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SUPPLEMENTARY TEXTS 

 

Text SM1. Details of reagents used in the work 

(Information taken from (Botero-Coy et al., 2018)). 

Pharmaceutical reference standards were acquired from Sigma-Aldrich, LGC 

Promochem, Toronto Research Chemicals, Across Organics, Bayer Hispania, and 

Aventis Pharma. All reference standards were of 93% purity or higher. Individual 

standard stock solutions were prepared at concentrations between 50 at 500 mg/L. 

Intermediate solutions of 10 mg/L were prepared by dilution with methanol. Mixed 

working solutions containing all analytes at the μg/L level were prepared weekly from 

intermediate solutions by appropriate dilutions with water and were used for preparation 

of the aqueous standard calibrations and for spiking samples used as quality control. 

Isotopically labelled internal standard (ILIS) acetaminophen-d4, diclofenac-d4, 

valsartan-d8, erythromycin-13C-d3, irbesartan-d6, venlafaxine-d6, carbamazepine 

10,11-epoxide-d10were from CDN Isotopes (Quebec, Canada); sulfamethoxazole-

13C6, azithromycin-d3, ciprofloxacin-d8, norfloxacin-d5 and trimethoprim-13C3 were 

from Cambridge Isotope Laboratories (Andover, MA, USA). Individual ILIS stock 

solutions between 50 and 500 mg/L were prepared in MeOH. Intermediate mix ILIS 

between 1 and 0.1 mg/L were prepared by dilution with MeOH. A working mix ILIS 

solution at 2 μg/L was prepared in MeOH for its use in the analysis of samples. All 

solutions were stored in amber glass bottles at −20 °C. HPLC-grade methanol (MeOH), 

HPLC-grade acetonitrile (ACN), formic acid (HCOOH, content N98%) and ammonium 

acetate (NH4AC, reagent grade), were purchased from Scharlab (Barcelona, Spain). 



HPLC-grade water was obtained from distilled water that was passed through a Milli-Q 

water purification system (Millipore, Bedford, MA, USA). 
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Text SM2. Method for H2O2 quantification 

Hydrogen peroxide accumulation can be determined by iodometry. An aliquot of 600 μL 

from the sonochemical reactor is added to a quartz cell (1 cm pathlength) containing 

1350 μL of potassium iodide (0.1 M) and 50 μL of ammonium heptamolybdate (0.01 M, 

as catalyst of reaction). After 5 min of reaction, the absorbance at 350 nm was 

measured in a spectrophotometer to determine the I3
- (which has a molar absorptivity: 

26400 M-1 cm-1) production (Eq. SM1-SM2) using the Beer-Lambert law. Then, 

according to the and stoichiometry of the reactions the hydrogen peroxide concentration 

can be established (Eq. SM3). 

 

H2O2 + 2KI → 2KOH + I2                                                                                           (SM1) 

I2 + I- → I3
-                                                                                                                  (SM2) 

[H2O2]: (Absorbance at 350 nm/26400M-1) * (2000/600)                                          (SM3) 

 

  



Text SM3. Determination of role of suspended solids on valsartan degradation 

To determine the role of suspended solids on the sonochemical process, the solids from 

effluent sample were removed by centrifugation at 2800 rpm during 10 min using a 

Centaur 2 centrifuge. The model substance (valsartan) was spiked to both waters with 

and without solids; subsequently, the sonochemical degradation was carried out. Then, 

the valsartan removal from the two waters (with and without solids) by the ultrasound 

process was compared (see Figure SM3). 

  



Text SM4. Absorption of UVA light by the matrix components 

The UVA lamp used for the sono-photo-Fenton process emitted light mainly at 365 nm. 

Then, to analyze the interfering effects of matrix components, specially the suspended 

solid, the absorbance of the effluent with and without solids (removed by centrifugation 

as described in Text SM3) was measured, which values are summarized in the 

following table: 

Effluent With solids Without solids 

Absorbance at 365 nm 0.227 0.164 

    

It can be noted that the effluent with solids presented low UVA absorbance (0.227) and 

this had little difference with the water without solids (0.164), which suggested a low 

inference by the solids in matrix toward the UVA light used in the processes. 

  



SUPPLEMENTARY FIGURES 

 

 

 

Figure SM1. Reactor design for combinations of ultrasound with Fenton Based 

systems. 
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Figure SM2. Pharmaceuticals removal by El salitre MWTP. 

Adapted from reference (Botero-Coy et al., 2018). 
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Figure SM3. Comparison of valsartan (VAL) degradation in both effluents (with and 

without solids) and distilled water. Conditions: Actual power density: 88.0 W L-1, f: 375 

kHz, V: 300 mL, [Valsartan]:40 µM, pHinitial in wastewater: 7.1±0.1. pHinitial in distilled water :6.5. 
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Figure SM4. Soluble iron in the effluent for different systems. Effluent and iron (II) 

(Fe2+); effluent, iron (II) and UVA (Fe2+/UVA); effluent, iron (II), UVA and oxalic acid 

(Fe2+/UVA/Oxalic acid). Initial conditions= [Fe2+]: 5 mg L-1, [Oxalic acid]: 2 mg L-1. 
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Figure SM5. Control experiments for valsartan (VAL) degradation in distilled water. 

 

From Figure SM5 can be noted that the Fe2+ or UVA light individually had no degrading 

effect on valsartan (VAL), demonstrating that these components take relevance only in 

the combination with ultrasound. 
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MS/MS SUPPLEMENTARY SPECTRA FOR THE SONODEGRADATION PRODUCTS 

OF VALSARTAN 

In order to elucidate the sonodegradation products of valsartan, an exhaustive study of 

the fragmentation pathway of the parent compounds was required. The MS/MS 

spectrum (Figure SM6) of valsartan (C24H30N5O3 expressed as protonated molecule) at 

10 eV showed initial losses of water (m/z 418) and N2 (m/z 408). At 20 eV, minor 

product ions at m/z 362 (obtained after consecutive losses of N2 and formic acid) and at 

m/z 352 (corresponding to the loss of the pentanal chain) were observed. The most 

important product ions were found at m/z 235 (corresponding to the 5-(4'-methyl-[1,1'-

biphenyl]-2-yl)-1H-tetrazole group), 207 (corresponding to the loss of N2 from 235) and 

291 (obtained after the loss of the 2-methylpropan-1-imine from m/z 362). A product ion 

at m/z 306 was also observed, corresponding to the loss of formic acid from m/z 352. At 

higher collision energies, product ions at m/z 190 and 180 were found, corresponding to 

losses of hydrogen cyanide acid and ammonia from m/z 207, respectively. The 

proposed fragmentation pathway for the valsartan parent compound can be seen in 

Figure SM7. 

Three chromatographic peaks were observed at 10.61 min (DP1), 9.96 (DP2) and 9.02 

(DP3), all of them with accurate masses of m/z 452.2312, 452.2308 and 452.2316, 

corresponding to an elemental composition of C24H30N5O4, expressed as protonated 

molecule (mass errors ranging from 2.2. to 4.0 ppm). These would correspond to 

hydroxylations of the parent compound. In order to locate the hydroxylation position, the 

MS/MS spectra were carefully revised. 



DP1 presented product ions at m/z 251 and 223 (shift of 16 respect to the 235 and 207 

of the parent compound) (Figure SM8), indicating that the hydroxylation has occurred in 

the 5-(4'-methyl-[1,1'-biphenyl]-2-yl)-1H-tetrazole group. However, the product ion at 

180 remained unaltered. Therefore, the hydroxyl group was located in the amine group 

of the tetrazole. 

DP2 also presented the product ions at m/z 251 and 223, but also at 196 (a shift of 16 

amu respect to the 180) (Figure SM9), therefore indicating that the hydroxyl group was 

located in any of the two aromatic rings. 

DP3 instead presented product ions at m/z 235, 207, 180 and 190 (Figure SM10), likely 

to the parent compound, therefore indicating that the hydroxylation has not occurred in 

this part of the molecule. Moreover, the product ion at m/z 306 was also observed, 

therefore indicating that the valine group remained unaltered. Therefore, the 

hydroxylation should occur in the pentanamide moiety. 

Regarding DP4 (9.05 min), an accurate mass of 450.2152 was obtained. This would 

correspond to an elemental composition C24H28N5O4, this is, to the reduction of one of 

the hydroxylated DPs. Product ions at m/z 305 (instead of 307), 235, 207, 190 and 180 

were observed (Figure SM11). 

Finally, DP5 was found at 5.26 min, and its elemental composition matched with an 

elemental composition of C19H22N5O2 (1.4 ppm mass error). This was in accordance 

with the N-dealkylation of the pentanamide group from the parent compound. Product 

ions at m/z 235, 207, 190 and 180 (Figure SM12) remained unaltered. 

 



 

 

Figure SM6. MS/MS spectra at different collision energies (10, 20, 30 and 40 eV, from bottom to top) for valsartan  
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Figure SM7. Proposed fragmentation pathway for valsartan parent compound  
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Figure SM8. MS/MS spectra at different collision energies (10, 20, 30 and 40 eV, from bottom to top) for DP1 
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Figure SM9. MS/MS spectra at different collision energies (10, 20, 30 and 40 eV, from bottom to top) for DP2 
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Figure SM10. MS/MS spectra at different collision energies (10, 20, 30 and 40 eV, from bottom to top) for DP3 
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Figure SM11. MS/MS spectra at different collision energies (10, 20, 30 and 40 eV, from bottom to top) for DP4 
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Figure SM12. MS/MS spectra at different collision energies (10, 20, 30 and 40 eV, from bottom to top) for DP5 
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SUPPLEMENTARY TABLES 

 

Table SM1. Basic global parameters of the effluent from El salitre MWTP. 

Parameter COD (mg O2 L
-1) TOC (mg C L-1) pH Suspended solids (mg L-1) Absorbance at 365 nm 

Value 153.96 40.11 7.48 90.01 0.227 

 

  



Table SM2. Changes of pH during combined processes. 

Pollutants in the effluent 

System Sonochemistry Sono-Fenton 
Sono-photo-

Fenton 

Sono-photo-

Fenton/oxalic 

acid 

Initial pH 7.48 

Final pH 7.52 7.51 7.54 7.52 

Valsartan in distilled water 

System Sonochemistry Sono-Fenton 
Sono-photo-

Fenton 

Sono-photo-

Fenton/oxalic 

acid 

Initial pH 6.5 

Final pH 3.95 3.79 3.77 6.2 

 


