvestris (Gmelin)
Hegi (This et al., 2006; Mihaljević et al., 2013). Other Euvitis
species such as V. rupestris, V. riparia or V. berlandieri exhibit
significant resistance to Phylloxera, Oidium, and mildews and
are used primarily for rootstock breeding. It is believed that
the domestication of grapevine originated in a region located
between Black Sea and Iran 6,000–9,000 years ago (Myles et al.,
2011). From this spot, it spread toward Middle East and Central
Europe which are nowadays considered secondary domestication
centers resulting from gene flow between wild and cultivated
gene pools (Arroyo-Garcia et al., 2006; Myles et al., 2011; Bouby
et al., 2013). In the Mediterranean Basin, grape spread gradually
westwards (Terral et al., 2010), with the most ancient evidence
of viticulture found in Greece and Crete (fifth millennium BC),
then in Italy (ninth century BC) and Spain (early within the
last millennium BC). The French viticulture appears to be more
recent (600 years BC).

Winegrapes are among the most profitable crops with a
global market value of 30 billion1 €. The most widespread
winegrape varieties are: Cabernet Sauvignon, Chardonnay and
Pinot Noir that are clonally propagated subsequently showing
little genetic diversity among them. Winemakers are bound
to deliver a very specific product and changes in climatic
conditions make necessary to adjust management practices,
variety or even the clone within a variety, to satisfy consumer
demands (Van Leeuwen et al., 2004). Aside from yield,
final grape biochemical composition, in terms of metabolite
concentration, largely depends on climatic conditions, as
summarized in Kuhn et al. (2014).

Winegrape phenology is also very sensitive to climate
change. Indeed, the timing of phenological events has changed
between 1 and 2 weeks over the past decades (Wolkovich
et al., 2017 and references therein). Regulation of timing of
phenological events is a complex trait influenced by climate
(determined by a subset of environmental cues), genetics, and
a complex interaction of both factors. However, climate and
more specifically temperature is the dominant factor controlling
the pace of phenological events (de Cortázar-Atauri et al.,
2009) within each cultivar (Wolkovich et al., 2017). The main
phenological events linked to overall production and quality
in grapes are (i) budburst, that requires daytime temperatures
above 10◦C to initiate growth, (ii) flowering that is generally
accelerated by high temperatures, (iii) veraison (or color break)
followed by (iv) ripening, these two being positively regulated
by high temperatures although excessive exposure to high
temperatures can be detrimental, and, finally, (v) maturity, that
is determined by sugar accumulation, for which temperature is
critical setting the optimal harvest date (Figure 1). Martínez-
Lüscher et al. (2016) evaluated the sensitivity of grapevine
at different phenological stages to environmental conditions
associated to climate change. According to their results, thermal
time models seem to predict very accurately early phenological
phases (budburst and flowering), but, as the growing season

1http://www.oiv.int

advances, other factors such as different cultural practices and
water availability influence the timing of phenophases. According
to Ferrise et al. (2013), the sequence of developmental processes
will be accelerated advancing phenological phases, such as
budbreak, flowering or ripening, with values ranging from 8 to
15 days. In general, the reproductive phase was the most affected
resulting in shorter periods by an average of 6 days.

Citrus
Citrus belong to the Rutaceae family, Aurantioideae subfamily.
Most of the cultivated citrus species are part of the Citrus genus
(Tanaka, 1961; Swingle and Reece, 1967). Molecular studies
(Nicolosi et al., 2000; Barkley et al., 2006; Garcia-Lor et al.,
2013; Curk et al., 2015, 2016) and recent genomic studies
(Curk et al., 2014; Oueslati et al., 2017; Wu et al., 2018)
provided a clear understanding of the evolution of cultivated
Citrus, revealing the existence of four ancestral taxa: [Citrus
maxima (Burm.) Merr. – the pummelos, Citrus medica L. – the
citrons, Citrus reticulata Blanco – the mandarins and Citrus
micrantha Wester a wild papeda species]. The other cultivated
species [Citrus aurantium L. – sour orange, Citrus sinensis
(L.) Osbeck – sweet orange, Citrus paradisi Macf. – grapefruit,
Citrus limon (L.) Burm. F. – lemon and Citrus aurantifolia
(Christm.) Swingle – lime] resulted from recombination among
ancestral taxa. Several genera (Poncirus, Fortunella, Eremocitrus,
Microcitrus, and Clymenia) are sexually compatible with Citrus
species and constitute the true citrus group (Swingle and Reece,
1967). They have interest as parentals for rootstock breeding due
to their tolerance traits to several abiotic stresses and diseases.
Citrus species were domesticated in Southeast Asia several
thousand years ago. The first species known in the Mediterranean
was Citron, probably introduced by Alexander the Great to Persia
and Greece from India. Old mosaics show that the Romans may
have known lemon fruits around 100 years BC. Citrus were
then spread throughout Europe and North Africa during the
expansion of the Arabic empire. Citron, sour orange, lemon, lime,
and pummelo are described in tenth and eleventh century books
from Spain. Modern types of sweet oranges were introduced
in Europe by the Portuguese in the early sixteenth century.
The introduction of mandarins is more recent (early nineteenth
century). The Mediterranean Basin is considered a secondary
area of Citrus diversification, particularly important for sweet
oranges and lemons (Aubert, 2001).

Irrigation requirements for Citrus production in the
Mediterranean area are relatively high (Carr, 2012). In this sense,
water management in the last decades has improved partly as a
result of the implementation of drip irrigation. Compared with
traditional surface irrigation techniques, drip irrigation allows
a more accurate control of watering and optimizes water usage
without a significant decrease in production. Moreover, drip
irrigation facilitates management of spontaneous weeds and
optimal fertilization (Carr, 2012).

At present, Mediterranean citrus fruit production and
commercialization is focused on delivering the maximum fresh
fruit quality, including external appearance (such as shape,
texture, and color) and taste characteristics (sugar content, acidity
etc.) as the main quality traits that must fit stringent parameters
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to successfully reach the market. To accomplish this goal,
citrus production has been subjected to extensive technification
including the accurate selection of genotypes to be used as
rootstocks, providing adequate yield and plant performance traits
to the grafted variety.

A warmer climate will affect fruit metabolism in terms of
yield but also influence internal quality in several ways. High
average temperatures increase sugar content and reduce acidity.
This is probably linked to enhanced photosynthetic and fruit
sink activities along with citric acid metabolism (Albrigo, 2004;
Cercós et al., 2006). The ratio between total titrable acidity
(TTA) and total soluble solids (TSS) is the main parameter
used to determine optimal fruit maturity for harvesting. Hence,
the adequate balance between sugars and citric acid, confers
the characteristic flavor of citrus in temperate world regions
in clear contrast to those produced in tropical areas (Albrigo,
2004). Moreover, external fruit quality is also affected in tropical
climates increasing the occurrence of bigger fruits with smoother
surfaces and lower rind color intensity (Reuther and Rios-
Castaño, 1969). The development of an optimal external quality
requires cooler fall/winter temperatures, whereas optimal pulp
and juice quality is usually associated to temperate climates with
warmer winters and higher relative humidity (Reuther, 1973).

Final fruit yield and quality in citrus depend on a series
of concatenated processes, flowering, fruit set and fruit growth
and development that are particularly affected by climate
change conditions. Sprouting in citrus is independent of the
air temperature so it can happen at any moment of the year
if soil temperature is above 12◦C. Under typical Mediterranean
conditions, there are three sprouting events during the year
(spring, summer, and fall). Spring flushes generate flower and
fruit-bearing branches after flower bud induction during winter
(Garcia-Luis et al., 1995). Flower bud induction is linked to
environmental factors such as drought and cool temperatures
(below 20◦C), this latter being the primary factor. In citrus,
the key phenological events in determining final fruit yield
are bud floral transition and initial fruit set, that take place
during winter and spring in temperate climates. Most cultivated
citrus varieties are parthenocarpic or autoincompatible, therefore
requiring pollination to initiate ovary-fruit transition but without
fertilization of ovules (Talon et al., 1992). Climate change models
predict average temperature rises between 2.6 and 4◦C by the end
of the 21st century, that will likely delay flowering and reduce
flower number (Albrigo, 2004). Increases in winter average
temperatures will definitely affect flower bud induction and
reduce the number of reproductive branches on spring. As a
result, number of flowers could be drastically reduced, increasing
the chances of suffering heat stress and massive flower drop
(Albrigo and Saúco, 2004).

The effect of high temperatures during fruit set, which has
a direct influence on final production and quality, has not
been extensively studied. Nevertheless, higher fruit drop rates
are an expectable consequence of elevated temperatures during
May–June. Fruit set is regulated by a series of factors (number
of flowers, competition between reproductive organs, plant
hormones, and crop load) that are, to some extent, manageable.
Efficient fruit set appears to be a result of a complex interplay

of several plant hormones (Iglesias et al., 2007), the activity of
which can be mimicked by exogenous treatments. On the other
hand, environmental factors, such as high temperatures that
increase evaporative demand, cannot be controlled and need to
be overcome by the available means (Iglesias et al., 2007).

Changes in phenology derived from climate change are
possibly the most important factor affecting citrus production in
terms of marketability and profitability. Variations in the climatic
patterns of citrus-producing areas will drastically influence
tree phenology, flower and fruit development as well as its
organoleptic composition (Figure 1). Final fruit size is primarily
determined during phase II of fruit development and it is
associated to cell elongation, it is inversely correlated with
number of competing fruitlets and also air temperature, as it
regulates transpiration and, hence, water absorption. Optimal
temperatures for enhancement of fruit growth rate appear to
be in the 20–25◦C range, temperatures outside this range will
cause a reduction in fruit size either by slowing down growth
rate or by increasing competition between developing fruitlets
(Reuther, 1973). To this respect, soil moisture is also important
to fruit growth rate throughout all stages of fruit development
but particularly during early development. Flowering and fruit
expansion characteristics need to be understood in relationship
to fruit maturation and anticipated quality to maximize quality
in subtropical-to-tropical climates.

Olive
Olive (O. europaea L.) is part of the Oleaceae family. The
Olea genus includes 33 species and 9 subspecies (Green,
2002), six being in the O. europaea species and displaying
specific geographical distributions: Olea europaea subsp.
europaea (Mediterranean Basin), O. europaea subsp.
cuspidata (from South Africa to South Asia), O. europaea
subsp. laperrinei (Saharan mountains), O. europaea subsp.
maroccana, O. europaea subsp. cerasiformis, and O. europaea
subsp. guanchica (Macaronesia). Cultivated and wild relative
Mediterranean olive species are relatively defined as O. europaea
subsp. europaea var. europea and O. europaea subsp. europaea
var. sylvestris. Archaeobotanical and molecular studies suggested
that domestication occurred five to six thousand years ago in
the Middle East (Besnard et al., 2018). Secondary diversification
of the crop followed the oleiculture diffusion over the whole
Mediterranean basin (Besnard et al., 2001). However, whether
multiple or single domestication events occurred is still under
debate (Diez et al., 2015).

Propagation of olive trees has been traditionally carried
out vegetatively by cuttings, although grafting of elite varieties
on appropriate rootstocks is nowadays attracting interest as
a tool to develop new groves with high density plantations.
Indeed, grafting of well-established and -adapted cultivars on
dwarfing rootstocks appears a good alternative to develop new
cultivars suitable for high-density planting (Rugini et al., 2016).
Unfortunately, the availability of such rootstocks is very limited
and only a few accessions are currently under investigation
(Rugini et al., 2016).

Olive trees have been domesticated for the past six millennia
(Kaniewski et al., 2012), and olive oil, together with wine, are
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typical agricultural products linked to historic Mediterranean
civilizations. Although traditional olive tree cultivation was
carried out in sparse rain-fed tree plantations with 100–300
trees per hectare, in the last two decades modern intensification
techniques are quickly changing the aspect of orchards, which
are now planted at high density, with intensive irrigation
and fertilization management (Tous et al., 2008). While
improvements in cultivation techniques have led to large
increases in olive oil production, prices are decreasing and, since
input costs are steadily growing, the profitability of many olive
plantations is at risk (Rodriguez Cohard et al., 2017). Climate
change might exacerbate these issues as it is expected to reduce
yields by 3.5–7% (Ronchail et al., 2014).

Unlike other crops cultivated in the area, olive trees originated
and diversified in the Mediterranean basin (Besnard et al., 2018)
subjected to its typical climate characterized by hot and dry
summers and high inter-annual rainfall variability. Therefore,
physiological and phenological characteristics are well suited
to this type of climate (Connor, 2005). Moreover, despite of
this restricted geographical origin, it has been suggested that
several independent, disperse and widely spread domestication
events could have led to the selection of locally adapted
genotypes and the existence of a high number of olive varieties
(Lavee and Zohary, 2011).

As in other fruit crops, reproductive development is one
of the main agronomical features that will be affected by
climate change. Climate conditions before and during flowering
and fruiting are of pivotal importance, first determining the
number of flowers, initial fruit set and, subsequently, fruit
yield. In olive trees, temperature and rainfall between autumn
and spring (pre-flowering and beginning of flowering periods)
determine the abundance and phenology of flowering (Aguilera
and Valenzuela, 2012). Different flowering models coupled with
climate predictions show that by the end of the 21st century,
flowering could be anticipated by 10–17 days due to increasing
temperatures during the pre-flowering period (Aguilera et al.,
2015; Gabaldon-Leal et al., 2017). This could be advantageous,
since shifting the critical flowering time frame from the warmer
to the cooler periods would reduce heat-induced flower drop
and, hence, increase the fruitlet success rate. However, within
the current distribution area of olive tree orchards this might
not be enough to cope with increasing temperatures during
flowering in the southernmost locations, as the expected rise in
spring temperatures and especially during flowering can have
a deleterious impact on olive production (Gabaldon-Leal et al.,
2017). Olive trees produce two types of inflorescences: perfect
or hermaphrodite and imperfect or staminate, containing only
a residual atrophied pistil. In a recent work, a 4◦C temperature
rise caused a reduction in the percentage of perfect flowers
and fertile inflorescences as well as fruit set (Benlloch-González
et al., 2018). Flowering seems to be controlled by both genetic
and environmental factors (Moreno-Alias et al., 2012). To this
respect, selection of early-flowering varieties could constitute
an alternative to adapt olive production to climate change in
particularly sensitive areas.

Water scarcity due to rainfall reduction is the other main
threat to olive production. Water stress not only has a negative

impact on flowering but also reduces stomatal aperture and
carbon assimilation (Hernandez-Santana et al., 2017). At present,
intensification is rapidly shifting the cultivation method from
extensive rain-fed groves to irrigated orchards; therefore, the
forecasted reduction in water availability will require the
generalization of water-saving irrigation techniques. To this
respect, regulated deficit irrigation can save considerable amount
of water in high-density orchards without significant yield
penalty (Gomez-del-Campo, 2013). Hence, alternating partial
root-zone drying, in which a reduced amount of water is
applied to half of the root system, switching sides periodically,
can increase notably water use efficiency in olive trees, being
alternation timing a key factor in determining the results (Wahbi
et al., 2005). The implementation of new, more precise, irrigation
scheduling tools as well as the generation of new knowledge
on physiological responses to water deficits might contribute to
improve the efficiency of this strategy (Fernández et al., 2018).

Olive tree actually constitutes an interesting model woody
crop species to study physiological responses to drought under
Mediterranean climate for several reasons: (1) the domestication
of olive tree was carried out under Mediterranean conditions,
where it adapted remarkably to cope with soil and air water
deficits, combining an effective control of water losses with
high tolerance to desiccation (Díaz-Espejo et al., 2018), (2)
it constitutes an important income crop in Southern Europe
(comprising countries such as Spain, Italy, Greece, etc.);
therefore, a great deal of information on stress responses at the
plant performance and productive levels is available (Fernández,
2014), (3) its genome has already been sequenced (Unver et al.,
2017). This information can be used to design effective tools for
irrigation scheduling based on tree physiology (Aguero Alcaras
et al., 2016; Aissaoui et al., 2016; Hernandez-Santana et al., 2016)
and attain genotype selection based on genetic makers (Sebastiani
and Busconi, 2017). However, despite the abundant information
existing on drought tolerance traits among different cultivars
(Guerfel et al., 2009; Trentacoste et al., 2018), crop species with
long life cycles pose difficulties for breeding. This, along with the
high adaptation of the species to the local climate, has probably
discouraged breeding for drought tolerance in this species.

Plant-Pollinator Interaction Under
Climate Change Conditions
Climate change affects plant and animal phenology, their
interaction, demography as well as their distribution in natural
habitats. To this respect, the effect of global warming on
the plant-pollinator interaction through variations in their
phenology and range (Morton and Rafferty, 2017) is of special
relevance in agronomy. As mentioned above, pollination is of
crucial importance in determining fruit yield in grapevine and
olive (Benlloch-González et al., 2018) and, to a lesser extent,
in citrus, particularly in autoincompatible genotypes such as
mandarins (Talon et al., 1992). Unfortunately, this has been
poorly investigated in woody crop species, but in ephemeral
spring weeds, a clear de-synchronization has been observed
between flowering and the incidence of their natural pollinators,
bumble-bees, leading to a phenological mismatch and a reduction
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in reproductive success (Kudo and Ida, 2013). In addition to
potential phenological mismatches between crop plants and
pollinators, changes in pollinator-flower preferences are likely
to occur due to increasing ambient temperature. Several studies
have shown that bees prefer to collect warm nectar from flowers
at low ambient temperatures, but when air temperature rises
above 30◦C, they usually switch their preferences to cooler
flowers (Shrestha et al., 2018). For all these reasons, it is
important not to disregard the effects of climate change on
insect pollinators: their population trends and phenology in the
equation, besides the direct effects on woody crops.

SELECTION OF IMPROVED CULTIVARS

Plant breeding is an important way to improve crop adaptation
to abiotic stresses in the context of global climate change. At
the commercial level, all three woody crops are propagated
vegetatively. Therefore, any elite genotype can be clonally
multiplied irrespective of the complexity of its genomic structure.
For a long time, this clonal selection was based on natural bud
sprouts identified in the field. Today, many modern breeding
projects rely on sexual reproduction to exploit favorable traits
identified in germplasm accessions, but these initiatives are
hampered by the extended juvenile phase existing in most woody
perennial plants (Warschefsky et al., 2016). Olive trees present
the longest juvenile period of all three species, requiring more
than 12 years after seed germination to induce flowering (Santos-
Antunes et al., 2005). Grapevine displays the shorter juvenile
phase, up to 3 years, which is morphologically characterized by
the absence of tendrils in the first 9–15 nodes (Mullins et al.,
1989). Most cultivated citrus species exhibit an intermediate
behavior, requiring 4–8 years to start flowering, depending on the
genotype and environmental conditions (Ollitrault and Navarro,
2012). In most fruit woody crops, rootstock selection constitutes
an essential component in pest and disease resistance and also
for plant adaptation to various abiotic stresses and particularly
water deficit, soil quality, or cold (Warschefsky et al., 2016).
Rootstock breeding offers the possibility to expand the selection
objectives and criteria in order to adapt elite cultivars to different
environmental and soil conditions.

Breeding Objectives and Traditional
Breeding Methods
Grapevine
Hybridization between Euvitis species is efficient, opening
the way for a large germplasm exploitation. The number of
V. vinifera cultivars is estimated to be close to 5,000 and
large germplasm collections are managed in most grape-growing
countries (Reisch et al., 2012). Some breeding objectives are
common for wine and table grapes, concerning mainly disease
resistances and adaptation to organic and sustainable viticulture,
for which hybrids within V. labrusca germplasm collection are
used. Although not very widespread among grapevine-producing
regions, adaptation to very cold temperatures (−20 to −35◦C) is
key in certain cultivation areas and, hence, considered in their
respective breeding programs. For wine grape, the important

traits are (a) the adaptation to vinification, and (b) aroma and
flavors since these traits can be unfavorably affected when using
other species than V. vinifera for breeding. For table grapes,
the absence of seeds in berries is an important trait as well
as the extension of the harvesting period. Rootstock breeding
constitutes also an essential aspect in grapevine management
and production. Adequate rootstock selection allows transferring
resistance traits to the grafted variety such as soil-borne pests and
diseases (including the damaging Phylloxera), nematodes, etc.
In addition, rootstock provides several vigor and developmental
advantages. Moreover, adaptation of plants to varying soil
conditions and other abiotic constraints predominant in the
Mediterranean region is also mediated by rootstock (Pavlousek,
2011). As an important constraint for agriculture, significant
progress has been made toward the identification of phenotypical
traits associated with water stress tolerance of grapevine
rootstocks (Marguerit et al., 2012; Barrios-Masias et al., 2015).
Indeed, several studies demonstrated the positive role of drought-
tolerant rootstocks on the control of the scion leaf stomatal
conductance and canopy transpiration (Serra et al., 2014).

Citrus
The agro-morphologic variability of citrus is very large. Several
sources of tolerance to abiotic stresses have been identified
(Krueger and Navarro, 2007): tolerance to salinity of Rangpur
lime (Citrus limonia Osb.), Citrus macrophylla Wester and
Cleopatra mandarin (Citrus reshni Hort. Ex Tan.); tolerance
to water deficit of Rangpur lime (C. limonia Osbeck) and the
Microcitrus and Eremocitrus species; tolerance to iron chlorosis
of Rough lemon (Citrus jambhiri Lush), C. macrophylla Wester,
Volkamer lemon (C. limonia Osbeck), and C. amblycarpa
(Hassk.) Ochse, cold tolerance of satsuma mandarins (Citrus
unshiu Marc.), Kumquats (Fortunella sp.) and trifoliate orange,
Poncirus trifoliata (L.) Raf. This variability opens very broad
prospects for the exploitation of citrus genetic resources
for adaptation breeding particularly at the rootstock level
(Cimen and Yesiloglu, 2016). The facultative apomixes of many
citrus species allow clonal rootstock propagation by seed and
contributed to the generalization of grafting in the citrus industry.
Sexual breeding programs carried out in Florida by the end of the
19th century provided several intergeneric (Citrus × Poncirus)
hybrids, still used nowadays as rootstocks in many countries.
These include some citrumelos (C. paradisi × P. trifoliata
cvs. Swingle, Sacaton and 4475) and, particularly, the citranges
(C. sinensis × P. trifoliata cvs. Troyer, Carrizo and C-35).
However, most of them present some susceptibility to adverse
abiotic conditions (alkalinity, salt), urging the development of a
new range of intergeneric (Citrus × Poncirus) hybrids. Crosses
between mandarins and trifoliate orange appear very promising
to combine tolerances to abiotic and biotic constraints both by
sexual breeding or somatic hybridization (Dambier et al., 2011).

Olive
Due to the high success of the selected varieties in the local
climate and under the traditional extensive rain-fed cultivation
techniques, genotypic selection has not been as efficient as in
the rest of woody crops reviewed here, and most of the new
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cultivars recently released are clones of traditional varieties
(Lavee, 2013). However, the challenges posed by climate change
and, in particular, the new intensive methods of cultivation,
urge the introduction of new varieties better adapted to the
coming climate conditions. For instance, traditional varieties
with low vegetative vigor seem to be better suited for high-density
cultivation in hedgerows (Tous et al., 2008), opening the
possibility to use these genotypes for breeding of new varieties
and rootstocks adapted to this type of cultivation (Rugini et al.,
2016). Diploid and tetraploid dwarfing rootstocks have been used
to reduce total plant height as well as maintaining oil quality,
making them interesting candidates for intensive cultivation.
Olive tree germplasm resources encompass more than 1,500
cultivars with wide genetic diversity that could be useful for
conventional breeding to improve stress tolerance (Baldoni and
Belaj, 2010). The most amenable wild germplasm resource to
exploit is O. europaea subsp. europaea (Klepo et al., 2013) bearing
several abiotic stress tolerance traits (Romero-Aranda et al., 1997;
Mulas, 1999; Baldoni et al., 2006), as well as improved resistance
to several pests and diseases (Ciccarese et al., 2002; Mkize et al.,
2008). However, the use of wild germplasm resources for olive
tree breeding is still very limited (Besnard et al., 2001; Caceres
et al., 2015). At present, the main breeding objectives are to select
new cultivars and rootstocks with adaptation to different adverse
environmental conditions and to implement modern farming
practices in order to meet consumers’ demands for oil production
and olives for fresh consumption (Medina et al., 2012; Diez et al.,
2015). The Gene Pool Method (GPM) was recently applied to
olive tree breeding in order to integrate a broader diversity; it
is based on information from phylogeny, domestication, and
hybridization affinity among cultivated, wild ecotypes, and other
Olea species (Rugini et al., 2016).

Bridging Genotype and Phenotype;
Toward Marker Assisted Selection (MAS)
and Genomic Selection (GS)
Recent advances in genomics are expected to greatly improve the
efficiency of plant breeding for the intensification of agriculture
under environmental constraints, thus increasing resilience of
crops to climate change (Morrell et al., 2011; Abberton et al.,
2015; Scheben et al., 2016). It will be particularly useful for
efficient exploitation of adaptation traits present in germplasm
accessions (Huang and Han, 2014) and to expand the gene
pool for crop improvement (Brozynska et al., 2016). For the
three woody crop species included in this review: grapevine,
citrus and olive, rich germplasm collections exist, including
commercial varieties and wild relatives (Arroyo-Garcia et al.,
2006; Krueger and Navarro, 2007; Sebastiani and Busconi, 2017).
Moreover, these three species have already been sequenced,
further expanding the possibilities for the identification of
candidate tolerance genes and contributing to bridge genotype
and phenotype for adaptation traits.

The identification of molecular markers linked to tolerance
to climate change becomes essential to efficiently drive breeding
projects targeting Mediterranean crops. Quantitative Trait Loci
or QTLs analysis and genetic association studies are based on

genetic linkage (low recombination rate) of marker genes to
genes directly involved in phenotype diversity. In contrast to
QTL, analysis in sexual recombining populations, genome-wide
association studies (GWAS) allow exploring linkage associations
in more diverse germplasms and the identification of key genes
that should be monomorphic in a single hybrid population.
It also poses the advantage of bypassing the construction
of designed segregating populations saving time and work,
constituting a serious alternative in perennial fruit crop breeding
programs where breeding materials are derived from many
parental combinations. As a result, the usage of GWAS in
fruit crops increased during the last 2 years (Iwata et al.,
2016; Farneti et al., 2017; Minamikawa et al., 2017). However,
its applicability depends greatly on the genetic structure of
the considered germplasm and particularly the decay of the
linkage disequilibrium (LD) with the genetic distance. The
LD decay can be strongly affected by the evolution history
of the gene pool as observed in Citrus (Garcia-Lor et al.,
2012). Genomic selection (GS) is a more recent approach,
initially developed for animal breeding to make an improved
use high throughput molecular in marker assisted selection.
It is based on modelization of the phenotypic value from
high density marker information over the whole genome
(Desta and Ortiz, 2014). Previous studies on animals and
plants highlighted the interest of GS, especially for capturing
small-effect quantitative trait loci. GS is now routinely applied
in animal breeding (Meuwissen et al., 2016). Its application
resulted in increased genetic gain in dairy cattle breeding
where the reliability of genomic prediction exceeds 0.8 for
production traits and 0.7 for fertility and other traits (Lund
et al., 2011; Wiggans et al., 2011). In Canada, for example,
the rate of genetic gain has approximately doubled since GS
was introduced. In plants, promising results were obtained,
particularly in cereals with genetic gain of GS higher than
that of MAS or conventional pedigree breeding (Wang X.
et al., 2018). The combined analysis of multiple traits and/or
multiple environments will be important for improving the
accuracy of prediction and to promote the use of GS in plant
breeding projects.

QTL studies, GWAS, and GS advances can be hampered by
the current knowledge on genomics and genetic marker resources
development. The application of Next Generation Sequencing
(NGS) to reduced genome representation, with methods such
as restriction-site associated DNA sequencing (RADseq; Miller
et al., 2007) or genotyping by sequencing (GBS; Elshire et al.,
2011) is particularly promising. These methods allow deep
coverage of the regions adjacent to restriction sites and offer great
potential for high-throughput genotyping of entire genomes and
for Single Nucleotide Polymorphism (SNP) mining at the same
time. They are therefore very well suited for the analysis of
large segregating progenies and marker trait association studies
based on LD (Baxter et al., 2011; İpek et al., 2016; Montero-
Pau et al., 2017). Compared with microarray analyses, these
methods present the advantages of flexibility and the lack of
requirement to refer to a set of pre-determined polymorphisms.
High-throughput genotyping at affordable costs opens the way
to GS that is much more efficient than marker-assisted selection
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(MAS) to increase genetic gain of complex traits per unit time and
cost (Bhat et al., 2016).

In addition to genotypic variation, modelization of phenotype
should ideally include biochemical traits such as metabolomics
data (Kumar et al., 2017). Systems biology approaches can help
genomics studies through systematic integration of –omics data
related to a particular phenotype (Yang et al., 2016), paving the
way to decipher the complexity of quantitative traits by assuming
models that are biologically more explicit, while retaining their
predictive qualities and operability (Kadarmideen, 2014).

Grapevine
Vitis vinifera L. subsp. silvestris and V. vinifera L. subsp. vinifera
are the main germplasm for grapevine breeding and genetic
studies. QTL studies are generally developed from sexual crosses
between two heterozygous parents. GWAS and GS studies take
advantage of the rapid LD decay in this germplasm.

Grapevine has a diploid genome (n = 19) and an estimated
genome size of 500 Mbp. Simple Sequence Repeat (SSR) markers
from genomic and Expressed Sequence Tags (EST) have been
used to determine parent-progeny relationships, to develop
databases of DNA profiles for cultivar identification and for
genetic mapping (Bowers et al., 1999; Adam-Blondon et al.,
2004; Huang et al., 2010). More recently, numerous SNP markers
were developed leading to the generation of SNP arrays for
high throughput genotyping (Cabezas et al., 2011; Laucou et al.,
2018). Several genetic maps (Adam-Blondon et al., 2004; Troggio
et al., 2007; Wang J. et al., 2017) have been well established
for V. vinifera, which allowed the International Grape Genome
Program (IGGP) to recommend using numbering of linkage
groups according to the map established by Adam-Blondon
et al. (2004). A high resolution map was established from GBS
data using a heterozygous mapping strategy (HetMappS; Hyma
et al., 2015). Genetic maps of Vitis amurensis (Blasi et al., 2011),
V. rupestris, Vitis arizonica (Doucleff et al., 2004) and Muscadina
rotundifolia (Blanc et al., 2012) have been also established.
Physical maps have been implemented (Scalabrin et al., 2010)
and a high-quality draft of the genome sequence of grapevine
(V. vinifera) obtained from a highly homozygous genotype
was released (Jaillon et al., 2007) and further improved by
(Canaguier et al., 2017). A gene nomenclature system (Grimplet
et al., 2014) was implemented and a public grape genome
browser2. Using these available tools, sequence polymorphisms
and structural variations among four Sardinian grapevine
cultivars have been analyzed (Mercenaro et al., 2017) and the
contribution of ancestral wide species to grape breeding evaluated
(Migicovsky et al., 2016).

In grapevine, QTL analysis is much more developed than in
citrus or olive. GWAS analyses have also been already performed
for quality traits (Laucou et al., 2018) and early ripening (Xu
et al., 2016). Studies concerning all aspects of its cultivation
including disease resistance (Blasi et al., 2011; Rex et al., 2014;
Pap et al., 2016), quality traits in berries (Cabezas et al., 2006;
Chen et al., 2015; Yang et al., 2016); growth and reproductive
traits (Houel et al., 2015; Zhao et al., 2016), yield and agronomic

2www.genoscope.cns.fr/externe/GenomeBrowser/Vitis

traits such as adaptation to water deficit and lime induced iron
chlorosis (Viana et al., 2013; Coupel-Ledru et al., 2014) and,
particularly, the adaptation of grapevine varieties to a climate
change scenario (Duchene et al., 2012), have been carried out. To
this respect, GWAS studies along with the analysis of population
structures have shown that LD in the domesticated grapevine
is low, even at short ranges, but persists above background
levels, set around 3 kb (Myles et al., 2010; Nicolas et al., 2016).
Such rapid decay of LD was also observed in Vitis vinifera L.
subsp. silvestris decreasing to 0.1 within 2.7 cM for genotypic
data and within 1.4 cM for haplotypic data (Barnaud et al.,
2010). Considering this rapid LD decay, Myles et al. (2010)
suggested that for grapevine “[. . .] whole-genome sequencing
will become the genotyping method of choice for genome-wide
genetic mapping studies.”

Citrus
Most of the citrus germplasm results from interspecific
hybridization and is highly heterozygous (Wu et al., 2014,
2018; Curk et al., 2016). Therefore, genetic mapping studies
and QTL analysis are mainly based in a two-way pseudo-test
cross-mapping strategy, from controlled hybridization between
two heterozygous parents, and producing genetic maps for each
parent (Ollitrault and Navarro, 2012). Genetic mapping and QTL
studies are focused in Citrus and Poncirus species. Due to the high
structuration of the citrus gene pool, composite populations built
from germplasm accessions and hybrids between several parents
are used for GWAS studies and the elaboration of GS models
(Minamikawa et al., 2017; Imai et al., 2018).

Citrus, with a basic chromosome number of 9, has a relatively
small genome size. It varies among ancestral taxa from 398
to 360 Mb/haploid genome for C. medica and C. reticulata,
respectively. C. maxima had an intermediate genome size of
383 Mb (Ollitrault et al., 1994) and the haploid genome of
C. sinensis was estimated to be 372 Mb. Several types of
co-dominant nuclear markers have been developed for genetic
studies in citrus; among the most currently used, SSR derived
from genomic (Ollitrault et al., 2010; Liu et al., 2013) and from
transcriptomic data (Luro et al., 2008; Liu et al., 2013; Liang et al.,
2015) are found. With the development of NGS technologies,
SNPs derived from genomic or transcriptomic studies have
become one of the most important resources for molecular
marker development (Ollitrault et al., 2012; Chen and Gmitter,
2013; Curk et al., 2015). Efficient SNPs genotyping methods
have been developed for scalable experiments using competitive
allele amplification [KASPar© Technology; (Cuenca et al., 2013;
Garcia-Lor et al., 2013)], or Cleaved Amplified Polymorphic
Sequences (CAPS, Shimada et al., 2014; Omura and Shimada,
2016). Moreover, SNPs arrays have been developed for high-
throughput studies (Ollitrault et al., 2012; Fujii et al., 2013).
Recently, in California, a NIFA funded project3 re-sequenced
30 citrus species4 and developed Affymetrix Axion SNP arrays
with about 1.556,000 SNPs. Additionally, GBS and Restriction

3https://portal.nifa.usda.gov/web/crisprojectpages/1001031-development-and-
application-of-a-high-density-snp-genotyping-array-for-citrus.html
4https://www.citrusgenomedb.org/analysis/185
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site-Associated DNA markers sequencing or RADseq analyses
have already been successfully developed in citrus (Penjor et al.,
2014; Guo et al., 2015; Oueslati et al., 2017). The first reference
genetic map based on co-dominant markers (SSRs, Indels
and SNPs) with known flanking sequences was established for
C. clementina (Ollitrault et al., 2012) and, subsequently, saturated
maps of sweet orange (Xu et al., 2013), mandarin (Shimada
et al., 2014) and pummelo (Guo et al., 2015) where published.
Important success has been accomplished in the field of structural
genomics in the last 10 years: reference genomes assembled in
pseudomolecules were released for sweet orange (Xu et al., 2013),
clementine (Wu et al., 2014) and pummelo (Wang X. et al.,
2017). Most of the Citrus species were re-sequenced revealing
the interspecific admixture of modern varieties (Wu et al., 2014,
2018). QTLs for resistances to diseases and pests (e.g., CTV,
Alternaria alternata, nematodes and leaf miner) (Ling et al.,
2000; Asins et al., 2004; Bernet et al., 2005; Cuenca et al.,
2016) have been developed, and also for morphological and/or
quality traits [fruit acidity, polyembryony, and apomixes; (Fang
et al., 1997; Asins et al., 2015)]. Recently, GWAS studies were
performed for quality traits (Curtolo et al., 2017; Minamikawa
et al., 2017). Gois et al. (2016), providing evidences of the
potential of genome wide selection in citrus for fruit acid
and sugar contents. However, the learning and applications
populations were limited to one parental combination. Working
with composite populations associating traditional germplasms
and recent hybrids, Minamikawa et al. (2017) and Imai et al.
(2018) developed GS models for quality traits based on wider
learning diversity.

Unfortunately, QTL and bulk segregant analyses for the
identification of markers linked with tolerance to abiotic stresses
still remain limited (Weber et al., 2003; Ben-Hayyim and Moore,
2007; Raga et al., 2016).

Olive
Olea europaea subsp. europaea constitute the major germplasm
for olive breeding and therefore for genetic and genomic studies.
Genetic maps and QTL analysis are generally developed from
sexual crosses between two heterozygous varieties. The Gene
Pool Method [GPM; Rugini et al., 2016)] developed for olive
tree breeding is a promising tool to develop further GWAS
and GS projects.

Olea europaea is considered a diploid species with n = 23
chromosomes. However, cytogenetic studies (Breviglieri and
Battaglia, 1954) proposed that the species had originated
from interspecific crosses, probably by parentals whose haploid
chromosome numbers were n = 11 and n = 12 as occurs with
several species of the Oleaceae family. The nuclear DNA content
of O. europaea cultivars estimated by flow cytometry ranged
between 1.45 and 1.53 Gb/haploid genome and the genome size
of wild olive was estimated 1.59 Gb/haploid genome (Loureiro
et al., 2007). Many molecular studies in olive, including the
most recent, are based on dominant markers such as Random
Amplified Polymorphic DNA (RAPD), Amplified Fragment
Length Polymorphism (AFLP), or Inter Simple Sequence Repeats
(ISSR) despite much more useful co-dominant markers have
been developed during the recent years (see Sebastiani and

Busconi, 2017 for review). First olive SSR markers were published
by Cipriani et al. (2002) and more recently numerous SSRs
have been developed from EST data (De la Rosa et al., 2013;
Essalouh et al., 2014; Mariotti et al., 2016). SNP mining and
marker implementation is ongoing (Reale et al., 2006; Kaya
et al., 2013) and Cleaved Amplified Polymorphic Sequences
(CAPS) markers have been successfully developed (Bazakos
et al., 2012). Until now, there is no SNP microarray for
high-throughput genotyping but GBS has been successfully
developed rendering saturated maps with more than 4,000 SNP
markers constituting 23 linkage groups (İpek et al., 2016).
Genetic maps were published by Khadari et al. (2010) comprising
mainly dominant/anonymous markers. Sadok et al. (2013) and
Essalouh et al. (2014) added new markers and particularly SSRs
in the map of Olivière × Arbequina olive cultivars (Khadari
et al., 2010) producing the most saturated olive map generated
with traditional molecular markers. Several whole genome
sequencing projects engaged during the last years: one by an
Italian consortium within the framework of the OLEA project
(Muleo et al., 2012), the International Olive Genome Sequencing
Consortium (IOGC) (Unver et al., 2017) and another IOGC
project that sequenced a 1,000-years old tree of the Spanish
‘Farga’ variety (Cruz et al., 2016). Assembly provided a draft
genome of 1.31 Gb, representing 95% of the estimated genome
length. Nevertheless, few QTL analyses have been published so
far: Sadok et al. (2013) identified 12 QTLs associated to flowering,
fruiting and production whereas (Atienza et al., 2014) performed
an association study with olive oil quality criteria. A genetic
association study was performed with SSRs markers to develop
MAS for fatty acid contents Ipek et al. (2015) and Kaya et al.
(2016) reported the first GWAS study for yield-related traits.

Polyploidization as a Feasible Approach
to Enhance Tolerance to
Environmental Constraints
Polyploidy has been identified as a major force driving plant
evolution in order to better adapt to environmental constraints
(Soltis and Soltis, 2009; Chen, 2010). Polyploid species are
common in harsh environments (Brochmann et al., 2004) and
investigations during the last decade showed that inducing
polyploidization in diploid genomes improves stress tolerance
in different woody plant species (Allario et al., 2012; Meng
et al., 2016; Ruiz et al., 2016b; Greer et al., 2018). However,
investigation on the role of polyploidization in stress tolerance
is hampered in part by the phylogenomic history of the given
plant species, the biology and the particular genetic structure
(Jackson and Chen, 2010). To this respect, citrus have the
advantage that, although most cultivated genotypes are diploid,
apomictic seeds produced in several citrus species exhibit the
natural occurrence of polyploids (Aleza et al., 2011). This has
boosted the selection and investigation of polyploids in citrus as
a feasible alternative in breeding.

In citrus, polyploidy is often associated to a wide range
of morphological and physiological changes that are often
advantageous under adverse environmental conditions (Allario
et al., 2012; Ruiz et al., 2016a). For instance, citrus tetraploids
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are shorter and have bigger leaf area (Allario et al., 2011),
have thicker mesophyll cells that have been associated to an
increase in internal diffusive resistances to CO2, thus reducing net
photosynthetic rate (Romero-Aranda et al., 1997), contributing
to explain in part the dwarf phenotype observed in tetraploids
(Allario et al., 2011).

Spontaneous doubled-diploid genotypes (chromosome set
duplication) occur in seedlings of apomictic citrus (Aleza
et al., 2011). They show several interesting features that can
be exploited in plant breeding for abiotic stress tolerance.
For instance, when subjected to drought, they show better
acclimation traits than the respective diploid linked to a more
limited transpiration and the maintenance of higher leaf water
content (Oliveira et al., 2017), while a specific root architecture
with reduced ramification, shorter root diameter with higher
specific length at the morphological level has been linked to
increased radial hydraulic conductivities (Lpr). This influences
whole plant water status as well as plant growth and development,
contributing to the enhanced tolerance to water deprivation (Ruiz
et al., 2016a,b). Moreover, tetraploid leaves show fewer and larger
stomata compared to 2n which has been associated to decreased
stomatal conductance and transpiration (Allario et al., 2011;
Padoan et al., 2013). Using polyploid Rangpur lime as rootstock,
(Allario et al., 2012) improved performance of diploid C. sinensis
cv. Valencia Delta under water stress. This response was linked to
a basal constitutive up regulation of genes involved in compatible
osmolyte and hormone biosynthesis (Allario et al., 2012) and
detoxification of ROS (Tan et al., 2015).

These interesting behaviors of tetraploid citrus against abiotic
stresses result in an increasing interest for tetraploid rootstock
breeding. New tetraploid rootstocks are obtained by spontaneous
occurrence of doubled-diploid embryos from apomictic seeds
(Aleza et al., 2011), by somatic hybridization (Dambier et al.,
2011) or sexual hybridization between complementary tetraploid
rootstock (tetrazyg strategy; Grosser et al., 2015).

Despite being less common, polyploidy in grapevine and
olive constitutes an interesting strategy to improve reproductive
and yield traits.

In grapevine, for instance, autotetraploid rootstocks reduce
the vigor of the scion compared with their parental diploid
while maintaining Phylloxera resistance (Motosugi et al., 2002).
Polyploidy also increased berry size as well as concentration
of sensory and bioactive compounds (Acanda et al., 2015);
moreover, the generation of triploids is also particularly
interesting for the production of seedless table grapes.

A few natural tetraploid olive trees have been identified in
the O. europea complex (Besnard et al., 2007) or isolated from
mixoploid mutants (Rugini et al., 1996) showing a significant
reduction of trunk and canopy size (Rugini et al., 2016). The
natural occurrence of polyploids in olive has been confirmed
for different populations and subspecies, being triploids less
frequent than tetraploid (Sebastiani and Busconi, 2017). It has
been shown that tetraploidy induces changes in floral and fruit
morphology, producing larger floral structures and increasing the
pistil abortion rate compared to diploids, but surprisingly, no
significant effect on fruit size could be observed (Caporali et al.,
2014). Unfortunately, no studies associating polyploidization
with abiotic stress tolerance are currently available in grapevine

or olive, although evidence from citrus and other experimental
systems points toward a positive effect.

SYSTEMS BIOLOGY TOOLS TO
INTEGRATE PHYSIOLOGICAL,
BIOCHEMICAL AND MOLECULAR DATA
TO BUILD PREDICTIVE MODELS

The ability of plants to withstand adverse environmental
conditions and survive is dependent upon the activation of
highly coordinated protective responses (Peleg and Blumwald,
2011), resulting from the interaction between specific genetic
components, the genetic landscape as well as with the
particular environmental factors. This interaction is highly
complex, therefore, the translation of genetic responses to field
performance is not straightforward and many different factors
may influence the outcome.

Systems biology approaches study biological systems from a
multidisciplinary point of view aided by mathematical modeling.
To this respect, interaction network analysis constitutes a
data-driven approach that represents a biological component
(e.g., a gene or a protein) as a node and its physical, genetic
and/or functional interactions as edges that help to visualize
and interpret multivariate datasets. These representations allow
identification of functional modules, transcriptional circuits or
signaling pathways contributing to characterize a biological
system (Ideker and Krogan, 2012). This approach can be applied
not only to investigate the participation of different signaling
or metabolic pathways in the response to stress but also to
infer novel interactions among different network nodes and to
predict unknown gene functions (Avin-wittenberg et al., 2012;
Rhee and Mutwil, 2014).

The power of network analysis to reveal novel interactions
relies largely on the use and integration of several –
omics technologies (Fukushima and Kusano, 2014). These
techniques provide an unbiased and non-targeted analysis
of macromolecules and small molecular weight metabolites.
To this respect, transcriptomics and metabolomics data can
be combined to construct a network that displays the degree
of association between genes and metabolites and depicts
levels of co-expression among molecules. Nevertheless, it
is important to note that network analysis only provides
a reliable hypothesis since correlation does not necessarily
implies causal relationship between the different components.
Therefore, protein–protein (PPI), protein–DNA interaction
studies as well as direct/reverse genetics approaches are
required to confirm those interactions. Several online tools for
network construction and analysis using co-expression data are
available (Table 1).

Several authors have highlighted the importance of
implementing systems biology approaches for unraveling
the mechanisms responsible for plant desiccation tolerance and
how these are intertwined, especially when this knowledge has to
be transferred to cultivated species and when genetic engineering
strategies for improving crop tolerance to drought are involved
(Moore et al., 2009 and references therein).
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TABLE 1 | Main grapevine, citrus and olive species already sequenced including working URLs with access to JBrowse, BLAST search and multiple sequence alignment
tools and availability of systems biology tools with currently workingURLs.

Plant Species Estimated genome size Genomic resources Systems biology resources

Vitis vinifera L. 500 Mbp
(Jaillon et al., 2007)

Accessible from:
www.genoscope.cns.fr/externe/GenomeBrowser/Vitis
https://phytozome.jgi.doe.gov/pz/portal.
html#!info?alias=Org_Vvinifera
http://genomes.cribi.unipd.it/grape/index.php or
GenBank taxa id 29760

• Vitisnet (https:
//www.sdstate.edu/agronomy-horticulture-and-
plant-science/functional-genomics-bud-
endodormancy-induction-grapevines-5)
genome sequences and ESTs from the Vitis
genus, spans more than 39,000 unique
sequences and 13,145 genes assigned to 219
networks (Grimplet et al., 2009).

• VTCdb based on the publicly available
microarray data from Vitis vinifera Affymetrix 16K
GeneChip and the NimbleGen Grape
Whole-genome microarray chip (29K), spans
over 29,000 genes (Wong et al., 2013) no
longer available.

• Biowine (https://alpha.dmi.unict.it/biowine/)
designed for the functional analysis of genomes
of Sicilian grapevine cultivars. This system allows
the analysis of RNA-Seq including the
connection to miRNAs (Pulvirenti et al., 2015).

• miRVIT (http://mirvit.ipsp.cnr.it/) updated miRNA
accession list repositioned according to the most
recent V. vinifera genome (Chitarra et al., 2018).

• VESPUCCI (http://vespucci.colombos.fmach.it/)
comprises most microarray and RNA-Seq data
for V. vinifera (Moretto et al., 2016).

Citrus sinensis L.
Osbeck

367 Mbp
(Xu et al., 2013)

Accessible from: https://phytozome.jgi.doe.gov/pz/
portal.html#!info?alias=Org_Csinensis or GenBank
taxa id: 2711

None available

Citrus clementina L. 302 Mbp
(Wu et al., 2014)

Accessible from: https://phytozome.jgi.doe.gov/pz/
portal.html#!info?alias=Org_Cclementina or
GenBank taxa id: 85681

Citrus reticulata L. 370 Mbp
(Wang L. et al., 2018)

Accessible from:
https://www.citrusgenomedb.org/organism/5941
or GenBank taxa id: 85571

Citrus medica Citrus
maxima Citrus
ichangensis

407 Mbp, 380 Mbp,
391 Mbp
(Wang X. et al., 2017; Wu
et al., 2018)

Accessible from: C. medica
https://www.citrusgenomedb.org/organism/5945
or GenBank taxa id: 171251 C. maxima
https://www.citrusgenomedb.org/organism/5947
or GenBank taxa id: 37334 C. ichangensis
https://www.citrusgenomedb.org/organism/5948
or GenBank taxa id: 2709

Citrus unshiu L. 370 Mbp
(Shimizu et al., 2017)

Accessible from: http://www.citrusgenome.jp/ or
GenBank taxa id: 55188

Olea europaea L 1380 Mbp
(Cruz et al., 2016; Unver
et al., 2017)

Accessible from subsp. europeae GenBank taxa id:
4146 subsp. sylvestris http://olivegenome.org/ or
GenBank taxa id: 158386

• Olive Genetic Diversity Database (OGDD)
(http://www.bioinfo-cbs.org/ogdd/), a genetic,
morphologic and chemical database of
worldwide olive oil production for the
identification of unknown olive tree cultivars,
based on SSR markers (Ben Ayed et al., 2016).

Grapevine
Since the release of V. vinifera genome in 2007 (Jaillon
et al., 2007), several efforts have been made toward the
identification and functional annotation of all gene-encoding
sequences (Grimplet et al., 2012) including the genome-wide
analysis of all potential cis-regulatory elements (Wong et al.,
2017), miRNA-encoding sequences and their potential target
genes (Jiu et al., 2015) and the specific study of several
gene families associated to stress responses such as dehydrins

(Yang et al., 2012), CBL, CIPKs (Xi et al., 2017), and CDPKs
(Zhang et al., 2015) or involved in developmental processes such
as MADs-box transcription factors (Grimplet et al., 2016).

In the post-genomics era, future breeding strategies rely on
the investigation of abiotic stress tolerance responses and their
correlation to genetic traits (Cramer, 2010; Yang et al., 2012; Dal
Santo et al., 2016; Fortes and Gallusci, 2017). Gene co-expression
networks (GCN), based in the notion that genes involved in
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similar or related processes exhibit similar expression patterns
under different experimental conditions, are the preferred
strategy (Wong et al., 2013). To this respect, several online
platforms have been developed for V. vinifera (Table 1).

In this new scenario, rational and precise breeding strategies
require the unambiguous identification of ‘stress tolerant’
phenotypes to be associated to specific expression patterns. In
a pioneering work, Cramer et al. (2007) and Deluc et al. (2007)
included transcript and metabolite analyses in vegetative and
reproductive tissues of grapevine, respectively, depicting changes
in response to abiotic stresses and during berry development.
The manual integration of transcript and metabolite data allowed
the identification of RuBisCo activase as an early response to
water deprivation that was delayed under saline conditions.
Moreover, water stress affected metabolism-associated transcripts
whereas salinity had an impact mostly on protein synthesis
and fate (Cramer et al., 2007). The transcript profiling data
correlated well with metabolite profiles showing water-deprived
grapevine tissues higher concentrations of glucose, malate,
and proline than salt-stressed ones. Unfortunately, although
this work included metabolite profiling data, no attempt
to correlate transcript and metabolite profiling was carried
out to provide a more insightful view of the regulatory
processes involved in metabolite accumulation. In a recent
work, Corso et al. (2016) performed RNA-Seq on leaves
and roots of different grapevine genotypes with contrasting
ability to tolerate water deprivation. Transcriptome analysis
revealed the WRKY transcription factors (TFs)-dependent
activation of secondary metabolism potentially leading to the
accumulation of stilbenes and flavonoids. However, this extent
could not be confirmed with a parallel metabolite analysis and
no co-expression analysis to unbiasedly correlate specific TF
activity with the induction of the biochemical response was
attained. In both cases, the use of integrative approaches could
have contributed to extract more significant knowledge from
already collected data.

Recently, Wong and Matus (2017) generated a composite
network in grapevine by overlaying co-expression maps
between structural and TF genes, integrated with the
presence of promoter cis-binding elements, miRNAs, and long
non-coding RNAs (lncRNA) focusing on the phenylpropanoid
pathway. This allowed the characterization of novel TFs
and miRNAs potentially involved in the regulation of the
phenylpropanoid pathway. Following a similar procedure, but
integrating metabolomics, transcriptomics and proteomics
data of grapevine berries in different developmental stages,
Zamboni et al. (2010) identified biomarkers of berry
development and senescence.

Analysis of GCN has been applied in grapevine to identify
ripening-associated functional sub-modules under water
stress conditions (Savoi et al., 2017), revealing a strong
interplay between key metabolites and structural genes and
the involvement of VviMYBA1-2 in anthocyanin biosynthesis.
In this work, GCN revealed major drought stress-regulated
gene modules linked to central and specialized metabolites
and multiple signal transduction pathways (e.g., anthocyanin
and amino acid biosynthesis via members of VviAP2/ERF

and VviNAC TF families). The activation of both abscisic
acid (ABA)-dependent and -independent pathways may act
balancing the regulation of the stress response and the berry
ripening program.

Citrus
Sequencing of sweet orange and the major cultivated citrus
varieties and related genera including the three parental lines:
pummelo, mandarin and citron (Xu et al., 2013; Wu et al., 2014;
Shimizu et al., 2017; Wang X. et al., 2017) (Table 1) has played
a pivotal role in the development of biotechnological tools in
this woody crop. For instance, the generation of a reference
RNA-Seq transcriptome revealed the existence of 3,326 new genes
and increased the number of alternative splicing variants (Terol
et al., 2016). Annotation of gene function in newly sequenced
genomes is not a trivial aspect most efforts are oriented toward
the functional annotation of all encoding sequences in the citrus
genome. Nowadays, with increasing volumes of transcriptomics
data available for Citrus species, GCN has become a viable
option for predicting gene function at a genome-wide scale
targeting genes encoding proteins and/or other non-protein
coding RNAs. Compared with classical GO surveys, GCN poses
the advantage of allowing the annotation of new genes for which
no plausible ortholog in better annotated plant species exists
(Wong et al., 2014).

In the pre-genomic era, matching available and annotated
ESTs from the Citrus Genome Sequencing Consortium (CitEST)
database (Forment et al., 2005) was the only way to attain
this kind of studies (Quecini et al., 2007). Using this approach,
crucial stress responses in salt-tolerant (Cleopatra mandarin)
and –sensitive (Carrizo citrange) citrus rootstocks have been
studied (Brumós et al., 2009), confirmed the involvement of
ABA in the constitutive tolerance of tetraploid Rangpur lime
(C. limonia) (Allario et al., 2011, 2012), the responses of a
cultivated mandarin accession to water deprivation (Gimeno
et al., 2009) or the involvement of gibberellins in the regulation of
photosynthesis under different abiotic stress conditions (Huerta
et al., 2009) studied.

As in grapevine, most integrative studies have so far focused
on fruit ripening and quality. Recently, Ibáñez et al. (2014)
integrated transcript and metabolite profiles to decipher the
metabolic and physiological processes underlying citrus fruit
rind puffing, a disorder that produces ‘swollen’ fruits that
are usually rejected. A PPI analysis inferred from previous
work on Arabidopsis thaliana, revealed glycolysis and TCA
as functional modules being severely affected in the puffing
disorder. Moreover, this study also suggested that cytokinins and
gibberellins could act repressing the symptoms of the puffing
disorder (Ibáñez et al., 2014). In another work, postharvest
disease resistance of thermally acclimated vs. non-acclimated
fruits was investigated through the integration of proteomic and
metabolomic profiles in satsuma mandarins. Proteins annotated
as glucanases, class III chitinases and a 17.7 kDa heat shock
protein were up-regulated in thermally acclimated fruits whereas
enzymes involved in redox metabolism were downregulated
(e.g., isoflavone reductase, superoxide dismutase, etc.). Protein
data correlated with increased levels of fatty acids, amino acids,
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carbohydrates, organic acids, and different secondary metabolites
known to be involved in reducing the effects of external stress
(Yun et al., 2013).

Focusing on abiotic stress, a recent work studied a
co-expression network including both mRNA and non-coding
miRNAs and a method to identify miRNA-transcription
regulator-target connections in citrus was described (Khodadadi
et al., 2017). miRNAs have been shown to play a pivotal
role in the regulation of abiotic stress responses in plants
(Urano et al., 2010; Ragupathy et al., 2016). The genus Poncirus
with its only representative P. trifoliata L. Raf constitutes
an example of cold-temperature acclimation in citrus. Hence,
the study of cold acclimation in this genotype revealed the
involvement of 107 conserved miRNAs and 5 potential novel
miRNAs targeting stress-responsive genes (Zhang et al., 2014).
A miRNA-target mRNA regulatory network was elaborated
in citrus roots in response to dehydration and salinity (Xie
et al., 2017). A total of 76 miRNA (47 conserved and 29
novel) were altered either by salt stress, desiccation or both.
The correlation network was partially consistent regarding
differential regulation of miRNA and their respective targets,
although the existence of another layer of interaction involving
some of the miRNA-regulated genes acting as transcriptional
inducers/repressors was also proposed.

Protein interaction with other proteins and other
biomolecules is crucial in every cell process and understanding
how these interactions take place is the ultimate goal of
systems biology. To this respect, protein sequence and
post-translational modifications (PTMs) are two essential
aspects to consider. In recent works, Tanou et al. (2012)
and Ziogas et al. (2015) investigated the occurrence of
several PTMs in sour orange plants subjected to NaCl
and PEG stress with/without pre-treatment with priming
agents. Results indicated that carbonylation, S-nitrosylation,
and Tyr-nitration under stressful conditions were the most
prominent PTMs also highlighting the existence of ‘universal
players’ in the stress response, such as carbonic anhydrase
and chlorophyll a-b binding protein (Ziogas et al., 2015). In
this sense, S and N donors used as priming agents modified
the PTMs pattern altering protein biochemical activity and
binding affinity.

Olive
Despite the agricultural and cultural heritage importance of olive
tree, the state-of-the-art in -omics toolkits for systems biology in
olive is considerably delayed respect to grapevine or citrus and
very few reports employing systems biology approaches in this
crop exist to date.

Olive trees have a considerable ability to adapt to harsh
environments due to their outstanding phenotypic plasticity.
Nevertheless, global climate change poses a challenging scenario
for olive tree cultivation and productivity, potentially leading to
significant decreases in olive fruit and oil yield (Fernández, 2014).

Until recently, genomic studies in olive focused mainly on the
employment of molecular markers toward identification
of genetic variability, olive oil traceability and parental
progeny analysis to aid in genetic improvement programs

(Sebastiani and Busconi, 2017). Nevertheless, as in citrus,
pre-genomic molecular biology was still possible with different
EST collections whose components were functionally annotated
by means of ortholog BLAST search. In a series of experiments
carried out using two O. europaea cultivars with contrasting
salt stress tolerance, the genotype-dependent differences in
the transcriptional response were evaluated (Bazakos et al.,
2012). Moreover, the resulting expression data was integrated
using network analysis to infer regulatory processes aiming
at inducing adaptive responses. As a result, several homologs
of ERF, bZIP, and NF-Y TFs families were characterized. In
other plant species, ERF TFs are known to regulate ABA
biosynthesis in a stress-related manner. In turn, bZIPs appeared
to act as master regulators of other TFs within the gene
regulatory network, seemingly acting upstream the olive tree
ERF homolog. As a result of this study, it was shown that
NF-Y TF is located at the uppermost hierarchical position
in the regulatory network potentially regulating rewiring
of node connectivity in response to salt stress. In general,
the salt-tolerant genotype exhibited a more complex TF
interaction network than the salt-sensitive, suggesting the
existence of a more orchestrated and progressive response to
salt stress. More recently, another in-depth report made by
the same authors employing 454 pyrosequencing (Bazakos
et al., 2015) reinforced and expanded the findings reported in
the original 2012 manuscript. Notably, both transcriptomic
analyses highlighted the involvement of the same members
of the regulatory networks but the more recent study
considerably extended the list of involved TFs including
JERF, GRAS, and HMG homologs (Bazakos et al., 2015).
Furthermore, a significant cluster of ABA-related unique
transcripts were identified, reinforcing the significant role of
ABA in salt stress responses and/or adaptation of olive trees to
stressful conditions.

Most recently available studies using systems biology tools
in olive have so far relied mainly on transcriptomic approaches
focusing on regulatory processes during developmental
events, namely flower development (Alagna et al., 2016),
development of the pollen tube (Iaria et al., 2016), as well as
overall plant architecture (González-Plaza et al., 2016). Others
aimed to decipher protein regulatory processes during fruit
development (Bianco et al., 2013), while targeted metabolite
profiles were successfully mapped for important bioactive
components such as polyphenols (Medina et al., 2012) and
vitamin E (Georgiadou et al., 2015, 2016). Non-targeted
approaches could, however, mine important information that
could give significant insight into agronomic issues (Ben
Ayed et al., 2016) or stress-related processes. A recent study
using a non-targeted metabolomic profiling approach in
different olive tree tissues revealed 5,776 metabolite-metabolite
correlations and highlighted the upregulation of biosynthetic
pathways for phenylpropanoids, monolactams, indole alkaloids
and flavonoids especially in young leaves. Considering the
well-documented involvement of phenylpropanoids, indole
alkaloids and flavonoids in stress protection phenomena,
a general defense mechanism was proposed suggesting
that metabolites involved in the resistance to biotic and
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abiotic stresses are mainly biosynthesized in new leaves
(Rao et al., 2017).

Integration of –Omics for the Selection of
Plant Material in Breeding Programs
The ultimate goal of plant systems biology is to fully understand
how plants respond to their environment. To this respect,
gene/trait expression, is a multi-scale and highly dynamic
process consisting of several highly regulated steps (1)
transcription, which is regulated through the interaction
of TFs and cis-regulatory elements present in DNA as
well as epigenetic changes that modify DNA accessibility,
(2) RNA processing through several post-transcriptional
modifications such as the removal of introns or splicing,
chemical modification of nucleotides (e.g., for rRNA) or the
removal of particular sequences, allowing the acquisition of
specific secondary structures (e.g., miRNA), (3) translation
which is also influenced by proteins such as eukaryotic
initiation factors involved in ribosome assembly and
miRNAs and (4) post-translational modifications (partial
proteolysis, phosphorylation, sumoylation, etc.) that affect
protein activity. What is more, multidimensional interactions
involving proteins, protein-nucleic acids and also different
metabolites (regulatory compounds such as plant hormones,
allosteric modifiers, etc.) need to be added. In such a complex
regulatory scenario, the integration of –omics within network
analysis provides a data-driven and dynamic scaffold to select
relevant genes involved in the regulation and development
of the phenotype.

This extent has been so far poorly investigated in woody
crops despite similar approaches proved to be successful
in identifying relevant genes in other plant species. In a
pioneering study, Morreel et al. (2006) combined metabolite
profiling and QTL analyses to identify loci controlling
metabolite abundances in a full-sib poplar population.
Metabolite correlation networks indicated a tight association
of biosynthesis of specific flavones/dihydroflavonols and
flavonols. More recently, integration of metabolomics and
transcriptomics in co-expression analyses contributed to
identify genes involved in side-chain elongation steps of
aliphatic glucosinolate biosynthesis (Albinsky et al., 2010).
In woody crops, similar approaches have been applied to
the identification of genes controlling acidity in oranges
(Huang et al., 2016), revealing the importance of proteins
involved in metabolite transport and degradation acting
as hubs in the citrate accumulation gene network. In
grapevine, integration of metabolomics and transcriptomics
revealed the involvement of typical abiotic stress-responsive
transcription factors such as bZIPs, AP2/ERFs, MYBs and
NACs in the accumulation of metabolites relevant to grape
berry quality under unfavorable conditions (Savoi et al.,
2017). Also in grapevine, integration of transcriptomics and
proteomics allowed the identification of transcriptional,
post-transcriptional and translational mechanisms involved in
the responses of grapevine to high temperatures. This study
revealed that alternative splicing constitutes an important

mechanism in the response of grapevine to climate change
conditions (Jiang et al., 2017). Overall, all evidence points
out that systems biology approaches are useful data-driven
strategies to identify relevant genes involved in different
plant processes.

FUTURE PROSPECTS

The constraints to global food production posed by climate
change conditions have become a key issue in agronomy
and plant physiology. Perennial plant species, such as the
ones in which this review focuses, are subjected to adverse
environmental conditions throughout their entire life cycle,
and over consecutive cropping seasons. Therefore, breeding
of new varieties more resilient to abiotic stresses with
improved performance and productivity traits constitutes
a prioritary objective. Efficient plant breeding requires accurate
phenotyping of plant traits reliably associated to stress tolerance,
enhanced productivity and/or quality. The development of
high-throughput phenotyping platforms complements fruit
tree genomics bridging phenotype and genotype, allowing
GWAS and network analyses expanding our knowledge on
genetic responses linked to the development of particular
phenotype traits. In the field of abiotic stress tolerance, as
an example, the integration of -omics for the engineering
and selection of abiotic stress-tolerant genotypes has been
successfully applied to staple and forage crops (Deshmukh
et al., 2014; Singh et al., 2015; Shah et al., 2018). Nevertheless,
despite the existing technological gap between fruit trees, staple
and forage crops and model plants in terms of genomic
resources, databases and tools, the situation is changing
rapidly and the amount of sequenced genomes and gene
association studies increasing. It is therefore desirable that,
in the following years, curated databases appear including
data from different sources and technological platforms.
Abiotic stress tolerance traits are complex from the genetic
point of view involving an intricate interaction of regulator
and effector genes. Therefore, the systems-level analysis of
complex phenotype traits requires a complete evaluation
of the relevant physiological parameters to integrate the
genetic and molecular differences, constituting the real ‘driving
force’ in the selection process. Therefore, the integration
of accurate phenotype data along with gene expression,
metabolite and protein accumulation in different tissues and
germplasm accessions would allow researchers performing
in silico gene association studies, as in A. thaliana, and select
candidate genes for genetic improvement. This will undeniably
boost any woody crop breeding initiative by narrowing
down the number of target gene(s) and providing a clear
gene-to-phenotype association.
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