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We report the finding of the analogous valley Hall effect in phononic systems arising from mirror symmetry
breaking, in addition to spatial inversion symmetry breaking. We study topological phases of plates and
spring-mass models in kagome and modified kagome arrangements. By breaking the inversion symmetry it
is well known that a defined valley Chern number arises. We also show that effectively, breaking the mirror
symmetry leads to the same topological invariant. Based on the bulk-edge correspondence principle, protected
edge states appear at interfaces between two lattices with different valley Chern numbers. By means of a plane
wave expansion method and the multiple scattering theory for periodic and finite systems, respectively, we
computed the Berry curvature, the band inversion, mode shapes, and edge modes in plate systems. We also
find that appropriate multipoint excitations in finite system gives rise to propagating waves along a one-sided
path only.

DOI: 10.1103/PhysRevB.99.134102

I. INTRODUCTION

The unusual properties of fabricated metamaterials origi-
nate from their designed patterns and geometry as opposed to
their chemical composition. Specifically, when created with
periodic structures, the study of wave propagation can be
treated similar to electrons in periodic potentials [1–6]. In this
way, topological properties studied in electronic band struc-
tures [7] can be transferred to classical metamaterials. Inspired
by topological electronic systems, the search for protected
modes in classical wave phenomena has been active in recent
years in areas such as photonics [8,9], acoustics [10,11],
and elastic media [12,13]. The bulk-boundary correspondence
principle has been proved to hold also in these areas by
showing how topological protected waves arise at the edge of
systems containing topologically inequivalent phases. In par-
ticular, mechanical metamaterials present several advantages:
(1) the flexibility to create patterns and to modify band struc-
tures in metamaterials is much richer than in real solids [14].
(2) In electronic systems topological features are easier to
detect when they occur close to the Fermi energy, which
is hard to shift and control. On the other hand, mechanical
systems can be excited in a wide range of frequencies, and
the excitation can be easily tuned to the frequency of the
topological mode.

We consider mechanical metamaterials with time-reversal
symmetry, establishing analogy with the quantum valley Hall
effect (QVHE) [15–18]. The QVHE may arise in systems
where intervalley scattering is suppressed and the valley de-
gree of freedom is well-defined [15,16]. A prototypical exam-
ple is the hexagonal Brillouin zone, where opposite corners of
the hexagon are not related by reciprocal vectors and the life
time of electrons in each valley is long [19]. This fact gives

rise to nonequivalent points at opposite momenta. The two
valleys act as independent degrees of freedom and therefore
as a pseudospin. In QVHE each valley degree of freedom
effectively behaves as a Chern insulator. Mixing the valleys
degrees of freedom will destroy the effect. This approach
has been successfully achieved in spring-mass models and
plate topology [20–24], as well as in photonics [25–28] or
acoustics [11,29–31], by breaking the spatial inversion sym-
metry. The existence of topological modes have been shown
experimentally [14,32,33], along with unusual properties in
the absence of backscattering [22,34]. In continuous systems
like plates, wave guiding through edge modes could have ap-
plications for mechanically isolating structures or transferring
energy and information through elastic waves.

In this paper, we focus on the kagome lattice, which
has a graphenelike structure with degenerate Dirac cones
at inequivalent points of the Brillouin zone. Recent interest
in metamaterials based on kagome arrangement suggest fu-
ture applications [11,35–37]. The wide range of crystalline
symmetries and the underlying C3 symmetry of this system
provides a playground to test mechanical topology as well as
distinguishing basic features that are relevant to topological
mechanics.

We study discrete spring-mass models in the linear regime
in addition to continuum systems such as plates. The former
systems allow analytic computations which capture the essen-
tials of topology in easy models with couplings between few
neighbors. The solutions for plate systems are long ranged
waves that propagate through the infinite medium coupling all
degrees of freedom in the system. The understanding of topo-
logical modes could lead to relevant engineering applications,
in particular, efficient and controlled wave guiding. Plates will
be described in the linear regime by Kirchhoff-Love theory.
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To endow the plate with a crystalline structure, we attach
a lattice of resonators on top. Modifications of the unit cell
properties might open gaps in the phononic band structure
with nontrivial topology. Remarkably, the methodology used
in this paper to describe flexural waves in plates is not based
on commercial software but on the multiple scattering theory
(MST) developed in Ref. [38].

The structure of the paper is as follows. In Sec. II, we
describe briefly the methodology for studying flexural waves
in plates. In Sec. III, we describe the distorted kagome lattice,
its symmetries, and the parameter space used in this paper. In
Sec. IV, topology arising from spatial inversion symmetry is
deduced from the spring-mass model and explained via plate
physics, we employ ribbons to create topological protected
edge states and design finite systems with interesting prop-
erties, like one-sided wave propagation. In Sec. V, we study
the effects of mirror symmetry breaking in a kagome lattice.
In Sec. VI, we conclude this paper.

II. PLATE PHYSICS AND METHODOLOGY

In this section, to present the system and derive the nota-
tion, we briefly introduce the classical theory of flexural waves
for thin plates and describe the methodology, following the
approach taken by Torrent et al. [38] and Chaunsali et al. [24].
We consider a thin plate coupled to a lattice of resonators.
The equation of motion for the deformation field, w is a
fourth-order derivative in real space and we look for solutions
harmonic in time: w(�r, t ) = w(�r)eiωt .

(D∇4 − ω2ρh)w(�r) = −
∑
�Rα

κ�Rα
(w(�Rα ) − z(�Rκα ))δ(�r − �Rα ),

(1)

where D = Eh3

12(1−ν2 ) is the plate stiffness, ρ is the volume mass
density of the plate, h is thickness, and the sum runs over
all resonator sites �Rα within the unit cell. Resonator masses
and spring constants are, respectively, mα and κα and their
displacements are z(�Rα ), in the direction perpendicular to the
plate. The equation for each resonator is,

ω2mαz(�Rα ) = −κ�Rα
(w(�Rα ) − z(�Rα )) (2)

A. Plane wave expansion

In the plane wave expansion method (PWE), the lattice is
infinite in two dimensions and the displacement field can be
written in terms of Bloch waves,

w(�r) =
∑

�G
W (�G)e−i(�G+�k)·�r, (3)

where �G = n1�g1 + n2�g2 are the reciprocal lattice vectors, n1,2

are integers and �g j are the basis of vectors fulfilling �ai · �g j =
2πδi j , with �ai being the lattice vectors. The result is either
a search for zeros of a complex function as described in
Ref. [38] or a generalized eigenvalue problem as described
in Ref. [24]. For completeness, we highlight some steps of the
derivation.

Method 1. Substituting the resonator equation, Eq. (2) into
the plate equation, Eq. (1), we get
(

∇4 − ω2 ρh

D

)
w(�r) = −

∑
�Rα

mα

D

ω2
αω2

ω2
α − ω2

w(�Rα )δ(�r − �Rα ),

(4)

where ω2
α (ω) = κα/mα and tα = mα

D
ω2

αω2

ω2
α−ω2 . Due to the sys-

tem’s periodicity, we omit the �R dependence on masses and
spring constants. Substituting the Bloch Ansatz (3) into the
previous equation, deriving each independent term in the
Fourier summation and integrating over the unit cell we obtain

(
|�k + �G|4 − ω2 ρh

D

)
W�G =

∑
�G′,α

tα
Ac

ei( �G′−�G)· �RαW�G′ , (5)

where a is the lattice parameter and Ac is the area of the unit
cell. We have used the following identities:∫

UC
e−i( �G′−�G)·�rd�r = Acδ( �G′ − �G);

∫
UC

f (�r)δ(�r − �Rα )d�r = f (�Rα ) (6)

Now, we write the expected solution expanded on a the
Fourier basis,

Wβ =
∑

�G′

W�G′ei �G′ · �Rβ , (7)

and substitute W�G from Eq. (5),

Wβ =
∑

�G

1

|�k + �G|4 − ω2 ρh
D

1

Ac

∑
α

ei�G·(�Rα−�Rβ )tαWα. (8)

Therefore a set of N equations with N unknowns can be
written, where N is the number of resonators per unit cell. We
find solutions of this system as the zeros of the determinant of
the following matrix:

Aαβ (�k) = δα,β − γβ�2a2

1 − �2/�2
α

∑
�G

e−i�G·(�Rα−�Rβ )

|�k + �G|4a4 − �2a2
, (9)

where we have introduced the dimensionless variables �2 =
ω2ρa2h/D and γα = mα

ρa2h . We evaluate for each �k and deduce

its �(�k) solutions. The null space of the A matrix correspond
to mode shapes at the resonator points.

Method 2.We substitute Bloch waves from Eq. (3) in the
plate Eq. (1). Equating for each mode and integrating over the
unit cell, we get

Ac(D|�k + �G|4 − ω2ρh)W�G

=
∑

α

κα

⎛
⎝z(�Rα ) −

∑
�G′

W�G′e−i( �G′+�k)· �Rα

⎞
⎠ei(�G+�k)· �Rα . (10)

Using Bloch’s theorem for the resonators, we can refer all
resonator displacements to the ones of the one unit cell,
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z(�Rα ) = z(�R0α )e−i�k· �Rα . We substitute in the previous equation,

(|�k + �G|4a4 − �2)W�G

=
∑

α

γα�2
αei�G· �Rα

⎛
⎝z(�R0α ) −

∑
�G′

W�G′e−i �G′ · �Rα

⎞
⎠, (11)

and in the resonator equation (2),

−�2z(�R0α ) = �2
α

⎛
⎝∑

�G
W�Ge−i�G· �Rα − z(�R0α )

⎞
⎠. (12)

Where we have used the same dimensionless variables � and
γ than in method 1. Now Eqs. (11) and (12) are rewritten in
matrix form of dimension NG + N , where NG is the number
of reciprocal vectors taken for the computation (calculations
in this paper are made with NG = 49) and N is the number of
resonators per unit cell:(

P11 P12

P21 P22

)(
W�G

z(�R0,α )

)
= �2

(
Q11 0
0 Q22

)(
W�G

z(�R0,α )

)
,

(13)

where

P11,i j = a4|�k + �Gi|4δi, j +
∑

α

γα�αei(�Gj−�Gi )· �Rα ,

P12,iα = −γα�2
αei�Gi · �Rα = P∗

21,αi, P22,αβ = γα�2
αδα,β, (14)

Q11,i j = δi, j, Q22,αβ = γαδα,β .

In Eq. (14), we use i, j indices for the NG reciprocal vectors
and α, β for the N resonators of the unit cell. The generalized
eigenvalue problem gives us the band structure, �(�k), and the
mode shape by substituting W�G into Eq. (3).

B. Edge states in ribbons

We consider ribbons of resonators arranged periodically in
the �r1 direction. However, the plate is still infinite, so the unit
cell in direction �r2 is infinite, where �ri form a basis in 2D. The
unit cell is infinite in size but with finite number of resonators
present in the supercell, see Fig. 1. Unlike electronic systems
where wave functions decay exponentially in space, flexural
waves decay slowly in the plate and an infinite large unit cell

FIG. 1. Schematic representation of a ribbon in an infinite plate.
r1 and r2 are a basis of lattice. The two red parallel lines delimit one
supercell, the supercell is infinite in size. The unit cell is presented
with two different topological phases as we will see later in the text.

will account for long range waves along the �r2 direction. The
discrete summation over n2�g2 in Eq. (3) transforms into an
integral

1

Ac

∑
G2

→ 1

2πa

∫ ∞

−∞
dg2. (15)

Applying this transformation to Eq. (9), Aα,β matrix simplifies
to depend only on k1. The governing equations are described
in Ref. [38]. Our main interest creating ribbons consist of
studying boundary states between two phases. The interface is
contained in the supercell. Bands are computed from the zeros
of the A(�k) matrix determinant and its null space contains
the eigenmodes, i.e., the w(�Rα ) weight over the supercell
resonators.

C. Multiple scattering method

For finite clusters in an infinite plate, we use multiple
scattering theory (MST). The governing equations are Eqs. (1)
and (2) where the number of �Rα is finite. The Green’s function
of the plate equation without resonators, G0(�r), is used as a
basis to expand the solution of the resulting wave. A system of
self-consistent equations lead to the solution of the field w(�r)
under some harmonic incident field ψ0(�r, t ) = ψ0(�r)eiωt+ϕ ,

w(�r) = ψ0(�r) +
∑

α

Tαψe(�Rα )G0(�r − �Rα ), (16)

where ψe is the incident field at scatterer α, which allows
to deduce the value of Tα = tα

1−itα/(8k2 ) . ψe(�Rα ) can be solved
from the system of equations,

ψe(�Rα ) = ψ0(�Rα ) +
∑

β

(1 − δα,β )TβG0(�Rα − �Rβ )ψe(�Rβ ).

(17)

We compute the resulting field w(�r) by substituting the so-
lution of ψe back into Eq. (16). The incident field is the
external excitation of the system and is taken as a point source
ψ0(�Rα ) = G0(�Rα − �x0), we also consider multipoint dephased
excitations ψ0(�Rα ) = ∑

j G0(�Rα − �x j )eiϕ j and solutions with-

out input field ψ0(�Rα ) = 0 that we call natural excitations of
the system.

III. KAGOME LATTICE, DISTORTIONS,
AND SYMMETRIES

The standard kagome lattice consists of three sets of
straight parallel lines intersecting at lattice sites as shown in
Fig. 2. This figure also shows the unit cell chosen in this paper
as a parallelogram with lattice vectors

�a1 = a(1, 0) �a2 = a

(
cos

(
π

3

)
, sin

(
π

3

))
. (18)

The normalized masses and resonator frequencies are γα = 10
and �α = 4π , respectively, for the three resonators of the
unit cell. The lattice sites in the unit cell form an equilateral
triangle of side a/2. In this paper, we consider distortions
of the standard kagome lattice with two parameters: f that
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FIG. 2. (a) Undistorted kagome lattice. The unit cell is indicated in a green box of side a. The unit cell contains three resonators forming an
equilateral triangles. (b) Parameters used in the paper for deformations of kagome lattice and its effect in the unit cell. They are characterized
by an angle α and a uniform expansion factor f . (c) Brillouin zone.

controls the size of the triangle with respect to the lattice
parameter which will remain unchanged, and α the rotation
angle of the equilateral triangle with respect to its center, see
Fig. 2.

The positions of the three sites in the unit cell are

�Rn = f · b(cos(�n + α), sin(�n + α)), (19)

where b = a
2
√

3
, �n = n π

3 − 7π
6 , and n labels the lattice sites

n = {1, 2, 3}. The undistorted kagome lattice is defined for
f = 1 and α = 0.

Kagome lattice in our parameter space have several sym-
metries. For a constant f , there are three equivalent lattices for
every α corresponding to {α, α + 2π

3 , α − 2π
3 }, meaning all

systems in this parameter space have C3 symmetry. For a given
angle and f < 1, the lattice with f ′ = 2 − f is equivalent as
well. However, lattices with f < 1 and 2 > f > 1 are distin-
guished by triangles pointing in opposite directions as shown
in Figs. 3(a) and 3(b). Playing with parameters it is possible
to create subtle differences in lattice structure, as shown in
Figs. 3(a) and 3(c). The arrangement of resonators is the same
but the unit cell where each resonator belongs are different
in each case. Such configurations are therefore physically
indistinguishable. The undistorted kagome lattice f = 1 and
α = 0 have C6 symmetry, inversion symmetry both with cen-
ters in the middle of hexagons, C3 symmetry with center in the
middle of triangles and three mirror symmetries given by the

FIG. 3. Real-space arrangement of resonators for several de-
formation parameters. The unit cell is highlighted. Notice (a) and
(c) look similar but the chosen cell is different. Notice the breaking
of spatial inversion symmetry is the three cases.

following normal to the mirror line vectors:

�m1 = (1, 0),

�m2 =
(−1

2
,

√
3

2

)
,

�m3 =
(

1

2
,

√
3

2

)
, (20)

see Fig. 2. The elastic systems have time-reversal symmetry
as well. The interrelation of all these symmetries give many
interesting features and we will explore some of them.

Due to the symmetries of the lattice, some qualitative band
features are independent of the system (springs or plates). For
instance, the gap closings at K point of the Brillouin zone
will be relevant through the article and they are represented
in Fig. 4 in parameter space. Each red and dashed line cor-
responds to a gap closing in conelike shape. At momentum
K , there are Dirac points, and opening the gap gives rise to

FIG. 4. Gap closings in parameter space at K points. Solid red
lines are the closing of the first gap. Dashed black lines are the
closings of the second gap. The second gap is a partial gap in k
space. Topological transitions studied in this paper are marked with
a five- and a four-pointed stars. The driving parameters are f and
α, respectively, and the symmetry breaking is spatial inversion and
mirror symmetry, respectively.
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interesting phenomena. Spring-mass model approach is being
used in kagome lattice to explain band inversion topology and
they constitute a first step towards topology in plates.

IV. INVERSION SYMMETRY BREAKING
AND TOPOLOGY

A. Spring-mass model

We design a spring-mass model where masses are located
at sites of the kagome lattice, i.e., circles in Fig. 2 and each
blue line connecting neighboring masses are springs. The
masses have only one degree of freedom, they move in the
direction perpendicular to the plane. The three springs inside
the unit cell have spring constant κ1 and the springs connect-
ing neighboring unit cells have constant κ2. The equations of
motion read

mü1 = −κ1(u1 − u2) − κ1(u1 − u3)

− κ2(u1 − u2e−i�k· �a1 ) − κ2(u1 − u3e−i�k �a2 ),

mü2 = −κ1(u2 − u1) − κ1(u2 − u3)

− κ2(u2 − u1ei�k �a1 ) − κ2(u2 − u3e−i�k �a3 ),

mü3 = −κ1(u3 − u2) − κ1(u3 − u1)

− κ2(u3 − u2ei�k �a3 ) − κ2(u3 − u1ei�k �a2 ). (21)

where �a3 = �a2 − �a1. Solving the temporal part as a harmonic
function u1(t ) = u1eiωt and introducing the dimensionless
variable β = κ1−κ2

κ1+κ2
, which plays a role analogous to the dis-

tortion f of the preceding section, and �2 = 2mω2/(κ1 + κ2),
the equation of motion reads

−�2

⎛
⎝u1

u2

u3

⎞
⎠

=

⎡
⎢⎣

⎛
⎜⎝

−4 1 + e−i�k �a1 1 + e−i�k �a2

1 + ei�k �a1 −4 1 + e−i�k �a3

1 + ei�k �a2 1 + ei�k �a3 −4

⎞
⎟⎠

+ β

⎛
⎜⎝

0 1 − e−i�k �a1 1 − e−i�k �a2

1 − ei�k �a1 0 1 − e−i�k �a3

1 − ei�k �a2 1 − ei�k �a3 0

⎞
⎟⎠

⎤
⎥⎦

⎛
⎝u1

u2

u3

⎞
⎠.

(22)

For β = 0, we recover the dispersion relation of the
undistorted kagome lattice (analogous to f = 1) with Dirac
cones at K and K ′ points of the Brillouin zone. Two bands
cross linearly at Dirac frequency and the third band has
larger frequency. For β 	= 0, the gap opens up at K and
K ′ points, gapping the system. Because C3 is a symmetry
of the lattice, its eigenvectors are eigenvectors of the sys-
tem. C3 rotation center located in the middle of the trian-
gle of the unit cell gives the following matrix form for C3

symmetry,

Ĉ3 =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠. (23)

Thus the eigenvalues are {1, ei 2π
3 , e−i 2π

3 } and its corresponding
eigenvectors,

u0
C3

= 1√
3

⎛
⎝1

1
1

⎞
⎠, u+

C3
= 1√

3

⎛
⎝e−i π

3

ei π
3

−1

⎞
⎠, u−

C3
= 1√

3

⎛
⎝ ei π

3

e−i π
3

−1

⎞
⎠.

(24)

These eigenvectors diagonalize the dynamical matrix
(which plays the same role than a Hamiltonian) for β 	= 0
at K and K ′ points. For β = 0, the two states degenerate at
K (K ′) point are u0

C3
and u+

C3
(u−

C3
). For β > 0, i.e., κ1 > κ2,

u+
K = u+

C3
and u−

K = u0
C3

, and reversed for β < 0: u+
K = u0

C3

and u−
K = u+

C3
. Due to the three mirror symmetries, each K

point is related to K ′ = −K , and its eigenvectors are the
mirror symmetric of uK . Notice that a mirror in real space
given by �m1 in Eq. (20) transforms in momentum space as
(kx, ky) → (−kx, ky) and thus K transforms into K ′ by mirror
symmetry. The same is true for the other two mirror planes.
This is straightforward for the kagome Brillouin zone, which
is a regular hexagon and the three mirror planes are the three
perpendicular to each pair of parallel sides, see Fig. 2.

Notice that the superindex indicates different things de-
pending on the subindex. When the subindex makes reference
to K point, the plus and minus signs correspond to the bands
above and below the Dirac frequency. The subindex C3 refers
to the symmetry and the plus minus or zero superindex
correspond to its eigenvalues.

We see there is a crossing of eigenvectors at β = 0 (the gap
must close at the transition), see Fig. 5(a). To capture the basic
topology of this system, let us derive an effective model near
each valley. The effective model at Dirac frequency can be
written in the basis of the two crossing eigenvectors. The third
eigenvalue at K is away in frequency from Dirac frequency
and does not have dependence at first order with β, see Fig. 5.
The effective model is then

DK,i j = 〈
ui

K

∣∣H ∣∣u j
K

〉
, (25)

where i, j = {+,−}, we expand the dynamical matrix near
each valley K and K ′ and the result is

Dη =
(

1.5(1 − β ) vD(−ηkx + iky)
vD(−ηkx − iky) 1.5(1 + β )

)
, (26)

FIG. 5. (a) Frequency level crossing at K point for model in
Eq. (22) as a function of β. (b) Representation of M operator in
Eq. (33). The arrows indicate how each component transforms, the
color indicates different signs.
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FIG. 6. Band structure of flexural waves plotted along a the hexagonal Brillouin zone for several f values and α = 0.

where vD =
√

3
4 a and η = ±1 for ±K and �k is measured

from each valley �k = (± 4π
3a + kx, ky). This is a well known

model for graphene with a staggered potential [19,39,40] also
studied in topological mechancis [20–23]. The whole system
has time-reversal symmetry, one valley is transformed into
the other with a time-reversal transformation, remember that
time-reversal symmetry transforms �k → −�k and thus, K →
−K = K ′ or η → −η. However, each valley is independent
from the other, since there are no direct scattering terms
coupling them (see Appendix B). Separately each valley dy-
namical matrix effectively behaves as a Chern insulator with
broken time-reversal symmetry [19] where β is a symmetry
breaking term responsible for the topological gap, and analo-
gous to the magnetic field in quantum Hall phases. Opposite
Chern numbers are computed near each valley when β 	=
0. Since the valleys are disconnected, a well-defined valley
Chern number arises. The total system is still time-reversal
symmetric and therefore total Chern number is zero.

Notice that the eigenvalues of the dynamical matrix in
Eqs. (25) and (26) are the square of the actual normalized
frequencies � as in the Hamiltoninan in Eq. (22). In any case,
the eigenvectors (or normal modes) and conclusions about
topology hold.

We can compute the subspace generated by the two Dirac
crossing vectors reads

M = ∣∣u0
C3

〉 〈
u0

C3

∣∣ − ∣∣u+
C3

〉 〈
u+

C3

∣∣ = 1

2

⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠

− i

2
√

3

⎛
⎝ 0 1 −1

−1 0 1
1 −1 0

⎞
⎠. (27)

This matrix corresponds to the gap-opening operator in the
low energy model and is proportional to the linear term in
the perturbation evaluated at K point and its imaginary part
is schematically represented in Fig. 5(b). It gives the spatial
inversion symmetry breaking term in the full spring-mass
model.

As we will see, this result is relevant for plates with
attached resonators. If we model the strength of springs by
the distance between resonators, we obtain an analogous gap
closing with the same inversion of eigenvectors. This is a
reasonable assumption since the closer two resonators are in
space, the stronger their motion is mutually affected. In our

case, β > 0 means that κ1 is stronger and in a plate system
is analogous to a contraction of the sites’ distance in the unit
cell, i.e, f < 1. In the same way, β < 0 is analogous to f > 1.

B. Plate model and valley Chern number

To reproduce previous results from spring-mass systems,
we study plates with a kagome arrangement of resonators
and model spring strength with distance between resonators.
Fixing α = 0 and varying f around 1 allow us to model
the variation of spring constants within the unit cell (κ1)
with respect to the springs connecting different cells (κ2).
The corresponding band structures are shown in Fig. 6. At
both sides of the transition, the band structure is the same
[see their similar spatial distribution in Figs. 3(a) and 3(c)].
However, the topological invariant (the valley Chern number)
is different as we will see. At the transition point f = 1,
the two bands form Dirac cones at first order in momentum
around K and K ′, i.e., the frequency bands are linear in kx and
ky when expanded at K and K ′ points �k = (± 4π

3a + kx, ky). The
Dirac frequency is �Da = 2.5, the frequency where the two
bands touch.

For f 	= 1, spatial inversion symmetry is broken, while
the remaining symmetries are still present (see Fig. 3). The
broken inversion symmetry allows us to define a valley Chern
number, as previously stated in the spring-mass model. In
Fig. 7, the computed Berry curvature of first band is plotted.
The Berry curvature in 2D k space is

B = −i 〈∂xuk|∂yuk〉 + i 〈∂yuk|∂xuk〉 , (28)

FIG. 7. In color scale, the Berry curvature of the lower band over
the first Brillouin zone. The Berry curvature is localized at K and K ′

points with different signs for different phases. Blue is negative and
yellow is positive.
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FIG. 8. Mode shapes. Real part of w(�r) for different bands and
phases. Notice the analogy of the first row with the eigenvalue of the
spring model u0

C3
= 1√

3
(1, 1, 1)t or in the second row with the real

part Re{u+
C3

} = 1√
3
(0.5, 0.5, −1)t . Notice the band inversion. Mode

shapes are not periodic due to the phase e−i �K ·�r in Eq. (3).

where uk is the eigenvector of one band at momentum k.
The eigenvector is computed from the PWE method as the
null space of A matrix in Eq. (9). We can see that the Berry
curvature is localized near K and K ′ with opposite sign and it
changes at the transition.

For further analogy with the spring system, we compute
the mode shapes in real space at the K point for the two
lower bands in Fig. 8, which closely resemble the eigenvectors
involved in the transition u±

K . Moreover, band inversion is
clearly visible. The mode shapes switch energies at both sides
of the transition in the same way than eigenvectors in the
spring-mass model [Fig. 5(a)].

C. Edge states in ribbons

In this section, we study the interface states appearing
between two lattices with distinct valley Chern numbers,
which are topologically protected [21,39,40], i.e., with zigzag
interfaces. In analogy to graphenelike lattices, the edges go-
ing along the directions �a1, �a2, and �a2 − �a1 we call zigzag
edges. The edge mixing valleys are then called an armchair
interface in kagome lattice. We will compute vertical edges
along direction �a2 − 1

2�a1 in our definition of the unit cell. We
create ribbons in a supercell along �a2 direction and periodic
in �a1 direction. Even ribbons with valley topological phases
in electronic system do not have gapless edges states, because
valleys are not well defined in vacuum, unless the boundary
is with another topological phase with opposite valley Chern
number [39]. The same reasoning is true for plates. Therefore
boundary states appear at the interface between two phases
with opposite signed topological invariants. Such interface
is contained in the supercell of the ribbons as shown in
Fig. 1. Two types of interfaces can be made, which are
depicted in Figs. 9 and 10. Schematic real-space supercell
is highlighted, a solid black line separates two topological
phases distinguished by opposite valley Chern numbers. The
bands are limited by the free-wave dispersion relation, outside

FIG. 9. Ribbon of resonators over an infinite plate. The system contains a domain wall between two phases with opposite valley Chern
numbers. At the top left, real-space ribbon representation. The horizontal line separates the two phases and black arrows indicate that the
ribbon is infinite in horizontal direction. In red, resonators in one supercell. At the top right there is the band structure of the finite system,
neglecting nonbulk modes, i.e., modes in the interior of the free dispersion curve �a = ( kx

π
)
2
. Two mid gap bands appear. At the bottom, mode

shapes or, in other words, real-space displacement field along the supercell sites w(�Rα ) for different frequencies and momenta as indicated
with colored dots on the band structure.
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FIG. 10. Ribbon of resonators over an infinite plate. The system contains a domain wall between two phases with opposite valley Chern
numbers (see Fig. 7). At the top left, real-space ribbon representation. The horizontal line separates the two phases and black arrows indicate
that the ribbon is infinite in horizontal direction. In red, resonators in one supercell. At the top right there is the band structure of the finite
system, neglecting nonbulk modes, i.e., modes in the interior of the free dispersion curve �a = ( kx

π
)
2
. One mid gap band appears. At the

bottom, mode shapes or, in other words, real-space displacement field along the supercell sites w(�Rα ) for different frequencies and momenta
as indicated with colored dots on the band structure.

that region there are no bulk solutions of the plate equation.
The two types of interfaces exhibit a band of boundary states
localized at the domain wall. In Fig. 9, a second band appears
containing edge states at the top of the ribbon which are
nontopological. An analogous band is present in Fig. 10 with
edge states at the bottom of the ribbon as can be seen in the
mode shapes.

The topological edge modes are robust against certain
types of perturbations that do not mix valleys, like zigzag
edges (see Appendix B). We have confirmed this fact by
corroborating that these states are not removed by the addition
of general perturbations to the boundary. However, there
are perturbations mixing valley degrees of freedom such an
armchair boundary [9] that will destroy the protection as can
be seen in Fig. 11, see Appendix B for the derivation. Notice
the change in the unit cell parameter, now in the direction of
periodicity it is a′ = √

3a.

D. Finite systems

Now, we study a finite cluster of resonators on top of an
infinite plane where multiple scattering theory described in
Sec. II and developed in Ref. [38] applies. The cluster of
resonators contains two phases separated by a zigzag interface
with Z shape, Fig. 12. Topological protected state appears
at mid gap frequency. Notice that the horizontal interface is
equivalent to the domain wall in Fig. 9, thus the frequency
is tuned to find topological edge modes, in this case, �a =
2.51. Figure 13 shows an edge state without backscattering,
this mode is being computed without external input field,

i.e., ψ0 = 0. The vector of coefficients ψe(�Rβ ) in Eq. (17)
is the right-singular vector whose single value is zero. This
method computes natural excitations of the system at a given
frequency.

Moreover, in the same cluster, we find appropriate mul-
tipoint excitation with dephasing in time. A two-point exci-
tation ψ0(�Rα ) = G0(�Rα − �x1) + G0(�Rα − �x1)eiϕ where point
sources are located at the horizontal domain wall, �x1 =
(−1, 0)a and �x2 = (1, 0)a. The dephasing ϕ is varied until

FIG. 11. Ribbon of resonators over an infinite plate. The system
contains a domain wall between two phases with opposite valley
Chern numbers (see Fig. 7). On the left, real-space ribbon represen-
tation. The vertical line separates the two phases and black arrows
indicate that the ribbon is infinite in vertical direction. The interface
is armchairlike. The band structure does not show localized modes
within gap frequencies, bands that appear isolated at gap frequencies
are bulk modes.
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FIG. 12. Schematic representation of a cluster of resonators on
top of an infinite plate. The cluster is designed with a Z-shaped
interface.

propagating waves in one direction only are tuned. The results
are shown in Fig. 14 and are similar to those presented in
Ref. [24].

V. MIRROR SYMMETRY BREAKING AND TOPOLOGY

A. Spring-mass model

Now we consider a model with mirror symmetry at α =
π/6 and consider two continuous deformations that break

FIG. 13. MST simulations of an arrangement of resonators with
two phases separated by a zigzag domain wall. The frequency is
tuned so that the mode is in a gap and corresponds to topological
edge states.

mirror symmetry. Changing α towards one side or the other
will give two phases differentiated by different eigenvectors
of C3 symmetry. The spring-mass model is constructed by
changing the relative spring constant between green and blue
springs as indicated in Fig. 15. The equations of motion read

mü1 = −γ (u1 − u2) − γ (u1 − u3) − κ1(u1 − u2e−i�k �a2 ) − κ1(u1 − u3e−i�k �a3 ) − κ2(u1 − u2e−i�k �a1 ) − κ2(u1 − u3e−i�k �a2 ),

mü2 = −γ (u2 − u1) − γ (u2 − u3) − κ1(u2 − u1ei�k �a2 ) − κ1(u2 − u3ei�k �a1 ) − κ2(u2 − u1ei�k �a1 ) − κ2(u2 − u3e−i�k �a3 ),

mü3 = −γ (u3 − u2) − γ (u3 − u1) − κ1(u3 − u2e−i�k �a1 ) − κ1(u3 − u1ei�k �a3 ) − κ2(u3 − u2ei�k �a3 ) − κ2(u3 − u1ei�k �a2 ), (29)

introducing the relative difference β = κ1−κ2
κ1+κ2

, we rewrite the system of equations in matrix form

−�2

⎛
⎝u1

u2

u3

⎞
⎠ = γ ′

⎛
⎝−2 1 1

1 −2 1
1 1 −2

⎞
⎠

⎛
⎝u1

u2

u3

⎞
⎠ +

⎛
⎜⎝

−4 e−i�k �a2 + e−i�k �a1 e−i�k �a3 + e−i�k �a2

ei�k �a2 + ei�k �a1 −4 ei�k �a1 + e−i�k �a3

ei�k �a3 + ei�k �a2 e−i�k �a1 + ei�k �a3 −4

⎞
⎟⎠

⎛
⎝u1

u2

u3

⎞
⎠

+β

⎛
⎜⎝

0 e−i�k �a2 − e−i�k �a1 e−i�k �a3 − e−i�k �a2

ei�k �a2 − ei�k �a1 0 ei�k �a1 − e−i�k �a3

ei�k �a3 − ei�k �a2 e−i�k �a1 − ei�k �a3 0

⎞
⎟⎠

⎛
⎝u1

u2

u3

⎞
⎠, (30)

where �2 = 2mω2/(κ1 + κ2) and γ ′ = 2γ /(κ1 + κ2) The
eigenvectors at K point are the same eigenvectors of C3

symmetry. Now, they eigenvectors crossing at Dirac frequency
are u±

K = u±
C3

. The gap closes at K point forming a Dirac cone
at α = π/6. Notice the closing occurs on first or second gap
depending on f (see Fig. 4). In any case, the Dirac cones
are made of states with complex conjugate eigenvalues of C3

symmetry. Moreover, they are interchanged at the transition:
u±

K = u±
C3

for β > 0 and u±
K = u∓

C3
for β < 0 see Fig. 16; and

interchanged again at the other valley K ′.
We compute the effective model for this band crossing

system as in Eq. (25). The result is

Dη =
(

3γ ′ + 1.5(1 − β ) ηvDei2π/3(kx + iky)

vDηe−i2π/3(kx − iky) 3γ ′ + 1.5(1 + β )

)
, (31)

where vD =
√

3
2 a. By rotating �k = (kx, ky) reference system

by π/3, the dynamical matrix can be written with the same
structure than Eq. (26),

Dη =
(

3γ ′ + 1.5(1 − β ) vD(ηk′
x + ik′

y)
vD(ηk′

x − ik′
y) 3γ ′ + 1.5(1 + β )

)
. (32)

This result illustrates that the mirror symmetry break-
ing in the original model is analogous to an inversion
symmetry in graphenelike systems where β is the pseu-
domagnetic field in quantum valley Hall effect. Instead of
inducing nonequivalent sublattice potential, here the potential
is between eigenstates of the system and C3, i.e., the β has
opposite sign for the two different eigenstates crossing at
Dirac frequency in the same way that a sublattice potential
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FIG. 14. In color scale, the absolute value of the place displacement. MST simulations of an arrangement of resonators with two phases
separated by a zigzag domain wall (no mixing valleys) in Z shape. The frequency is tuned so the modes are topological edge states. The red
dots correspond to the two excitation points �x1 = (−1, 0)a and �x2 = (1, 0)a. The temporal dephasing is ϕ = 0 (the two points are excited
simultaneously) and ϕ = π (antiphase excitation), respectively.

distinguishes A and B lattices by a diagonal σz term in
graphenelike Hamiltonians, where σz is a Pauli matrix.

The subspace generated by the two Dirac eigenstates cross-
ing at K and defined as follows:

M = ∣∣u+
C3

〉 〈
u+

C3

∣∣ − ∣∣u−
C3

〉 〈
u−

C3

∣∣ = i√
3

⎛
⎝ 0 1 −1

−1 0 1
1 −1 0

⎞
⎠ (33)

is equal to M = i(Ĉ3 − Ĉt
3), where Ĉ3 is the symmetry rotation

operator. The M operator differentiates between states rotating
in different directions (notice the opposite sign of Ĉ3). This
matrix is proportional to the linear term in β at K point and
it is schematically represented in Fig. 5(b). This gives us the
mirror symmetry breaking effect in real-space lattice vectors.

B. Plate model and valley Chern number

In this section, we plot several band structures around α =
π/6. Notice that in Fig. 4 the gap closes for all f at α = π/6 at
K point. For f < 2√

3
, the second and third bands are degener-

ate at K point. For f > 2√
3
, the first and second bands form the

Dirac cone. The two transitions have equivalent topology. In
the spring-mass model, this corresponds to varying the value
of γ that tunes the frequency of u0

C3
but does not affect the

other two crossing states. However, the gap opening at K when
α 	= π/6 is not complete for small f . For large f , K point
is not the minimum of the second band, although topological
states come from what happens at K point, the gap is complete
and we show the results of for f = 1.5. The band structures
of plates with different arrangements of resonators are plotted
in Fig. 17. At equidistant points in parameter space from the
transition points the band structures are the same, however
their topology is not. At the transition point, a Dirac cone
at K point is formed which induces the breaking of mirror
symmetry. The Dirac frequency is �a = 2.7.

For α 	= π/6, mirror symmetry is broken and as we show
in the effective model we can define a Berry curvature as in
Eq. (28). The result is shown in Fig. 18. The eigenvectors in
the Brillouin zone are computed from PWE method as the null
space of A matrix in Eq. (9) at the appropriate frequency as de-
scribed in Ref. [38]. We can see that the Berry curvature is lo-
calized near K and K ′ with opposite sign and it changes at the
transition, consistently with the effective spring-mass model.

C. Edge states in ribbons

We compute the edge states of a ribbon with an interface
and find two crossing bands in the middle of the gap. The

FIG. 15. Distorted kagome lattice for two f values and α = π/6. Notice that spatial inversion is not a symmetry of the system. Increasing
slightly α shortens green links and enlarges blue links. The spring system models changes in distance with appropriate changes in β.
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FIG. 16. Frequency levels at K point for the model in Eq. (30) as
a function of β and for γ ′ = 1.

crossing indicates that the two bands have different symmetry.
In Fig. 19, edge states appear in the boundary of the two
phases, due to the different valley Chern numbers. In this tran-
sition, there are two crossing bands with different symmetries
that are topologically protected. The different symmetries can
be observed in the modes in Fig. 19. They are symmetric or
antisymmetric respect to the domain wall. Notice site two
maps onto itself under inversion at the domain wall and
site three and one maps onto one another. This symmetry
in the eigenvectors reflect the inversion symmetry present
in real space in the ribbon due to the fact that phases are
equidistant in real space from the transition point in parameter
space. In other words, the two phases are characterized by
α = π/6 ± φ, where α = π/6 is the transition point and
φ = 0.1. This ribbon symmetry is also present in ribbons
with two phases breaking inversion symmetry in honeycomb
lattice like in Ref. [21]. Since the two phases are equidistant
from the transition point, there is an inversion that gives
symmetric and antisymmetric edge modes with respect to the
domain wall (see Appendix A). Unlike honeycomb lattice
in kagome arrangement each number site has its inversion
point. In graphene, the spatial inversion is clearly seen in
the eigenvectors uA = (1, 0)t and uB = (0, 1)t than transform
into one another by appropriate inversion in real space. In
our case, Eq. (32), the eigenvectors at a given frequency
and at each side of the domain wall are related by spatial

FIG. 18. Berry curvature of the lower band over the first Bril-
louin zone. Berry curvature is localized at K and K ′ points with
different signs for different phases. Blue is negative and yellow is
positive.

inversion too

uβ>0
K = 1√

3

⎛
⎝e−i 2π

3

1
ei 2π

3

⎞
⎠ = ei π

3 u+
C3

uβ<0
K = 1√

3

⎛
⎝ ei 2π

3

1
e−i 2π

3

⎞
⎠

= ei π
3 u−

C3
. (34)

Site 2 maps into itself, while sites 1 and 3 interchange and
appropriate combinations. The result shows symmetric and
antisymmetric modes, as observed in the ribbon eigenvectors
(Fig. 19). Notice inversion symmetry is not present in domain
walls in ribbons with phases of kagome lattice with broken
inversion symmetry shown in Figs. 9 and 10. Modes are not
symmetric or antisymmetric and neither do the eigenvectors
at K involved in the transition (u0

C3
and u+

C3
) exhibit inversion

symmetry, as expected.
Valley topology is not protected against perturbations mix-

ing the valleys. For instance, a vertical interface (armchair
type) mixes the valleys, and the edge states disappear, as
shown in Fig. 20. The band displayed at frequencies that
correspond to the bulk gap in the periodic system are not
localized at the edge, as shown in Fig. 20. These are not
topological states.

D. Finite systems

We design a finite structure of resonators over an infinite
plate and compute the real part of w(�r). A similar result occurs
for natural modes of the system, as in Fig. 13. We also find
two-point time-dephased excitation at mid gap frequency, so

FIG. 17. Band structure of deformed kagome lattice for several α values and f = 1.5.
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FIG. 19. Ribbon of resonators over an infinite plate. The system
contains a domain wall between two phases with opposite valley
Chern numbers (see Fig. 7). At the top left, real-space ribbon
representation. The horizontal line separates the two phases and the
UC is highlighted in red. Black arrows indicate that the ribbon is
infinite in horizontal direction. In red, resonators in one supercell. At
the top right there is the band structure of the finite system, neglecting
nonbulk modes, i.e., modes in the interior of the free dispersion
curve �a = ( kx

π
)
2
. Two crossing bands appear in the gap, they have

different symmetry under domain wall spatial inversion as seen at the
bottom. At the bottom, mode shapes, i.e., real-space displacement
field along the supercell sites w(�Rα ) for different frequencies and
momenta as indicated with colored dots on the band structure.

one-sided propagation is achieved, see Fig. 21, the red dots
are the points where the external excitation force is applied,
�x1 = (−1, 0) and �x2 = (1, 0). Different dephasing ϕ excites
different directional waves.

VI. CONCLUSION

We have studied two types of topological transitions in me-
chanical metamaterials based on the distorted kagome lattice,
namely inversion symmetry or mirror symmetry breaking.
In spring-mass systems, we derived a dynamical matrix for
each valley that effectively behaves as a Chern insulator. We
have identified, in the microscopic model, the operator acting
as a pseudomagnetic field which is controlled by relative
values of springs’ strengths. We also exploit this finding for
flexural waves in plates coupled to resonators. In this context,
the “magnetic field” is controlled by the distance between
resonators. The main manifestation of the valley Hall effect
in our system is the presence of protected boundary states
located at interfaces between domains with opposite signed
valley Chern numbers. These interfaces must have appropriate
edges as shown in simulations of ribbons and finite clus-
ters of resonators with zigzag domains. We also illustrated
how mixing valleys with armachair-type interfaces produces
back-scattering and destroys the topological modes. However,
we also claim that a lattice lacking inversion symmetry at
the transition despite intact mirror symmetry exhibits the
same type of valley topology of broken mirror symmetry.
We compute a similar effective model for springs and find
protected edge states with different symmetry. We find simple
two-point excitation generating one-sided flexural waves in
finite systems that can propagate through desired bends in
2D space. It is well known that the dynamics of spring-mass
systems is dissimilar in several ways to the one of interacting
resonators coupled to plates. For instance, interaction between
the resonators is long-ranged and the dynamical matrix is
frequency dependent on the latter. However, throughout this
work we have established a common origin to their topologi-
cal properties. We hope all these findings help enlightening the

FIG. 20. Ribbon of resonators over an infinite plate. The system contains a domain wall between two phases with opposite valley Chern
numbers (see Fig. 7). On the left, real-space ribbon representation. The vertical line separates the two phases whose interface is armchair type
and the UC is highlighted in red. Black arrows indicate that the ribbon is infinite in the vertical direction. The band structure does not show
localized modes within gap frequencies, bands that appear isolated at gap frequencies are bulk modes.
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FIG. 21. MST simulations of an arrangement of resonators with two phases separated by a zigzag domain wall in Z shape. The frequency
is tuned so the mode is in a gap and correspond to topological edge states. The red dots correspond to the two excitation points. The dephasing
is ϕ = π on the left and ϕ = −0.36π on the right.

path towards future applications in wave guiding and related
fields.
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APPENDIX A: HONEYCOMB RIBBONS WITH BROKEN
INVERSION SYMMETRY

As computed in Ref. [21], the analogous to quantum val-
ley Hall effect guarantees boundary modes localized at the
interface between two phases. Inversion symmetry is broken
by different masses of resonators in the two dimensional unit
cell and two types of interface can be created (with zigzag
boundary). In this Appendix, we examine the symmetry of
the boundary modes. As explained in the main text, the ribbon
structure has inversion symmetry at the domain wall provided
the two phases are equally large and masses are the same, see
Fig. 22, full circles correspond to γ = 11 and empty circles
to γ = 9 (the same at each side of the domain wall), all
resonators have the same spring constant and their frequency
is �R = 4π . Dirac frequency for γ = 10 is �D = 2.9.

In Sec. V, ribbons such as the one shown in Fig. 19 contain
different inversion symmetries at the domain wall, site 2 maps
into itself from an inversion center different from where site
3 maps into site 1, and at the same time different from the
inversion center where site 1 maps into site 3.

The symmetry of the boundary eigenvectors in presented in
Figs. 23 and 24 for light and heavy boundaries, respectively.
In the soft boundary, Fig. 23, the mid gap band correspond
to antisymmetric modes. Symmetric boundary modes are lost
in the bulk band structure. However, we can compute and
plot the extended and symmetric boundary mode. In the hard
boundary, Fig. 24, the mid gap band merges with bulk bands
near kx = π . At each side, the symmetry is different, for
kx < π modes are antisymmetric under inversion symmetry
and for kx > π modes are symmetric.

APPENDIX B: INTERVALLEY SCATTERING AND EDGES

In this Appendix, we explain weather a given boundary
preserves the valley degree of freedom or not. The quantum
valley Hall effect relies on conservation of valley index for the
appearance of topological edge states. Kagome lattices have a
hexagonal Brillouin zone with inequivalent K and K ′ points.
These two momenta are not related by reciprocal lattice
vectors, �K = 4π

3a and �K ′ = − �K , thus �K − �K = 2
3 (�G1 + �G2)

and K and K ′ points are not connected by a linear combination
of reciprocal vectors with integer coefficients. Where �G1 =
2π
a (1, 1√

3
) and �G2 = π√

3a
(0, 1) are the reciprocal vectors and

a the lattice parameter of the kagome lattices. However, a
perturbation, like a boundary, might mix the two valleys.

In general, the overlapped field of the two valleys reads

〈ψK ′ |ψK〉 = ψ∗
K ′ψK = u∗

K ′uK ei(K−K ′ ), (B1)

FIG. 22. Schematic of hexagonal arrangement of resonators hav-
ing two different masses (filled or empty circles represent heavy
and light masses) with soft (light-light) and hard (heavy-heavy)
interfaces. The solid black line is the domain wall. In green star
marker, the inversion symmetry centers of the ribbon. The arrows
represent the infinity of the ribbon in horizontal direction.
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FIG. 23. Ribbon of resonators over an infinite plate. The unit cell highlighted in red contains a domain wall between two phases with
different valley Chern numbers. (Top) Band structure of the finite system, neglecting nonbulk modes, i.e., modes in the interior of the
free dispersion curve �a = ( kx

π
)
2
. (Bottom) Real-space displacement field along the supercell sites for different frequencies and momenta

(eigenvectors) as indicated with colored dots on the band structure. The two lines represent sites A and B.

where the function u�k is a periodic function in the unit cell,
and also its product,

u∗
K ′uK =

∑
n1,n2

aK,K ′,n1,n2 ei(n1 �G1+n2 �G2 )·�r . (B2)

Thus

〈ψK ′ |ψK〉 = e
2
3 (�G1+�G2 )

∑
n1,n2

hK,K ′,n1,n2 ei(n1 �G1+n2 �G2 )·�r

= h′
K,K ′,n′

1,n
′
2
ei(n′

1
�G′

1+n′
2
�G′

2 )·�r, (B3)

where �G′
j = 1

3
�Gj and j = {1, 2}. The overlapped field has the

original hexagonal symmetry (�G′
j have the same ratio with

the reciprocal lattice vectors) but the period is three times the
lattice parameter a′ = 3a.

Now, we evaluate the overlapped field integral along a
period a′. Imagine a domain wall along an arbitrary direction
φ, we define a orthonormal basis of the two-dimensional
plane: ê = (cos(φ), sin(φ)) and ê⊥ = (− sin(φ), cos(φ)). The
integral along the perpendicular direction should be finite
since the two phases are gapped and the overlapped field
must in few lattice parameters inside each phase. Now, we
are left with the integral in the direction of the domain
wall, ∫ 3a

0
drêh′

K,K ′,n′
1,n

′
2
ei(n′

1
�G′

1+n′
2
�G′

2 )·�r . (B4)

Making use of the Fourier series expansion in the direction of
ê, i.e., in one dimension,

eikr = eim 2π
a r, (B5)

where k and r are in the direction of ê and m is an integer.
Thus the overlap integral reads

∑
m

Amh′
K,K ′,n′

1,n
′
2

∫ 3a

0
drei(n′

1
�G′

1+n′
2
�G′

2 )�reim 2π
a r . (B6)

The integral is

∫ 3a

0
drei 2π

3a (n′
1 cos(φ)+ n′

1+n′
2√

3
sin(φ)+3m)r = i

3a

2π

1 − ei2πI

I
, (B7)

where I is

I = n′
1 cos(φ) + n′

1 + n′
2√

3
sin(φ) + 3m. (B8)

The overlap vanishes when I is an integer, i.e., sin(φ) must
cancel the factor 1√

3
. The solution is thus sin(φ) =

√
3

2 or
sin(φ) = 0. The domain walls that preserve the valley degree
of freedom are those at direction ê = (cos(φ), sin(φ)) such
that φ = ms

π
3 , where ms is an integer.

Domain walls in the directions with suppressed over-
lap of intervalley modes are called zigzag. Any other
direction mixes valleys, the overlap is nonzero and we
called them armchair. The reason for this names are
the appearance of honeycomb lattices, for which this
derivation is valid. We conserve the names for kagome
lattices.
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FIG. 24. Ribbon of resonators over an infinite plate. The unit cell highlighted in red contains a domain wall between two phases with
different valley Chern numbers. (Top) Band structure of the finite system, neglecting nonbulk modes, i.e., modes in the interior of the
free dispersion curve �a = ( kx

π
)
2
. (Bottom) Real-space displacement field along the supercell sites for different frequencies and momenta

(eigenvectors) as indicated with colored dots on the band structure. The two lines represent sites A and B.
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