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Abstract 

Constant moving load models are widely adopted in the dynamic analysis of 

railway bridges under moving trains. However, the use of this simple model may 

overestimate the resonant response of simply supported bridges if the vehicle-bridge 

interaction (VBI) effects are neglected, particularly for short spans. To account for the 

VBI effects, Eurocode 1 allows engineers to consider an additional amount of 

structural damping which depends on the bridge span. This method is the so-called 

Additional Damping Method (ADM), and was formulated in order to provide a 

conservative prediction of the interaction benefit. Nevertheless, the Additional 

damping method may sometimes yield to an unsafe prediction of the bridge peak 

response. Considering the interaction  benefits, an alternative analytical approach 

based on an equivalent VBI model under resonant excitations is presented in this 

investigation. The key parameters dominating the additional damping problem are 

subsequently identified. According to the numerical demonstrations supplied, the 

presented approach provides insights that enable an accurate prediction of the 

additional amount of damping needed in order to account for VBI effects on short 

simply-supported railway bridges.  
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List of acronyms 

ADM       Additional damping method 

DoF        Degrees of freedom 

EADA      Equivalent additional damping approach 

ERRI       European Rail Research Institute 

HSR        High speed rail 

MLM       Moving load model 

PC         Pre-stressed concrete 

VBI        Vehicle–bridge interaction 

 

1. Introduction 

The preliminary dynamic analysis of train-induced resonance on railway bridges 

plays an important role in the design phase of bridge structures since this stage is 

related to the computer modeling in structural analysis and the building materials used 

for bridge construction. The time-history analysis of train-bridge systems is a rather 

time-consuming and laborious task due to the complex coupled differential equations 

that need to be integrated in the numerical simulation if the different interaction 

mechanisms that take place are considered. Focusing on the bridge response, moving 

load models (MLM), which neglect the inertial effects of railway vehicles, are widely 

adopted for dynamic analysis of railway bridges in most high speed rail (HSR) codes 

[1,2]. However, as the speed of the train approaches a resonant loading condition 

[3-5], conventional MLM tend to overestimate the bridge response [1-3,6] as the 

vehicle-bridge interaction (VBI) effects on the train-bridge system are neglected [4-6]. 
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To account for VBI benefit, Eurocode 1 [2] provides an additional amount of 

structural damping that leads to a response reduction under resonance conditions. This 

approach is the so-called Additional damping method (ADM). The ADM originally 

proposed by ERRI D214 committee [5] was formulated on the basis of the response of 

a group of simply supported bridges under the circulation of the ICE-2 and Eurostar 

trains, in which the trains were modeled as a series of sprung mass units that represent 

the interaction effect of one bogie travelling over the bridge [5,8]. This method is 

nowadays included in Eurocode 1 [2]. 

To account for the VBI effects of train-bridge coupling systems on simply 

supported pre-stressed concrete (PC) bridges, the structural damping ratio ( ), the 

additional damping ratio (  ) proposed in Eurocode 1 [2], and the total structural 

damping ratio ( Total ) are respectively prescribed as follows [1,2] 

1 20
=

1 0.07(20 ) 20

L

L L



   

      (%)      (1a) 

2

2 3

0.0187 0.00064

1 0.0441 0.0044 0.000255

L L

L L L
 

 
  

 (%)      (1b) 

= +Total                (1c) 

where L stands for the span length. Then a total structural damping ratio ( Total ) can be 

computed incorporating VBI effects in the analysis of short rail bridges using a MLM. 

The ADM included in Eurocode 1 [2] provides engineers a methodology to quantify 

the reduction that a railway bridge under resonance experiences due to the energy 

dissipation associated to the vehicle suspension systems. However, the application of 

ADM from Eurocode 1 nowadays does not depend on anything else but the bridge 

length (L) and, specially, does not depend on the vehicle properties. The purpose of 

the method is to provide a conservative prediction of the reduction that the bridge 

dynamic response experiences due to the tuning effect of the vehicle masses at 

resonance. Despite the fact that the ADM should be conservative by definition, some 
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case studies prove that the ADM may sometimes overestimate the bridge peak 

response reduction due to interaction [6], while in other cases the predicted reduction 

of displacements and accelerations does not reach the values obtained with a detailed 

representation of the vehicle [7]. Nevertheless, under resonance conditions, moving 

load models will predict an excessively high response as vehicle-bridge interaction 

becomes important [8]. 

A new analytical approach is developed in this investigation in order to provide an 

accurate prediction of the interaction benefit using a MLM. The proposed method 

allows identifying the key parameters that dominate the additional damping to be 

provided in order to adjust the bridge peak response predicted by MLM to that 

obtained with a detailed representation of the vehicle. According to the numerical 

verifications supplied, the proposed equivalent additional damping approach (EADA) 

provides an accurate and safe prediction in order to incorporate the interaction benefit 

in a constant moving load model. From the numerical demonstrations and parametric 

studies, it is shown that the proposed equivalent additional damping approach may be 

a simple and feasible method to account for VBI effects in predicting the response of 

short bridges under resonance using the MLM. 

2. Problem formulation 

 

 

(a) 

 

(b) 

Fig. 1 Schematic representation of a series of train cars moving over a simple beam 

(a) conventional HSR train; (b) multi-body vehicle systems 
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2.1 Train-bridge model 

Figure 1 shows a train crossing a single-track simply supported box girder bridge 

For the analytical formulation of the train-bridge system, the train is modeled as a 

series of multi-body train cars, as shown in Fig. 1(b) and the bridge as a simply 

supported beam. Since the moving load models are widely adopted for dynamic 

analysis of railway bridges in most HSR codes [1,2], the effect of track irregularities 

on bridge vibrations is disregarded in this study [7-9]. To solve the dynamic 

interaction problem of the train-bridge system analytically, the following 

simplifications are admitted: 

(1) The bridge is modeled as a linear elastic Timoshenko beam with uniform cross 

section [10,11];  

(2) The multi-body train car shown in Fig. 1(b) is represented by the car body, two 

bogies and four axles, in which the primary and secondary suspension systems are 

modeled by a set of parallel spring-dashpot systems;  

(3) The moving interface between a moving wheel and the beam is regarded as a rigid 

contact point for conservative evaluation of train-induced bridge response; 

(4) The dynamic response of continuous tracks is similar to that of the bridge deck 

due to the strong constraints of the ballast layer [7-9]; 

(5) The influence of the ballasted or non-ballasted track has been taken into account 

only by means of its associated dead mass added to that of the bridge [9]; and 

(6) The short bridge needs to be long enough as to allow the rear and front bogies of 

two adjacent coaches to act on it simultaneously (see Fig. 1). 
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Fig. 2  Timoshenko vs. Bernoulli-Euler beam models 

 

The equations of motion for an elastic Timoshenko beam (see Fig. 2) including 

shear deformation and rotatory inertia can be expressed as [10,11] 

2 2

2 2

2 2

2 2

( , )

0

w

w w w
m c AG p x t

t t x x

w
I c AG EI

t t x x



    

    
        

             

       (2a,b)  

where the simply supported conditions imply 

 (0, ) ( , ) 0w t w L t  ,  '(0, ) '( , ) 0EI t EI L t         (3a,b) 

In Eqs. (2) and (3) ( ) ' ( ) / x     ,  = mass density of the beam,   = angle of 

rotation of the normal to the mid-surface of the beam, m = mass of the beam per unit 

length along the x-axis, ( wc , c ) = deflection and rotation associated damping 

coefficients, w(x,t) = vertical deflection, AG  = shear rigidity,   = shear 

coefficient, EI = flexural rigidity, L = length, and p(x,t) = loading function of the train 

cars moving on the bridge, in which the coach model is composed by one car-body, 

two bogies, and four wheel-sets (see Fig. 3).  
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Fig. 3 Multi-body system of a conventional coach model 

 

Considering the regularity of a raw of coaches in a train, the load function p(x,t) 

shown in Eq. (1) may be written as [9,12]:  

2 2
0

, , ,
1 1 1

( , ) ( )+ ( ) ( , ) ,
4

N

p w ki p w ki ki n
n k i

P
p x t k u t c u t x t

  

           
       (4) 

where an over-dot represents derivation with respect to time and the relative 

vertical displacement (uw,ki) of the i-th wheel-set of the k-th bogie with respect to 

the contact point of the beam is 

, , ,( ) ( 1) / 2 ( , ) ( )k
w ki b k b k ki kiu t u b w x t r x      k = 1,2    (5) 

and 

     , , , 1,2
( , ) / /ki n ki ki n ki n i
x t x x H t t L v H t t L v 


            (6) 

Here, , ,( , )b k b ku   are, respectively, the vertical displacement and pitching rotation at 

the midpoint of the k-th bogie beneath the train car (see Fig. 3), N = number of train 

cars, P0 = (Mv+2mb+4mw)g = total weight of the coach, Mv = mass of the car body, mb 

= mass of the bogie, mw = mass of the wheel-set, uw,ki = vertical displacement of the 

i-th wheelset in the k-th bogie, tki,n = time elapsed until the i-th wheelset in the k-th 

bogie of the n-th coach reaches the beam, and r(x) = rail roughness. 
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 Then the matrix equation of motion of the train car with the multi-body system 

can be written as [12] 

           (7) 

where Mc, Cc, and Kc denote the mass, damping, and stiffness matrices, and uc and fc 

stand for the displacement and force vectors of the coach model, respectively. All of 

the system matrices and vectors appearing in Eq. (7) have been given in the Appendix. 

 

2.2 Solution method 

 Let us consider the free vibration of the beam in Eq. (2). Elimination of   in Eq. 

(2) leads to the following fourth-order differential equation [10,11] 

 
2 4 4 2 4

2 4 2 2 4
1 0

w w E w I w
m EI I

t x G t x G t


 

              
     (8) 

For a simple beam with uniform cross-section, the vibration shape of the displacement 

may be expressed as [10] 

 ( , ) sin( / )ji t

jw x t C e j x L            (9) 

where Cj = amplitude of the j-th vibration mode of the beam and j = the j-th circular 

modal frequency of the beam. Substituting Eq. (9) into Eq. (8) yields the following 

characteristic equation of the beam free vibration: 

4 24 2

, ,

1 1 1 0j j

E j E j

E jr E jr

G L G L

  
   

                                
     (10) 

with /r I A  = radius of gyration and  2

, / /E j j L EI m   = the j-th modal 

frequency of a simply supported Bernoulli-Euler beam. For a short Timoshenko beam, 

the frequency ratio of ,( / )j E j   always becomes less than unity so that the first term 

in Eq. (10) may be ignored to yield the natural frequency as [11] 



 

9

,

1
E j

j

j








 with 

2

1j

j r E

L G




       
   

       (11) 

From the approximate frequency given by Eq. (11), the fourth derivative with respect 

to time (fourth term shown in Eq. (8)) is neglected. Under this assumption, Eq. (2) can 

be rearranged and simplified to the following expression: 

2 4 2 3 4

2 2 2 2 4
1 ( , )w

w E w w Er w w
m I c EI p x t

t G t x t G t x x


 
                          

 (12) 

As indicated in Eqs. (4), (6), and (12), the equations of motion are coupled with the 

train cars running over the bridge. For a simply supported beam, the dynamic response 

of the beam can be represented by the summation of sinusoidal functions as [12] 

 
1

( , ) ( ) sin( )j
j

j x
w x t q t

L




           (13) 

where qj(t) = generalized coordinate of the j-th shape function. Following the Galerkin 

method [12], the j-th generalized equation of motion for the simple beam is expressed 

as follows: 

2

2 2
0

, , ,
1 1 1

2

2 /
+ ( , )

(1 ) 4

j j j j j j

N

p w ki p w ki j j n ki
n k ij

q q q

PmL
k u c u t t
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 
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 

            
  

 


    (14) 

Here, j = modal damping, ( / )j j v L  = driving frequency, and  

     ( , ) sin ( ) /j j k j k k kt t t t H t t H t t L v                 (15) 

In the right hand side of Eq. (14), if the coupling terms ( , ,+p w ki p w kik u c u ) are neglected, 

the equation is reduced to that of a simple beam subject to sequential moving static 

forces. Let j  be zero in the denominator of Eq. (14), the generalized equation is 

then reduced to the Bernoulli-Euler beam equation. By solving the generalized 

equations of the beam in Eq. (14) coupled with the vehicle equations of Eq. (7) using 
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conventional direct integration methods [12], the VBI response of the train-bridge 

system can be computed.  

 From the viewpoint of flexural strength design, the bending moment is a key 

magnitude to assess the flexural resistance of a beam. Since the internal moment of a 

Timoshenko beam is related to the rotation angle ( , )x t of the cross section [9,11], 

the expression of the cross-sectional rotation angle ( , )x t  is not arbitrary but can be 

determined from Eq. (2b) by neglecting the inertia term, that is, 

 
2

2
0

w
AG EI

x x

         
          (16) 

Substituting Eq. (13) into Eq. (16) and solving the equation in terms of ( , )x t  yields 

 
1

( , ) ( ) cos( )j
j

j x
x t B t

L




    with 
2

/
( ) ( )

1 /( ) ( / )j j

j L
B t q t

E G j r L


 


 

 (17) 

Then the dynamic moment (Md) in the simply supported Timoshenko beam can be 

represented as [9] 

 
2

2
1

( / )
( , ) ( ) sin( )

1 /( ) ( / )d j
j

d EI j L j x
M x t EI q t

dx E G j r L L

  
 

 
      

    (18) 

By letting G    in the denominator in Eq. (18), one can obtain the dynamic 

bending moment of a simply supported Bernoulli-Euler beam. In this study, the 

dynamic response in terms of the bending moment will be used to evaluate the 

dynamic amplification phenomenon for a simple beam subject to moving train loads. 

 

3. Equivalent additional damping approach 

To account for VBI effects, ERRI D-214 and Eurocode 1 [1,2,5,6] proposed an 

ADM to reduce the bridge response when performing dynamic analyses of bridges 

using the moving load models [1,2]. However, the ADM may lead to an excessive 

response reduction for short bridges under resonance. As can be seen from Eq. 1(b), 

the damping value assumed for the structure applying the ADM is increased as a 

percentage of the span length. As stated in the introduction, the method was 
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developed by the ERRI-D214 [5] considering the ICE-2 and the Eurostar trains in the 

calibration process. The trains were schematized as a sequence of sprung mass units 

[8]. As for the bridges, a span range from 5 to 30 m was covered, considering a 

constant linear mass for each span, three damping ratios (0.5%, 1% and 2%) and 

different values of the flexural stiffness. The additional damping was obtained as the 

safe or lower bound estimate for each of the spans, and for this reason the ADM is 

conservative in the majority of the situations, underestimating the interaction benefit. 

On the other hand, due to the wide range of possible values that can take the 

mechanical parameters which define the train-bridge system, some case studies can be 

found in which the ADM leads to a non-conservative prediction of the bridge 

response [8]. 

To overcome the drawbacks indicated above, this study presents an alternative 

approach to formulate the additional structural damping, in which the key parameters 

that govern the additional damping needed for each scenario are detected by means of 

an analytical formulation. 

 

3.1 Modelling of the equivalent additional damping  

To simulate the VBI effect for a train traveling over a bridge in numerical 

computation, according to ERRI-D214 [5], a coach is decomposed into two 

equivalent identical single-DoF oscillators, each of which represents the vertical 

fundamental modal system of a half coach (see Fig. 4). With is consideration, the train 

is modeled as a series of sprung mass units moving on a bridge in the following 

theoretical formulation. 
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Fig. 4  Simplified model of equivalent sprung mass units of a conventional coach 

 

Let us consider the simplified oscillators in a coach shown in Fig. 4. By 

performing an eigenvalue analysis, the first vertical modal properties of the planar 

multi-body coach are obtained. The modal mass and stiffness of the half coach can be 

used to represent the structural properties of the equivalent single-DoF oscillator as 

follows: 

1

1

2
m  T

1 c 1φ M φ , 1

1

2
k  T

1 c 1φ K φ        (19a,b) 

Here, 1φ  stands for the first vertical modal shape of the 2D vehicle model. Let us 

denote the damping of the equivalent system as c1, the damping ratio of the equivalent 

suspension system can then be expressed as 

1 1 1 1/ 2v vc m  , with 1 1 1/v k m          (20) 

 

Fig. 5  Tuning effects of two running coaches on a short bridge 

 

When the front and rear equivalent single-DoF oscillators of two adjacent coaches are 

simultaneously traveling over the bridge, as represented in Fig. 5, the inertial effects 

of the masses and the energy dissipation through the suspension systems offer a 

tuning action originating a reduction of the bridge vibration levels [18].  
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For a simply supported beam, its dynamic displacement is mainly governed by 

its fundamental mode [7]. For this reason, let us consider Eqs. (4) and (5) that the 

beam displacement w(x, t) affecting the train loadings acting on the beam can be 

represented by the first mode of the simple beam. Then a modal system of equations 

can be obtained by combining the front and rear equivalent single-DoF oscillators of 

two adjacent coaches with the first vibration mode of the bridge (only this mode is 

considered to represent the dynamic behavior of the bridge in the analytical 

formulation). The resulting model is represented in Fig 6(a), where the structural 

properties of (M1, C1, K1) stand for the first modal properties of the mass, damping, 

stiffness of the bridge, respectively. A harmonic force 0
i tF e   is used to simulate the 

periodic excitation of a regular set of train loads acting on the bridge.  

 

      

(a)                               (b) 

Fig. 6  Mathematical models for the coach-bridge coupling system;  

(a) simplified model with two tuning units; (b) equivalent model including additional 

damping ca. 

 

The equation of motion of the model represented in Fig 6(a) can be expressed in a 

matrix form as 
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1 1 1 1 1

1 1 1 1 1

1 2 1 1 2

1 1 1 1 0
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k k u



        
             
            

      
         

         

 

 

 
    (21) 

For the first resonance of the system, that is, 1 1/K M  , the response amplitude 

U  of the main mass (M1) in steady state becomes 

1

0 1 1 1 1
2

1 1 1 1

2 ( 2 )
2

(1 ) 2
v

v

F r r i
U i

K r ri

 



 

     
        (22) 

where  1 1/(2 )C M  , 1 1 1/m M  = modal mass ratio, and 1 1 /vr  = frequency 

ratio of the coach-bridge system. As can be deduced after Eq. (22), the resonant 

response amplitude (U ) of the main mass is dominated by the three key parameters 

( 1 1 1, ,v r  ). In what follows, a simplified formula to calculate the additional structural 

damping ratio in terms of these non-dimensional parameters for MLM to account for 

VBI effect will be unveiled. 

 

3.2 Equivalent Additional Damping Model 

Train-induced resonance of the bridge at primary resonant speeds [7,8,13] is the 

main concern in this study. Let us consider the simplified MDOF system shown in Fig. 

6a for the VBI model. Once the main mass of the MDOF system is in resonance, the 

equivalent damping ( 1 aC c ) of the SDOF system (see Fig. 6b) can be adjusted to 

provide the same resonant amplitude of the main mass (see Fig. 6a). To incorporate 

the VBI effects in the MLM based on the above description, an additional damping ca 

is added to the structural damping constant C1 in the main system, that is, 1 aC c  
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(see Fig. 6(b)). Then the governing equation in the frequency domain of the new 

equivalent system becomes: 

2
1 1 1 0( ) ( )a effK M i C c U F               (23) 

Let us introduce the resonant condition of 1 1/K M    into Eq. (23). The 

response amplitude of the equivalent system including the additional damping 

becomes 

0 0 1

1

/

( ) 2( )eff
a a

F F K
U

i C c i 
 

  
         (24) 

where a = equivalent additional damping ratio of the bridge. If the amplitude U  

in Eq. (22) is equated to effU  in Eq. (24), the following expression for the additional 

damping ratio a  can be depicted 

1 1
1 1 2

1 1 1

2

(1 ) 2
v

a
v

r i
r

r r i

 



 

 
          (25) 

As indicated in Eq. (25), three key parameters: (1) the mass ratio, 1 , (2) the 

frequency ratio, r1, and (3) the effective suspension damping ratio, 1v , are identified 

to govern VBI effects in short bridges. The principal advantage of the proposed 

EADA method when corresponding to the ADM from Eurocode 1 is that, preserving a 

clear simplicity, it takes into account the main ratios of train-bridge system, while the 

ADM only depends on the bridge length. This is referred to as equivalent additional 

damping approach (EADA) in this study. Moreover, if the mass ratio 1  is fixed, Eq. 

(25) shows that stiff springs and heavy damping in the coach suspension system may 

lead to higher additional damping. By contrast, let the frequency ratio r1 become zero, 

the additional damping ratio in Eq. (25) vanishes and the VBI problems reduces to a 

constant moving load problem. 
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For a practical train car, the vertical frequency ratio r1 of a coach to the first 

bending frequency of a short bridge is considerably less than unity based on the strict 

requirements of riding comfort for high speed trains. By this approximation of 

2
1 1 1(1 ) 2 1vr r i  �  and following Eq. (25), a simplified additional damping ratio in 

may be obtained as 

2 2
1 1 1 1(2 )e vr r                (26) 

Obviously, Eq. (26) gives a simple form for railway bridge engineers to predict the 

additional damping ratio of a short bridge. Moreover, it provides physical insights into 

the ADM to determine a suitable amount of additional damping for the short bridge 

that can account for the VBI effects in MLM.  

 From the viewpoint of vibration control, the mass ratio ( 1 ) can be regarded as a 

tuning unit in reducing the vibration of the main mass while the frequency and vehicle 

damping ratio ( 1 1, vr  ) offer a vibration regulator to adjust the interaction between the 

main mass (M1) and the tuning masses (m1). The application of the equivalent 

additional damping to VBI effect on bridge vibrations will be conducted in the 

following parametric study. 

 

Table 1  Coach system parameters for ICE2 [8] 

Mv(t) mb(t) mw(t) Iv(tꞏm4) Ib(tꞏm4) D(m) d(m) b(m) 

33.93 2.37 1.73 1971 1.24 26.4 17.94 2.5 

ks(kN/m) cs(kNꞏs/m) kp(kN/m) cp(kNꞏs/m) 1v (%) 1vf (Hz) 1pf (Hz) m1(t) 

301 6 1598 20 3.82 0.64 0.75 17.24
 

Table 2  Coach system parameters for ETR500Y [8,18] 

Mv(t) mb(t) mw(t) Iv(tꞏm4) Ib(tꞏm4) D(m) d(m) b(m) 

34.23 2.76 1.583 1624 2.5 26.1 17.75 3 

ks(kN/m) cs(kNꞏs/m) kp(kN/m) cp(kNꞏs/m) 1v (%) 1vf (Hz) 1pf (Hz) m1(t) 

182.7 16.35 807.5 7.5 7.38 0.49 0.63 17.50
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Table 3  Properties of the bridge models. [8] 

Type L (m) m (t/m) EI (kN-m4) 1f (Hz) vr (km/h) M1 (t) 

S-15.84 15.84 20.97 4.11×107 8.76 833 166.1 

S-15.66 15.66 19.91 3.48×107 8.47 796 155.9 

 

Table 4 Prediction of additional damping ratios of the bridge models [8] 
Type 1

(m1/M1) 
r1 

(%) 
1v  

(%) 
a * 

(%) 
e ** 

(%) 

ICE-2/S-15.84 0.104 7.31 3.76 0.08 0.08 

ETR500Y/S-15.66 0.112 5.81 7.20 0.10 0.10 

* Eq. (25)   **Eq. (26) 
 

Table 5  Structual damping and additional damping ratios of the bridge models. 

Type  (%)  *(%) 
= +Total   (%) e (%) Total e    (%) 

S-15.84 1.29 0.65 1.94 0.08 1.37 

S-15.66 1.30 0.65 1.95 0.10 1.40 
 * Eq. (1b) 
 

4. Numerical verifications 

In order to demonstrate the capability and reliability of the equivalent additional 

damping ratio derived in Eq. (25) to account for the VBI effects in the MLM for short 

bridges, the response curves of maximum acceleration (amax) of the bridge vs. speed (v) 

are computed and compared with the corresponding results presented in Ref. [6]. Such 

a plot between amax and v is called “amax–v plot” in this study. The system properties of 

ICE-2 and ETR500Y trains and the short bridges evaluated are listed in Tables 1-3, 

respectively. Here, vr (= Df1) = the primary resonant speed of the bridge [13], f1 = 

bridge fundamental frequency, and (fv1, fp1) are the vertical and pitching frequencies of 

the planar coach [12]. Table 4 lists the equivalent additional damping ratios of 

( a , e ) obtained from Eqs. (24) and (25) for the bridges S-15.84 and S-15.66 with 

respect to the ICE-2 and the ETR500Y trains, respectively [8,18]. As shown in Table 
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4, the identical values of the additional damping ratios of ( a , e ) demonstrate that 

the presented simplified formula in Eq. (26) can be used to approximate the detailed 

formula in Eq. (25). Moreover, Table 5 lists the total structural damping ( ,Total Total  ) 

of the bridges computed by the ADM proposed by the Eurocode 1 and the EADA 

presented in Section 3, respectively.  

For the purpose of comparisons, the Bernoulli-Euler beam theory [8] is adopted 

for the beams listed in Table 3. The Newmark method with constant average 

acceleration, i.e., with  = 0.25 and  = 0.5 for its unconditional stability [19] is 

employed to solve the VBI problem, in which a small time step (0.0002 s) is used for 

computational accuracy. The ending time is tend = (L+ND)/v. Here, N = total number 

of coaches constituting the train (N = 10). 

Following the dynamic analysis of the MLM and VBI models based on the 

Bernoulli-Euler beam reduced from the Timoshenko beam theory formulated in 

Section 2, Figs. 7(a) and 7(b) show the amax–v plot for the short bridges under the 

action of ICE-2 and ETR500Y trains, respectively in a velocity range swept from 200 

to 450 km/h with an interval of 2.5 km/h. As indicated, the present resonant peaks at 

the sub-resonant speeds of (vr/2, vr/3) [14,15] are in agreement with those obtained 

from Domenech et al. [8]. Obviously, the numerical comparisons show that the 

proposed equivalent additional damping approach (EADA) can give consistent 

predictions of the order of VBI effects to be incorporated in the computations with 

MLM in order to obtain the response of the short bridges under resonance conditions. 

For illustration, the corresponding time history responses of midpoint displacement of 

the bridges subject to ICE2 and ETR500Y have been plotted in Figs. 8(a) and 8(b), 

respectively. The results obtained using the proposed method (MLM+EADA) are in 

agreement with those considering VBI effects. But the train-induced bridge response 
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computed by the MLM+ADM is significantly underestimated. 

 

 

(a) 

 

(b) 

Fig. 7  Comparison of amax –v plot for the short bridges:  
(a) the short bridge (S-15.84) subject to ICE2; (b) the short bridge (S-15.66) 

subject to ETR500Y  
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(a) 

 

(b) 

Fig. 8 Comparison of time history response of midpoint displacement of the bridges 
(a) the short bridge (S-15.84) subject to ICE2; (b) the short bridge (S-15.66) 

subject to ETR500Y  

 

Let us now observe the amax –v plot shown in Fig. 7(a). The figure shows that the 

sub-resonant peaks of the bridge S-15.66 subject to the ETR500Y train are almost 

identical for both of the MLM and the VBI models. In this case, the interaction 

benefit vanishes almost completely due to the low suspension stiffness of the 

ETR500Y coach, as listed in Table 2. As the fundamental frequency of the short 
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bridge is much higher than the frequency of the vehicle, a low tuning effect of the 

vehicle masses on the bridge vibration is induced on the vehicles with lower 

suspension stiffness. In the following section, the parametric study of VBI effects on 

the bridge response will be conducted using the proposed equivalent additional 

structural damping for the bridges shorter than 15m. 

 
Table 6  Properties of the Timoshkeno beam models. 

Type L  

(m) 

m 

 (t/m) 

EI  

(kN-m2) 

AG  

(kN) 
1f  

(Hz) 

M1  

(t) 

vr  (km/h) 

ICE-2 / ETR500Y 

S-12 12 17.5 1.98×107 2.30×107 11.25 105 1069/1057 

S-14 14 19.5 3.04×107 2.65×107 9.70 137 921/911 
 

 

Table 7  Parameters of EADA for ICE-2 and ETR500Y 

 1 (m1/M1) r1 (%) 

Type ICE-2 ETR500Y ICE-2 ETR500Y 

S-12 0.162 0.163 5.69 4.36 

S-14 0.127 0.125 6.60 5.05 
 

Table 8  Structual damping and additional damping ratios 

Type  (%)  *(%) = +Total   (%) e **(%) Total e    (%) 

S-12 1.56 0.48 2.04 0.09 (ICE-2) 
0.11 (ETR) 

1.65 (ICE-2) 
1.67 (ETR) 

S-14 1.42 0.62 2.04 0.08 (ICE-2) 
0.10 (ETR) 

1.50 (ICE-2) 
1.52 (ETR) 

*Eq. (1b) proposed by EN 1991-2,   **Eq. (26) 

 

5. Parametric studies 

Considering the effects of shear deformation and rotatory inertia for short bridges, 

the Timoshenko beam formulated in Section 2.1 is employed in this section to 

investigate the dynamic behaviour of short-span bridges in the following examples. 

For the sake of comparison in the parametric studies, four moving load models (MLM, 

VBI, MLM+ADM, MLM+EADA) and two short bridges (S-12, S-14) are considered, 
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respectively. The properties of the two short bridges S-12 and S-14 are listed in Table 

6. The presented data correspond to empirical values of PC bridges included in 

references [16,17]. Let us consider the same ICE-2 and ETR500Y train models given 

in the previous section. The corresponding primary resonant speeds (vr) for the 

bridges S-12 and S-14 are listed in Table 6. As indicated, the primary resonant speeds 

are much higher than the operation speeds in current HSR systems. However 

sub-resonance situations will be induced on the railway bridge as well if the train 

speed coincides with any of the sub-resonant conditions, i.e., 
2,3,4...

/r n
v n


. Here, n 

represents the number of complete oscillation cycles experienced by the beam during 

the passage of two adjacent loads [14,15]. Thus, the velocity-range swept from 100 to 

420 km/h at intervals of 2.5 km/h will be considered in the following examples. 

In order to compute the equivalent additional damping ratio e  in Eq. (26) for 

the short bridges (S-12, S-14), the parameters ( 1 1, r ) required for computing the 

equivalent additional damping ratios have been listed in Table 7. Based on the 

additional damping ratios shown in Eqs. (1b) and (26), the total structural damping 

( ,Total Total  ) of the bridges (S-12, S-14) calculated by the ADM and the herein 

proposed EADA for the ICE-2 and the ETR500Y trains are listed in Table 8. In the 

following examples, the maximum acceleration and bending moment in the beams 

due to the passage of the high speed trains are presented. 

 

5.1 VBI effects on the maximum acceleration of the beams 

Since the maximum vertical acceleration on a railway bridge deck can lead to 

premature ballast destabilization of the track system, the acceleration response of the 

bridge deck can be regarded as an indicator of train traffic safety and it is considered 

in this example. Figures 9-12 show the amax–v plot of the two short bridges subject to 
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the ICE-2 and ETR500Y trains. As indicated, the proposed MLM+EADA method 

provides a consistent prediction for MLM to account for VBI effect on the bridge 

response under resonance conditions. In the aforementioned figures, the symbol “#” 

denotes that the second bending mode of the bridge was excited by the train loads 

[14], and the symbol “  ” represents sub-resonant speeds which coincide with 

cancellation conditions, and therefore are not detectable [20,21]. From the numerical 

comparisons shown in Section 4 [16], it can be detected that the ADM [2] leads to a 

considerable response reduction at sub-resonant speeds in the amax–v plots (see Figs. 

9-12) due to overestimation of additional damping (see Table 8). Compared to the 

amax–v plots in Figs. 7 and 8, the distribution of sub-resonant peaks in the amax–v plots 

becomes denser. This is related to the higher value of the fundamental frequency of 

the bridges shorter than 15 m under consideration. This fact indicates that a short HSR 

bridge will experience multiple sub-resonances due to the train passage in operation 

speeds. This point should be incorporated in HSR design phase to evaluate the impact 

effect of a train moving on a short bridge. 

 

 

Fig. 9  amax –v plot for the short bridge (S-12) subject to ICE2 
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Fig. 10  amax –v plot for the short bridge (S-14) subject to ICE2 

 

As described in Section 4, the interaction benefit in the case study of ETR500Y 

vanishes almost completely due to the low suspension stiffness of its coaches. The 

same dynamic phenomena may be also observed in Figs. 11 and 12, respectively. 

Thus for the coaches with lower suspension stiffness, the ADM will overestimate the 

VBI benefits in the case of short bridges. In the following section, a parametric 

analysis is conducted focusing on the dynamic internal bending moment amplification 

in the structures. 

 

 

Fig. 11  amax –v plot for the short bridge (S-12) subject to ETR500Y 
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Fig. 12  amax –v plot for the short bridge (S-14) subject to ETR500Y 

 

5.2 VBI effect on dynamic amplification of bending moment in the beams 

 In bridge design practice, the dynamic amplification factor (DAF) is usually used 

to account for the dynamic effect on the bridge response resulting from the passage of 

moving vehicles. In this study, the DAF of the bending moment in a simple beam is 

denoted as DAFM and defined as [22]: 

 max

max

( / 2, )

( / 2)
d

M

s

M L t
DAF

M L
                     (27) 

where Md(L/2,t) stands for the dynamic bending moment at mid-span of the beam, as 

shown in Eq. (18), and 
max

( / 2, )dM L t  and max( / 2)sM L  denote the maximum 

dynamic and static bending moment at mid-span of the beam caused by the moving 

train loads, respectively.  

 Figures 13-16 show the response curves of the DAFM against the train speed (v) 

for the ICE2 and the ETR500Y trains moving on the S-12 and S-14 bridges, 

respectively. Here, the relation between DAFM and v is called “DAFM – v plot”. As 

expected, the proposed MLM+EADA can provide consistent predictions for MLM to 

account for VBI effect on the DAFM–v plots in resonance conditions. The ADM [2] 

still underestimates the response peaks at the higher sub-resonant speeds of (vr/3, vr/4) 
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due to the overestimated additional damping (  ), as shown in Table 8.  

 

 

Fig. 13 DAFM –v plot for the short bridge (S-12) subject to ICE2 

 

 

Fig. 14 DAFM –v plot for the short bridge (S-14) subject to ICE2 

  

 Compared to the response curves in the DAFM–v plots depicted in Figs. 13 and 

14 for the S-12 and S-14 bridges subject to the ICE-2 train, the sub-resonant peaks 

shown in Figs. 15 and 16 due to the ETR500Y train are almost identical for both of 

the MLM and the VBI models. This fact verifies that the interaction benefits would 

reduce or vanish on train-induced resonance of short bridges if low suspension 

stiffness is considered in a coach.  
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Fig. 15 DAFM –v plot for the short bridge (S-12) subject to ETR500Y 

 

 

Fig. 16 DAFM –v plot for the short bridge (S-14) subject to ETR00Y 

  

 From the parametric study conducted herein, it can be concluded that the 

proposed equivalent additional damping ratio analytical expression based on the 

non-dimensional parameters ( 1 1 1, ,v r  ) of the equivalent VBI system may serve as a 

reasonable estimation for the additional damping in short bridges, providing bridge 

engineers an alternative physical insight into the tuning effect of VBI dynamics on 

train-bridge systems. 
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6. Conclusions 

 Due to the tuning effects of the suspension systems of trains traveling over 

railway bridges, the response of short bridges is reduced when the VBI effects are 

taken into account. To account for the VBI effects when the bridge response is 

analyzed using MLM, the ADM included in Eurocode 1 prescribes an additional 

damping that, in the case of short bridges, may lead to an excessive reduction of the 

maximum acceleration of the bridges under resonance conditions. For this reason, an 

alternative analytical approach based on an equivalent VBI model under resonant 

excitations is presented in this investigation with the aim of providing an accurate 

prediction of the interaction benefit. Here, the tuning model based on the first vertical 

vibration mode of the coach is considered for the equivalent VBI model. With the 

analytical model of the coach-bridge system, three non-dimensional key parameters 

( 1 1 1, ,v r  ) dominating the additional damping problem are subsequently identified. 

Depending on the values of these three ratios the interaction between the vehicles and 

the structure is more or less severe, and so is the level of additional damping that 

should be included in a model that just simulates the vehicles as constant loads. 

The numerical investigations indicate that the proposed equivalent additional 

damping approach is a simple and feasible method and has enough accuracy for the 

MLM to account for VBI effect on short bridges when performing moving–load 

analyses. The following conclusions can be extracted from the numerical 

demonstrations and parametric studies conducted herein. 

(1) As the coach suspension stiffness tends to a small value, the VBI benefits on the 

train induced resonant response of short bridges vanish. This is due to the fact that 

a low suspension stiffness may produce an isolating action and a reduction of the 

tuning effects of the vehicle masses on the beam vibration. 
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(2) The sub-resonance peaks in the amax–v plot (for maximum acceleration) of the 

beam will become denser with the reduction of the span lengths. Excessive 

vibrations could create negative conditions for ballast stabilization and train traffic 

safety for ballasted bridges. 

(3) Since a short bridge presents much higher primary resonant speeds, a denser 

distribution of sub-resonance peaks in lower speed ranges should be expected on 

the DAFM–v plot for maximum bending moment. The influence of multiple 

sub-resonant conditions on short bridges should be taken into account in HSR 

design phases to evaluate the impact effect of a train moving on a short bridge at 

operation speeds. 

(4) The present study can be regarded as a preliminary investigation of ADM on 

response analysis of short-span simply supported railway bridges. Following the 

present analytical approach, a further study can be carried out for more 

complicated types of short-span bridges, such as plate-frame bridges, using a 

refined bridge model.   
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Appendix: 

With reference to Fig. 3, the following symbols are used: D = length of the car 

body, d = axle interval between the two bogies, b = bogie length, (Mv, Iv) = lumped 

mass and pitching inertia of the car body, (mb, Ib) = lumped mass and pitching inertia 

of each bogie, mw = mass of each wheelset, (kp, cp) = primary suspension stiffness and 

damping in each bogie, (ks, cs) = secondary suspension stiffness and damping to 

support the car body, (uv, v ) = vertical displacement and pitching rotation at 

midpoint of the car body, and (ubj, bj ) = vertical displacement and pitching rotation 

at midpoint of the j-th bogie. 
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p p

p p

k u x t u x t c u x t u x t

k b u x t u x t c b u x t u x t

k u x t u x t c u x t u x t

k b u x t u x t c b u x t u x t

 
 
 
       
  
 

   

cf
 

 

 

  / 2

 
 
 
  
 
 
 
 
  

  (A4) 

Here xij stands for the position of the i-th wheel-set in the j-th bogie on the beam. 

 




