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Abstract—Photovoltaic (PV) power production ramp-rate con-4
trol is getting more and more important in weak electric power5
systems, in which quick and significant power fluctuations can af-6
fect the stability of the system. This can be achieved by means of the7
integration of batteries into large PV plants but such an operation8
involves an aggressive environment for the ageing of the batteries.9
This paper presents an evaluation of this ageing by means of the an-10
nual simulations of a large PV power plant using actual irradiance11
data. This is done for different battery sizes used under various de-12
grees of limitation in the power ramp-rate variation. The levelized13
cost of storage is calculated for each of the cases considered.14

Index Terms—Photovoltaic power plants with energy storage,15
ramp-rate control, batteries, ageing analysis.16

I. INTRODUCTION17

The power fluctuations experienced by Photovoltaic (PV)18

power plants as a consequence of the low, fast-moving clouds19

over them is one of the most important challenges for the mas-20

sive integration of this technology in the electric power system.21

Since clouds’ impacts are highly localized effects, this handicap22

has been typically minimized thanks to the general dispersion of23

PV generators in a wide area region [1]. However, the growing24

development and penetration of large scale PV installations in25

weak or isolated power grids is posing new challenges for the26

corresponding electric power system operators. The challenges27

are mainly associated to the grid stability because these systems28

are usually not very vast. Then, when a significant part of the29

energy production is highly variable, the system operators have30

to define or impose certain restrictions to the stochasticity of the31

PV production. This is being faced by certain operators such32

as the Puerto Rico Electric Power Authority (PREPA, [2]), the33

Hawaiian Electric Company (HECO, [3]), or the Faroe Islands34

utility (SEV, [4]) all of them good examples of weak grids. The35

solution being defined is based in the introduction of certain36

ramp-rate power limitations that restrict the variation of the PV37

production over short-periods of time. This can be achieved38

with the integration in the PV power plants of some type of en-39
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Fig. 1. Scheme of the PV plant with batteries for power ramp-rate control.

ergy storage system, mainly batteries, Fig. 1. Various proposals 40

are available in the literature that analyze their use under this 41

ramp-rate power control strategy [5]–[10], and even the use of 42

ultracapacitors for it [11]. Similar proposals are done by other 43

authors for wind power plants with storage [12]–[15]. 44

Therefore, it is the role of the energy storage system (batter- 45

ies) operating within the renewable energy source power plant 46

to cope with the power difference during the periods in which 47

the PV panels have stochastically and rapidly varied their pro- 48

duction and must inject into the grid a given limited production 49

while the PV panels produce differently. In this way, the ramp- 50

rate control achieved thanks to the introduction of batteries in a 51

renewable energy power plant implies a more or less continu- 52

ous mode of operation in which the batteries are being charged 53

and discharged over and over. This involves ageing the batteries 54

accordingly. Multiple authors have analyzed the ageing mech- 55

anisms associated to the batteries under different stress factors 56

[16]–[21], and propose different types of models to evaluate it 57

and perform some type of prognosis [22]–[27]. 58

Although different authors have faced the PV power ramp- 59

rate control strategy using batteries, it is important to highlight 60

that these mainly focus on the definition of new control algo- 61

rithms that usually pursue either the minimization of the size of 62

the batteries (energy capacity requirements) or the optimized op- 63

eration of the PV plant with storage. Moreover, the references 64

cited for battery ageing are mainly associated to the electric 65

vehicle industry. Therefore, none of the previous works has in- 66

vestigated the impact on the ageing of the batteries produced 67

by the power ramp-rate limitation strategy when implemented 68

in a PV power plant. This work presents such an evaluation by 69
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Fig. 2. Power production of the 10 MW PV plant with batteries under different
degrees of ramp-rate limitation (defined in % in the legend).

means of annual simulations of a large PV power plant (10 MW)70

using actual irradiance data. This is done for different sizes of71

batteries used under various degrees of limitation in the power72

ramp-rate variation. The Levelized Cost of Storage (LCOS) is73

calculated for each of the combinations.74

Then, after discussing about the potential type of Li-ion bat-75

tery to be used in such an application in Section II, and the stress76

factors that can affect their lifetime in Section III, the current77

work analyzes in Sections IV and V the ageing experienced by78

the batteries taking into account both calendar and cycle ageing79

models. The paper concludes with the estimation of the LCOS80

and some final remarks.81

II. PV POWER RAMP-RATE CONTROL WITH BATTERIES82

Due to the inherent fluctuation of the PV power production83

associated to the transient clouds, which can achieve values be-84

yond 90% and 70% for 1 MW and 10 MW PV plants in one85

single minute, respectively [28], some electric system operators86

controlling weak power grids are starting to impose some limita-87

tions to the production variability of this renewable technology.88

As already introduced in the previous section, this is a well89

stablished and known control proposal defined in various elec-90

tric codes and implemented in actual systems to avoid stability91

problems. Also in the literature, different authors have analyzed92

this solution for PV plants and defined some variations intended93

to: minimize the size of the batteries involved [6], [7], [10], [28],94

to perform some supervisory control over the operation of the95

combined “PV + storage” plants [8], or to optimize the size of96

the potential second-life batteries to be used with this goal [9].97

We analyze in our work four different degrees of power ramp-98

rate variation, the cases in which the PV power plant production99

with batteries is allowed to modify its production every minute100

no more than 1%, 2%, 5%, and 10%, with regard to its PV101

rated power, Fig. 2. These limitation levels correspond to the102

usual control levels defined in the grid codes that already de-103

mand it (mostly 10%) and to potential more restrictive levels104

(<10%) to be fixed in the coming future. In this sense, the lower105

the power variation allowed (in %), the higher the degree of106

filtering introduced by the batteries and, accordingly, the deeper 107

the charge-and-discharge cycling pattern experienced with the 108

consequent ageing. The depth-of-discharge of the cycles will 109

be also function of the battery energy capacity, which will be 110

analyzed in between 1 and 10 MWh for the 10 MW rated power 111

PV plant under consideration. These energy capacity values are 112

based on the characteristics of the existing installations. 113

Regarding the type of batteries, up to six different families 114

are commercialized nowadays: Lithium Cobalt Oxide (LCO or 115

LiCoO2), Lithium Iron Phosphate (LFP or LiFePO4), Lithium 116

Nickel Cobalt Aluminium Oxide (NCA or LiNiCoAlO2), 117

Lithium Manganese Oxide (LMO or LiMn2O4), Lithium 118

Nickel Manganese Cobalt Oxide (NMC or LiNiMnCoO2), and 119

Lithium Titanate (LTO or Li4Ti5O12). These mainly differ 120

in the material constituting the cathode. Only the LTO family 121

associates its name to the anode’s material, being in all the 122

cases the second electrode made of graphite. The operational 123

characteristics also differ being NCA the one with highest 124

specific energy; however, LFP and LTO are superior in terms 125

of specific power, cyclability, and thermal stability, what makes 126

them appropriate for intensive power demanding applications 127

such as ramp-rate control. LTO also presents the best life span 128

although it is the most expensive technology. In all, since space 129

is not a limiting parameter for this type of installation and 130

price is lower than for other lithium types, LFP is the selected 131

chemistry for our analysis. Note in this regard that it is being 132

developed and installed by companies such as SAFT Batteries 133

for ramp-rate control applications in wind farms [29]. 134

III. BATTERY AGEING STRESS FACTORS AND MODEL 135

The ageing phenomenon of Li-ion based batteries has been 136

extensively analyzed in the literature in the last years due to its 137

importance not only for the renewables’ integration expansion 138

but mainly for the electric vehicle continuously increasing in- 139

dustry. In this sense, the multiple ageing models and analyses 140

performed have been classified by different authors [30]–[33] 141

into 2 main groups: performance-based lifetime models, and 142

post-processing models. The way to analyse the ageing dif- 143

fers in the different works, however, the resulting stress factors 144

are quite coherent among publications for the various battery 145

chemistries analysed. 146

A. Battery Ageing Stress Factors 147

The identified stress factors that influence the ageing of 148

Li-ion batteries can be mainly listed as: time, temperature, state- 149

of-charge (SOC) during rest, number of cycles experienced, 150

depth-of-discharge (DoD) of the cycles, average voltage of the 151

cycles, and charge/discharge current rate. 152

Their corresponding influence depends on the type of battery 153

and on the design under consideration and is usually studied 154

according to two types of mechanism: calendar and cycle ageing. 155

Then, while the calendar ageing is usually associated to the 156

capacity reduction of the batteries as a function of time without 157

being cycled (only by being connected in hot stand-by), the 158

cycle ageing is associated to their continuous use (by being 159

charged and discharged). In this sense and for the case of Li-ion 160
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batteries, the calendar ageing gets generally more significant161

with time as temperature and SOC are higher [16]–[20]. The162

relation with temperature is normally modelled by means of the163

Arrhenius equation (1) while the dependence over the voltage164

(or SOC) is generally less important and follows a polynomial165

or even linear relation, depending on the lithium battery type.166

k (t) = A × e−
E a
R T (1)

With regard to the cycle ageing, this is highly influenced by167

the number of cycles experienced [22]. The DoD of the cycles168

is also important, having a lower ageing effect with shallower169

depth cycles [17], [22], as it is important to perform the cycles170

as close as possible to the 50% of SOC to minimize the age-171

ing impact due to the average voltage during the cycling [18],172

[23]–[26]. Finally, also the temperature significantly affects the173

cycle ageing [21], [25]–[27] what forces most battery manu-174

facturers to advice their use under refrigerated conditions not175

much above 25 °C. After all, it can be concluded that both ef-176

fects (calendar and cycle) are important and dependent on the177

combination and degree of the stress factors [16]. Therefore,178

none of them can be disregarded in a thorough full research.179

B. Ageing Model Used for Analysis180

As discussed previously, due to the application under study181

(power rate-ramp control for a large PV plant), the use of182

LFP batteries is analysed. Therefore, among the multiple Li-ion183

equivalent model proposals, only some of those focused on this184

chemistry have been considered in depth [18], [19], [23], [25],185

[34]–[38]. And among them, since some have been developed186

based on electric vehicle (EV) standard drive cycle profiles, only187

those from Stroe [18], Swierczynski [23], and Weißhar [38] are188

considered appropriate for our analysis. These authors propose189

different ageing models for LFP batteries combined with renew-190

able energy plants. However, the latter applies them for small191

domestic installations. Therefore, due to the similarity with the192

type of application analysed in Stroe [18] for wind power plants,193

the present work uses the model proposed by this author to anal-194

yse how LFP batteries are going to lose capacity over time when195

used for power rate-ramp control in a large PV plant. This model196

is based on the following semi-empirical equations defined for197

both capacity fades (in %) associated respectively to the calendar198

and the cycle ageing:199

Cf ade,cal (t, T ) = αt × eβt ·T × tn (2)

Cf ade,cyc (NC, T ) = αN C × eβN C ·T × NCn (3)

Where t is the time in months, T is the temperature in Kelvin,200

and NC represents the number of equivalent reference cy-201

cles. The coefficients in these equations are αt = 3.087 · 10−7 ,202

αN C = 6.87 · 10−5, βt = 0.05146, βN C = 0.027, and n = 0.5,203

for both equations. Note that the C-rate stress factor influence204

is not included in the model because C-rates below 4C are205

considered in the application analysed in our work. Under these206

operating conditions, the C-rate influence can be neglected [39].207

Fig. 3. Structure of the methodology implemented to analyze the LFP battery
capacity fade along the ramp-rate control operation.

Fig. 4. State-of-charge evolution of the 5 MW battery under different degrees
of ramp-rate limitation for the day represented in Fig. 2.

IV. ANALYSIS OF THE AGEING UNDER RAMP-RATE CONTROL 208

This analysis is based on the ageing model introduced in 209

the previous section which is combined in this work with the 210

rainflow-counting (RFC) algorithm [40]–[42] and the Palmgren- 211

Miner rule [22], [43]–[45]. In this way, the proposed hybrid 212

methodology provides an estimation of the lifetime expectancy 213

of the batteries under the power ramp-rate control regime of 214

operation. 215

A. Methodology Implemented for the Ageing Prognosis 216

The methodology developed to analyze the ageing is summa- 217

rized in Fig. 3, where the scheme interrelating the inputs, the 218

calculation/simulation steps, and the final output is shown. 219

Then, the proposed analysis model presents various stages 220

that can be clearly observed. First, the evolution of the SOC of 221

the battery experienced along one whole year operating under 222

the ramp-rate control regime is generated. As can be observed 223

in Fig. 4 for the day whose power exchanges are represented 224

in Fig. 2, this is done for four different degrees of ramp rate 225

control limitation (1%/min, 2%/min, 5%/min, and 10%/min), 226

introducing in all the cases a programmed SOC recovery of its 227

initial value (50%) after the battery daily operation. 228

The analysis in this work is also performed for various battery 229

sizes (from 1 MWh up to 10 MWh), for two extreme potential 230

roundtrip efficiencies of the batteries (85%, and 92%), and for 231

two different operating temperatures (25 °C and 35 °C), at which 232

the batteries are considered to be refrigerated on-site. The bat- 233

tery exchange power capacity is always considered the same and 234

defined as 5 MW, according to recommendations from SAFT 235

for this specific application. 236
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Fig. 5. Adaptation performed by the RFC MATLAB function to the SOC
evolution to account the number of half cycles and their DoD.

Fig. 6. Cycles to failure vs. DoD curve for LFP batteries from SAFT.

Then, following the scheme, the SOC evolution curve is intro-237

duced into the RFC algorithm which processes the SOC curve238

as represented in Fig. 5. This returns the number of cycles expe-239

rienced by the battery at varying DoDs, as well as the medium240

voltage for each partial charge/discharge cycle.241

This information is then handled by the Palmgren-Miner rule242

(4) which compares the partial cycling histogram provided by243

the RFC with the maximum number of cycles that the battery244

could perform at each single DoD. This equation dispenses the245

degradation (D) experienced over the simulated time period:246

D(%) =
DoD=100∑

DoD=1

Ncyc (DoD)
Nmax (DoD)

(4)

Where Ncyc is the number of cycles returned by the RFC247

algorithm and experienced for each amplitude (defined by the248

DoD variable), and Nmax is the number of cycles the battery249

can withstand for each specific DoD, according to the capacity250

evolution curves of the batteries provided by the manufacturer.251

Fig. 6 plots this curve for the case of the Intensium Max High252

Power VL30P cells type from SAFT batteries, which can be253

approximated by the following equation (5):254

Nmax (DoD) = 3 · 107 × DoD(%)−1.825 (5)

The degradation parameter D calculated in (4) is useful to255

estimate the number of equivalent reference cycles (NC) that256

the battery has experienced over the year. As deduced from257

Fig. 7. Histograms representing the annual cycling pattern of a 5 MW / 5 MWh
battery under the four different degrees of ramp-rate limitation, with a zoom
over the range 0–50% in DoD of the cycles and up to 20 accumulated cycles.

Fig. 6, these LFP batteries can withstand around 10000 cycles 258

at 80% DoD, what means that the NC can be calculated as (6). 259

NC (@80%) =
D (%) × 10000

100%
(6)

Thereafter, once accounted the NC, this information is intro- 260

duced into equations (2) and (3) together with the temperature. 261

The resulting capacity fade values are combined to finally pro- 262

vide the lifetime estimation prognosis, in years, by means of 263

equation (7) which takes into account that the battery manu- 264

facturer defines the end-of-life (EOL) of the batteries when the 265

retained capacity (RC) is the 70% of its initial value. 266

RC ={1−[Cf ade,cal (yEOL , T )+Cf ade,cyc (NC, T )×yEOL]}
(7)

The solution in years (yEOL ) at this equation is the estimated 267

lifetime of the battery (EOL time). All the procedure has been 268

implemented and automated in Matlab/Simulink which presents 269

a RFC library that simplifies part of the programming. 270

B. Results of the Ageing Analysis 271

Annual simulations of a 10 MW PV power plant using actual 272

irradiance data have been performed to avoid seasonal effects 273

for all the cases described in the previous sections (different 274

filtering levels, various battery energy capacity sizes, and two 275

operating temperatures). The simulations have been done with 276

a one-minute time step, what provides a good track of the fast 277

power fluctuations. Then, the obtained SOC evolution of the 278

various batteries were treated with the RFC algorithm to derive 279

the cycling histograms as the one represented in Fig. 7. 280
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TABLE I
LIFETIME ESTIMATION (IN YEARS) FOR A ROUNDTRIP EFF. = 85%

TABLE II
LIFETIME ESTIMATION (IN YEARS) FOR A ROUNDTRIP EFF. = 92%

By applying the rest of the analysis methodology to these281

histograms, the ageing prognosis for the multiple case studies is282

obtained. The resulting lifetime estimation to achieve the 30%283

drop in energy capacity is summarized in Table I and Table II,284

for the roundtrip efficiencies of 85% and 92%, respectively, and285

for the two temperatures considered.286

Results indicate that improving the roundtrip efficiency of 287

the battery from 85% up to 92% on the AC side of the energy 288

storage system has not significant effect to the battery ageing. 289

On the contrary, operating the battery at 35 °C instead of 25 °C 290

represents a potential life span reduction varying from 40% to 291

60%. Therefore, it is clear that the operation temperature of the 292

battery cells should be kept under control and as close as possi- 293

ble to the 20–25 °C recommended by manufacturers. Although 294

not summarized on these tables, further simulations performed 295

for 20 °C confirm lifetime can be further extended by another 296

20–25% at this temperature. With regard to the degree of control 297

of the ramp-rate variations, it stands out how the more restrictive 298

the control is (lower percentage of variation allowed) the shorter 299

the lifetime expectancy because the battery is more demanded. 300

Finally, note how, similarly, the increasing energy capacity of 301

the battery favors the extension of its lifetime due to the shal- 302

lower cycles experienced throughout the annual operation for a 303

given power exchange pattern with the grid. 304

Further conclusions can be obtained from the graphical repre- 305

sentation in Fig. 8. This shows for different operation conditions 306

the capacity fades associated to the calendar (red) and to the 307

cycling (blue) ageing mechanisms, which add up the 30% fade 308

of the initial battery capacity accepted by the manufacturer as 309

EOL (70% of capacity retention). Although the cycle ageing is 310

generally assumed to be more important than the calendar one, it 311

is straightforward derived from Fig. 8 that both types of ageing 312

mechanisms are significant and both have to be taken into con- 313

sideration in this application for the design and sizing definition 314

of the battery to guarantee a proper lifetime. Note how their cor- 315

responding weight on the overall ageing of the battery is clearly 316

dependent on the battery size and on the filtering level, since 317

these two design parameters condition the DoD of the cycles ex- 318

perienced during the annual operation. It is therefore important 319

to highlight that histogram results in Fig. 7 together with the sur- 320

faces represented in Fig. 8 demonstrate that the ramp-rate control 321

strategy analyzed in this work is not a very demanding energy 322

management strategy for batteries used in a PV power plant from 323

a cycle ageing mechanism point of view. Clearly, the calendar 324

ageing is also significant in this application and cannot be de- 325

spised. Finally, note that the progressive reduction of the battery 326

capacity with time and use will imply a lower and lower capabil- 327

ity to control the ramp-rate as the EOL of the battery approaches. 328

V. ESTIMATION OF THE LEVELIZED COST OF STORAGE 329

Once the ageing of the batteries has been quantified, it is 330

necessary to identify a valid method to define or calculate the 331

relative and comparable costs of the different battery solutions 332

analyzed to provide the ramp-rate control service. Energy stor- 333

age systems that are implemented as a way to improve the 334

management capability and the quality of the energy discharged 335

to the grid pose a complex problem to quantify its benefits and 336

effectiveness with respect to their cost. This is due to the fact 337

that they do not produce electricity from an energy source, but 338

store it for a time, and to the interrelation that exists among all 339

the aspects that take part in their operation. All of this makes 340

the evaluation difficult with a simple analysis. 341
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Fig. 8. Capacity loss (in %) experienced by a 5 MW battery at 25 °C [a) and b)] and 35 °C [c) and d)] for the two roundtrip efficiencies under consideration.

Levelized Cost of Storage (LCOS) is an innovative tool [46]342

derived from the traditional LCOE calculation [47], used to343

compare the lifetime cost of the energy producing technolo-344

gies, but adapted to energy storage systems that do not produce345

energy by themselves but store it for a later use introducing346

some energy losses. Therefore, LCOS is being used to com-347

pare the cost of using different storage technologies along their348

lifespan for a given application in the electric power sector. In349

this sense, LCOS can be defined as the cost per usable energy350

storage capacity throughout the lifetime of the installation. This351

is calculated, according to [46], taking into account the initial352

investment of the system, plus all the operating and mainte-353

nance costs accumulated during its use, divided by the so-called354

lifetime utilization factor (LUF), as in (8):355

LCOSEOL =
Io +

∑EOL
y=0 Opcost

∑EOL
y=0 Cy ×√

ηy · Δt
(€/kWh per year) (8)

Where the different parameters involved are:356
� EOL, lifetime expectancy in years, according to the analy-357

sis introduced in the previous section.358
� Io , initial investment cost of the whole energy storage359

system (batteries, converters, cooling unit, protections and360

control equipment . . . ), in €/kWh.361
� Opcost , overall operating annual cost (maintenance, secu-362

rity, recharge costs, auxiliary power, control and manage-363

ment). This is usually accounted for as a percentage of the364

initial investment, also in €/kWh.365
� Cy , energy capacity of the battery let at year “y” with366

regard to its initial value (100%-degradation), in %.367
� ηy , battery roundtrip AC-to-AC efficiency, in %.368
� Δt, the incremental time, in years.369

TABLE III
INITIAL INVESTMENT COST OF THE 5 MW BATTERIES (IN M€) FOR THE

DIFFERENT BATTERY CAPACITIES TAKEN INTO ACCOUNT

For this calculation, the initial investment cost has been in- 370

troduced according to that in Table III for the different battery 371

energy capacities. These costs are based on the average price per 372

kW and kWh of installed LFP battery (including all the equip- 373

ment) registered and estimated in various reports from different 374

international technology centers and specialized consultancies 375

[48]–[51]. The overall operating annual costs has been assumed 376

to be the 3.5% of the initial investment, upon estimations from 377

battery manufacturers. An annual monetary discount rate equal 378

to 4% is also assumed. The annual capacity left in the battery is 379

updated every year as a function of the calculated degradation 380

parameter. As it is done with the one-way efficiency which is 381

initially taken as 96% (corresponding to the roundtrip efficiency 382

of 92% previously analyzed). The case of the 85% roundtrip ef- 383

ficiency has not been calculated due to the low impact reflected 384

on the ageing that has been already discussed. 385

Therefore, according to (8) and taking into account the age- 386

ing results and estimated lifetimes presented before, Table IV 387

summarizes the LCOS calculated values at the EOL of the bat- 388

teries for the different combinations of parameters that have been 389

considered at both 25 °C and 35 °C. It is notably remarkable 390
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TABLE IV
LCOS OF THE 5 MW BATTERIES BASED ON THE ESTIMATED EOL (IN €/KWH)

from the results that although the initial investment cost obvi-391

ously influences the LCOS value of the system, the increase in392

the estimated service life of the batteries, due to a less stressing393

operation regime and the consequent reduced ageing, involves394

a decrease in the resulting LCOS of the larger energy capacity395

batteries. Therefore, the larger the capacity, the lower the LCOS396

in this application. Still, the operating temperature is also very397

important since the LCOS can vary for the same battery and398

ramp-rate limitation level between 40 and 50% for operating399

temperatures going from 25 °C up to 35 °C.400

Finally, note that results presented in this work can be com-401

pared with those provided by the financial advisory and asset402

management firm Lazard in [52]. This consultancy offers LCOS403

values ranging from $272 up to $386 for “in-front-of-the-meter”404

applications. Therefore, some of the combinations analyzed here405

offer a LCOS quite lower than those estimated by Lazard. How-406

ever, this is mainly obtained for large capacity batteries that,407

although taken into account here, would be difficult to justify408

for the ramp-rate control application from an economic and409

financial point of view.410

VI. CONCLUSIONS411

In conclusion, the ramp-rate PV power production control412

is a grid injection power limitation that is gaining importance413

in the electric systems, mainly in weak power systems to the414

moment, as the degree of penetration of PV power plants gets415

higher. The inherently intermittent and stochastic power pro-416

duction fluctuations of this technology could affect the stability417

of the system. This limitation can be managed by integrating418

batteries into large PV plants but such an operation involves an419

aggressive environment for the ageing of the batteries. This work 420

has analyzed this ageing for a specific technology of lithium ion 421

batteries, the LFP family. Results in this sense highlight the 422

importance of the temperature of operation of the batteries as 423

well as the influence of the battery size and degree of ramp-rate 424

limitation on the cycle ageing. Lifetime estimations range from 425

3.6 years up to 12.2 years depending on the battery size and the 426

ramp-rate control at 35 °C. This ageing prognosis opened the 427

door to a careful analysis of the Levelized Cost of Storage for 428

this application using batteries. In this sense, LCOS results are 429

in accordance with previous reports and tend to offer optimistic 430

low cost results for large battery combinations, which would be 431

oversized in this application with the consequent lack of usage of 432

the whole capacity. Therefore, these should not be contemplated 433

for a ramp-rate control application from a financial point of view. 434
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Levelized Cost of Storage for Li-Ion Batteries Used
in PV Power Plants for Ramp-Rate Control

1

2

Hector Beltran , Iván Tomás Garcı́a, José Carlos Alfonso-Gil , and Emilio Pérez3

Abstract—Photovoltaic (PV) power production ramp-rate con-4
trol is getting more and more important in weak electric power5
systems, in which quick and significant power fluctuations can af-6
fect the stability of the system. This can be achieved by means of the7
integration of batteries into large PV plants but such an operation8
involves an aggressive environment for the ageing of the batteries.9
This paper presents an evaluation of this ageing by means of the an-10
nual simulations of a large PV power plant using actual irradiance11
data. This is done for different battery sizes used under various de-12
grees of limitation in the power ramp-rate variation. The levelized13
cost of storage is calculated for each of the cases considered.14

Index Terms—Photovoltaic power plants with energy storage,15
ramp-rate control, batteries, ageing analysis.16

I. INTRODUCTION17

The power fluctuations experienced by Photovoltaic (PV)18

power plants as a consequence of the low, fast-moving clouds19

over them is one of the most important challenges for the mas-20

sive integration of this technology in the electric power system.21

Since clouds’ impacts are highly localized effects, this handicap22

has been typically minimized thanks to the general dispersion of23

PV generators in a wide area region [1]. However, the growing24

development and penetration of large scale PV installations in25

weak or isolated power grids is posing new challenges for the26

corresponding electric power system operators. The challenges27

are mainly associated to the grid stability because these systems28

are usually not very vast. Then, when a significant part of the29

energy production is highly variable, the system operators have30

to define or impose certain restrictions to the stochasticity of the31

PV production. This is being faced by certain operators such32

as the Puerto Rico Electric Power Authority (PREPA, [2]), the33

Hawaiian Electric Company (HECO, [3]), or the Faroe Islands34

utility (SEV, [4]) all of them good examples of weak grids. The35

solution being defined is based in the introduction of certain36

ramp-rate power limitations that restrict the variation of the PV37

production over short-periods of time. This can be achieved38

with the integration in the PV power plants of some type of en-39
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Fig. 1. Scheme of the PV plant with batteries for power ramp-rate control.

ergy storage system, mainly batteries, Fig. 1. Various proposals 40

are available in the literature that analyze their use under this 41

ramp-rate power control strategy [5]–[10], and even the use of 42

ultracapacitors for it [11]. Similar proposals are done by other 43

authors for wind power plants with storage [12]–[15]. 44

Therefore, it is the role of the energy storage system (batter- 45

ies) operating within the renewable energy source power plant 46

to cope with the power difference during the periods in which 47

the PV panels have stochastically and rapidly varied their pro- 48

duction and must inject into the grid a given limited production 49

while the PV panels produce differently. In this way, the ramp- 50

rate control achieved thanks to the introduction of batteries in a 51

renewable energy power plant implies a more or less continu- 52

ous mode of operation in which the batteries are being charged 53

and discharged over and over. This involves ageing the batteries 54

accordingly. Multiple authors have analyzed the ageing mech- 55

anisms associated to the batteries under different stress factors 56

[16]–[21], and propose different types of models to evaluate it 57

and perform some type of prognosis [22]–[27]. 58

Although different authors have faced the PV power ramp- 59

rate control strategy using batteries, it is important to highlight 60

that these mainly focus on the definition of new control algo- 61

rithms that usually pursue either the minimization of the size of 62

the batteries (energy capacity requirements) or the optimized op- 63

eration of the PV plant with storage. Moreover, the references 64

cited for battery ageing are mainly associated to the electric 65

vehicle industry. Therefore, none of the previous works has in- 66

vestigated the impact on the ageing of the batteries produced 67

by the power ramp-rate limitation strategy when implemented 68

in a PV power plant. This work presents such an evaluation by 69

0885-8969 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 2. Power production of the 10 MW PV plant with batteries under different
degrees of ramp-rate limitation (defined in % in the legend).

means of annual simulations of a large PV power plant (10 MW)70

using actual irradiance data. This is done for different sizes of71

batteries used under various degrees of limitation in the power72

ramp-rate variation. The Levelized Cost of Storage (LCOS) is73

calculated for each of the combinations.74

Then, after discussing about the potential type of Li-ion bat-75

tery to be used in such an application in Section II, and the stress76

factors that can affect their lifetime in Section III, the current77

work analyzes in Sections IV and V the ageing experienced by78

the batteries taking into account both calendar and cycle ageing79

models. The paper concludes with the estimation of the LCOS80

and some final remarks.81

II. PV POWER RAMP-RATE CONTROL WITH BATTERIES82

Due to the inherent fluctuation of the PV power production83

associated to the transient clouds, which can achieve values be-84

yond 90% and 70% for 1 MW and 10 MW PV plants in one85

single minute, respectively [28], some electric system operators86

controlling weak power grids are starting to impose some limita-87

tions to the production variability of this renewable technology.88

As already introduced in the previous section, this is a well89

stablished and known control proposal defined in various elec-90

tric codes and implemented in actual systems to avoid stability91

problems. Also in the literature, different authors have analyzed92

this solution for PV plants and defined some variations intended93

to: minimize the size of the batteries involved [6], [7], [10], [28],94

to perform some supervisory control over the operation of the95

combined “PV + storage” plants [8], or to optimize the size of96

the potential second-life batteries to be used with this goal [9].97

We analyze in our work four different degrees of power ramp-98

rate variation, the cases in which the PV power plant production99

with batteries is allowed to modify its production every minute100

no more than 1%, 2%, 5%, and 10%, with regard to its PV101

rated power, Fig. 2. These limitation levels correspond to the102

usual control levels defined in the grid codes that already de-103

mand it (mostly 10%) and to potential more restrictive levels104

(<10%) to be fixed in the coming future. In this sense, the lower105

the power variation allowed (in %), the higher the degree of106

filtering introduced by the batteries and, accordingly, the deeper 107

the charge-and-discharge cycling pattern experienced with the 108

consequent ageing. The depth-of-discharge of the cycles will 109

be also function of the battery energy capacity, which will be 110

analyzed in between 1 and 10 MWh for the 10 MW rated power 111

PV plant under consideration. These energy capacity values are 112

based on the characteristics of the existing installations. 113

Regarding the type of batteries, up to six different families 114

are commercialized nowadays: Lithium Cobalt Oxide (LCO or 115

LiCoO2), Lithium Iron Phosphate (LFP or LiFePO4), Lithium 116

Nickel Cobalt Aluminium Oxide (NCA or LiNiCoAlO2), 117

Lithium Manganese Oxide (LMO or LiMn2O4), Lithium 118

Nickel Manganese Cobalt Oxide (NMC or LiNiMnCoO2), and 119

Lithium Titanate (LTO or Li4Ti5O12). These mainly differ 120

in the material constituting the cathode. Only the LTO family 121

associates its name to the anode’s material, being in all the 122

cases the second electrode made of graphite. The operational 123

characteristics also differ being NCA the one with highest 124

specific energy; however, LFP and LTO are superior in terms 125

of specific power, cyclability, and thermal stability, what makes 126

them appropriate for intensive power demanding applications 127

such as ramp-rate control. LTO also presents the best life span 128

although it is the most expensive technology. In all, since space 129

is not a limiting parameter for this type of installation and 130

price is lower than for other lithium types, LFP is the selected 131

chemistry for our analysis. Note in this regard that it is being 132

developed and installed by companies such as SAFT Batteries 133

for ramp-rate control applications in wind farms [29]. 134

III. BATTERY AGEING STRESS FACTORS AND MODEL 135

The ageing phenomenon of Li-ion based batteries has been 136

extensively analyzed in the literature in the last years due to its 137

importance not only for the renewables’ integration expansion 138

but mainly for the electric vehicle continuously increasing in- 139

dustry. In this sense, the multiple ageing models and analyses 140

performed have been classified by different authors [30]–[33] 141

into 2 main groups: performance-based lifetime models, and 142

post-processing models. The way to analyse the ageing dif- 143

fers in the different works, however, the resulting stress factors 144

are quite coherent among publications for the various battery 145

chemistries analysed. 146

A. Battery Ageing Stress Factors 147

The identified stress factors that influence the ageing of 148

Li-ion batteries can be mainly listed as: time, temperature, state- 149

of-charge (SOC) during rest, number of cycles experienced, 150

depth-of-discharge (DoD) of the cycles, average voltage of the 151

cycles, and charge/discharge current rate. 152

Their corresponding influence depends on the type of battery 153

and on the design under consideration and is usually studied 154

according to two types of mechanism: calendar and cycle ageing. 155

Then, while the calendar ageing is usually associated to the 156

capacity reduction of the batteries as a function of time without 157

being cycled (only by being connected in hot stand-by), the 158

cycle ageing is associated to their continuous use (by being 159

charged and discharged). In this sense and for the case of Li-ion 160
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batteries, the calendar ageing gets generally more significant161

with time as temperature and SOC are higher [16]–[20]. The162

relation with temperature is normally modelled by means of the163

Arrhenius equation (1) while the dependence over the voltage164

(or SOC) is generally less important and follows a polynomial165

or even linear relation, depending on the lithium battery type.166

k (t) = A × e−
E a
R T (1)

With regard to the cycle ageing, this is highly influenced by167

the number of cycles experienced [22]. The DoD of the cycles168

is also important, having a lower ageing effect with shallower169

depth cycles [17], [22], as it is important to perform the cycles170

as close as possible to the 50% of SOC to minimize the age-171

ing impact due to the average voltage during the cycling [18],172

[23]–[26]. Finally, also the temperature significantly affects the173

cycle ageing [21], [25]–[27] what forces most battery manu-174

facturers to advice their use under refrigerated conditions not175

much above 25 °C. After all, it can be concluded that both ef-176

fects (calendar and cycle) are important and dependent on the177

combination and degree of the stress factors [16]. Therefore,178

none of them can be disregarded in a thorough full research.179

B. Ageing Model Used for Analysis180

As discussed previously, due to the application under study181

(power rate-ramp control for a large PV plant), the use of182

LFP batteries is analysed. Therefore, among the multiple Li-ion183

equivalent model proposals, only some of those focused on this184

chemistry have been considered in depth [18], [19], [23], [25],185

[34]–[38]. And among them, since some have been developed186

based on electric vehicle (EV) standard drive cycle profiles, only187

those from Stroe [18], Swierczynski [23], and Weißhar [38] are188

considered appropriate for our analysis. These authors propose189

different ageing models for LFP batteries combined with renew-190

able energy plants. However, the latter applies them for small191

domestic installations. Therefore, due to the similarity with the192

type of application analysed in Stroe [18] for wind power plants,193

the present work uses the model proposed by this author to anal-194

yse how LFP batteries are going to lose capacity over time when195

used for power rate-ramp control in a large PV plant. This model196

is based on the following semi-empirical equations defined for197

both capacity fades (in %) associated respectively to the calendar198

and the cycle ageing:199

Cf ade,cal (t, T ) = αt × eβt ·T × tn (2)

Cf ade,cyc (NC, T ) = αN C × eβN C ·T × NCn (3)

Where t is the time in months, T is the temperature in Kelvin,200

and NC represents the number of equivalent reference cy-201

cles. The coefficients in these equations are αt = 3.087 · 10−7 ,202

αN C = 6.87 · 10−5, βt = 0.05146, βN C = 0.027, and n = 0.5,203

for both equations. Note that the C-rate stress factor influence204

is not included in the model because C-rates below 4C are205

considered in the application analysed in our work. Under these206

operating conditions, the C-rate influence can be neglected [39].207

Fig. 3. Structure of the methodology implemented to analyze the LFP battery
capacity fade along the ramp-rate control operation.

Fig. 4. State-of-charge evolution of the 5 MW battery under different degrees
of ramp-rate limitation for the day represented in Fig. 2.

IV. ANALYSIS OF THE AGEING UNDER RAMP-RATE CONTROL 208

This analysis is based on the ageing model introduced in 209

the previous section which is combined in this work with the 210

rainflow-counting (RFC) algorithm [40]–[42] and the Palmgren- 211

Miner rule [22], [43]–[45]. In this way, the proposed hybrid 212

methodology provides an estimation of the lifetime expectancy 213

of the batteries under the power ramp-rate control regime of 214

operation. 215

A. Methodology Implemented for the Ageing Prognosis 216

The methodology developed to analyze the ageing is summa- 217

rized in Fig. 3, where the scheme interrelating the inputs, the 218

calculation/simulation steps, and the final output is shown. 219

Then, the proposed analysis model presents various stages 220

that can be clearly observed. First, the evolution of the SOC of 221

the battery experienced along one whole year operating under 222

the ramp-rate control regime is generated. As can be observed 223

in Fig. 4 for the day whose power exchanges are represented 224

in Fig. 2, this is done for four different degrees of ramp rate 225

control limitation (1%/min, 2%/min, 5%/min, and 10%/min), 226

introducing in all the cases a programmed SOC recovery of its 227

initial value (50%) after the battery daily operation. 228

The analysis in this work is also performed for various battery 229

sizes (from 1 MWh up to 10 MWh), for two extreme potential 230

roundtrip efficiencies of the batteries (85%, and 92%), and for 231

two different operating temperatures (25 °C and 35 °C), at which 232

the batteries are considered to be refrigerated on-site. The bat- 233

tery exchange power capacity is always considered the same and 234

defined as 5 MW, according to recommendations from SAFT 235

for this specific application. 236
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Fig. 5. Adaptation performed by the RFC MATLAB function to the SOC
evolution to account the number of half cycles and their DoD.

Fig. 6. Cycles to failure vs. DoD curve for LFP batteries from SAFT.

Then, following the scheme, the SOC evolution curve is intro-237

duced into the RFC algorithm which processes the SOC curve238

as represented in Fig. 5. This returns the number of cycles expe-239

rienced by the battery at varying DoDs, as well as the medium240

voltage for each partial charge/discharge cycle.241

This information is then handled by the Palmgren-Miner rule242

(4) which compares the partial cycling histogram provided by243

the RFC with the maximum number of cycles that the battery244

could perform at each single DoD. This equation dispenses the245

degradation (D) experienced over the simulated time period:246

D(%) =
DoD=100∑

DoD=1

Ncyc (DoD)
Nmax (DoD)

(4)

Where Ncyc is the number of cycles returned by the RFC247

algorithm and experienced for each amplitude (defined by the248

DoD variable), and Nmax is the number of cycles the battery249

can withstand for each specific DoD, according to the capacity250

evolution curves of the batteries provided by the manufacturer.251

Fig. 6 plots this curve for the case of the Intensium Max High252

Power VL30P cells type from SAFT batteries, which can be253

approximated by the following equation (5):254

Nmax (DoD) = 3 · 107 × DoD(%)−1.825 (5)

The degradation parameter D calculated in (4) is useful to255

estimate the number of equivalent reference cycles (NC) that256

the battery has experienced over the year. As deduced from257

Fig. 7. Histograms representing the annual cycling pattern of a 5 MW / 5 MWh
battery under the four different degrees of ramp-rate limitation, with a zoom
over the range 0–50% in DoD of the cycles and up to 20 accumulated cycles.

Fig. 6, these LFP batteries can withstand around 10000 cycles 258

at 80% DoD, what means that the NC can be calculated as (6). 259

NC (@80%) =
D (%) × 10000

100%
(6)

Thereafter, once accounted the NC, this information is intro- 260

duced into equations (2) and (3) together with the temperature. 261

The resulting capacity fade values are combined to finally pro- 262

vide the lifetime estimation prognosis, in years, by means of 263

equation (7) which takes into account that the battery manu- 264

facturer defines the end-of-life (EOL) of the batteries when the 265

retained capacity (RC) is the 70% of its initial value. 266

RC ={1−[Cf ade,cal (yEOL , T )+Cf ade,cyc (NC, T )×yEOL]}
(7)

The solution in years (yEOL ) at this equation is the estimated 267

lifetime of the battery (EOL time). All the procedure has been 268

implemented and automated in Matlab/Simulink which presents 269

a RFC library that simplifies part of the programming. 270

B. Results of the Ageing Analysis 271

Annual simulations of a 10 MW PV power plant using actual 272

irradiance data have been performed to avoid seasonal effects 273

for all the cases described in the previous sections (different 274

filtering levels, various battery energy capacity sizes, and two 275

operating temperatures). The simulations have been done with 276

a one-minute time step, what provides a good track of the fast 277

power fluctuations. Then, the obtained SOC evolution of the 278

various batteries were treated with the RFC algorithm to derive 279

the cycling histograms as the one represented in Fig. 7. 280
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TABLE I
LIFETIME ESTIMATION (IN YEARS) FOR A ROUNDTRIP EFF. = 85%

TABLE II
LIFETIME ESTIMATION (IN YEARS) FOR A ROUNDTRIP EFF. = 92%

By applying the rest of the analysis methodology to these281

histograms, the ageing prognosis for the multiple case studies is282

obtained. The resulting lifetime estimation to achieve the 30%283

drop in energy capacity is summarized in Table I and Table II,284

for the roundtrip efficiencies of 85% and 92%, respectively, and285

for the two temperatures considered.286

Results indicate that improving the roundtrip efficiency of 287

the battery from 85% up to 92% on the AC side of the energy 288

storage system has not significant effect to the battery ageing. 289

On the contrary, operating the battery at 35 °C instead of 25 °C 290

represents a potential life span reduction varying from 40% to 291

60%. Therefore, it is clear that the operation temperature of the 292

battery cells should be kept under control and as close as possi- 293

ble to the 20–25 °C recommended by manufacturers. Although 294

not summarized on these tables, further simulations performed 295

for 20 °C confirm lifetime can be further extended by another 296

20–25% at this temperature. With regard to the degree of control 297

of the ramp-rate variations, it stands out how the more restrictive 298

the control is (lower percentage of variation allowed) the shorter 299

the lifetime expectancy because the battery is more demanded. 300

Finally, note how, similarly, the increasing energy capacity of 301

the battery favors the extension of its lifetime due to the shal- 302

lower cycles experienced throughout the annual operation for a 303

given power exchange pattern with the grid. 304

Further conclusions can be obtained from the graphical repre- 305

sentation in Fig. 8. This shows for different operation conditions 306

the capacity fades associated to the calendar (red) and to the 307

cycling (blue) ageing mechanisms, which add up the 30% fade 308

of the initial battery capacity accepted by the manufacturer as 309

EOL (70% of capacity retention). Although the cycle ageing is 310

generally assumed to be more important than the calendar one, it 311

is straightforward derived from Fig. 8 that both types of ageing 312

mechanisms are significant and both have to be taken into con- 313

sideration in this application for the design and sizing definition 314

of the battery to guarantee a proper lifetime. Note how their cor- 315

responding weight on the overall ageing of the battery is clearly 316

dependent on the battery size and on the filtering level, since 317

these two design parameters condition the DoD of the cycles ex- 318

perienced during the annual operation. It is therefore important 319

to highlight that histogram results in Fig. 7 together with the sur- 320

faces represented in Fig. 8 demonstrate that the ramp-rate control 321

strategy analyzed in this work is not a very demanding energy 322

management strategy for batteries used in a PV power plant from 323

a cycle ageing mechanism point of view. Clearly, the calendar 324

ageing is also significant in this application and cannot be de- 325

spised. Finally, note that the progressive reduction of the battery 326

capacity with time and use will imply a lower and lower capabil- 327

ity to control the ramp-rate as the EOL of the battery approaches. 328

V. ESTIMATION OF THE LEVELIZED COST OF STORAGE 329

Once the ageing of the batteries has been quantified, it is 330

necessary to identify a valid method to define or calculate the 331

relative and comparable costs of the different battery solutions 332

analyzed to provide the ramp-rate control service. Energy stor- 333

age systems that are implemented as a way to improve the 334

management capability and the quality of the energy discharged 335

to the grid pose a complex problem to quantify its benefits and 336

effectiveness with respect to their cost. This is due to the fact 337

that they do not produce electricity from an energy source, but 338

store it for a time, and to the interrelation that exists among all 339

the aspects that take part in their operation. All of this makes 340

the evaluation difficult with a simple analysis. 341
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Fig. 8. Capacity loss (in %) experienced by a 5 MW battery at 25 °C [a) and b)] and 35 °C [c) and d)] for the two roundtrip efficiencies under consideration.

Levelized Cost of Storage (LCOS) is an innovative tool [46]342

derived from the traditional LCOE calculation [47], used to343

compare the lifetime cost of the energy producing technolo-344

gies, but adapted to energy storage systems that do not produce345

energy by themselves but store it for a later use introducing346

some energy losses. Therefore, LCOS is being used to com-347

pare the cost of using different storage technologies along their348

lifespan for a given application in the electric power sector. In349

this sense, LCOS can be defined as the cost per usable energy350

storage capacity throughout the lifetime of the installation. This351

is calculated, according to [46], taking into account the initial352

investment of the system, plus all the operating and mainte-353

nance costs accumulated during its use, divided by the so-called354

lifetime utilization factor (LUF), as in (8):355

LCOSEOL =
Io +

∑EOL
y=0 Opcost

∑EOL
y=0 Cy ×√

ηy · Δt
(€/kWh per year) (8)

Where the different parameters involved are:356
� EOL, lifetime expectancy in years, according to the analy-357

sis introduced in the previous section.358
� Io , initial investment cost of the whole energy storage359

system (batteries, converters, cooling unit, protections and360

control equipment . . . ), in €/kWh.361
� Opcost , overall operating annual cost (maintenance, secu-362

rity, recharge costs, auxiliary power, control and manage-363

ment). This is usually accounted for as a percentage of the364

initial investment, also in €/kWh.365
� Cy , energy capacity of the battery let at year “y” with366

regard to its initial value (100%-degradation), in %.367
� ηy , battery roundtrip AC-to-AC efficiency, in %.368
� Δt, the incremental time, in years.369

TABLE III
INITIAL INVESTMENT COST OF THE 5 MW BATTERIES (IN M€) FOR THE

DIFFERENT BATTERY CAPACITIES TAKEN INTO ACCOUNT

For this calculation, the initial investment cost has been in- 370

troduced according to that in Table III for the different battery 371

energy capacities. These costs are based on the average price per 372

kW and kWh of installed LFP battery (including all the equip- 373

ment) registered and estimated in various reports from different 374

international technology centers and specialized consultancies 375

[48]–[51]. The overall operating annual costs has been assumed 376

to be the 3.5% of the initial investment, upon estimations from 377

battery manufacturers. An annual monetary discount rate equal 378

to 4% is also assumed. The annual capacity left in the battery is 379

updated every year as a function of the calculated degradation 380

parameter. As it is done with the one-way efficiency which is 381

initially taken as 96% (corresponding to the roundtrip efficiency 382

of 92% previously analyzed). The case of the 85% roundtrip ef- 383

ficiency has not been calculated due to the low impact reflected 384

on the ageing that has been already discussed. 385

Therefore, according to (8) and taking into account the age- 386

ing results and estimated lifetimes presented before, Table IV 387

summarizes the LCOS calculated values at the EOL of the bat- 388

teries for the different combinations of parameters that have been 389

considered at both 25 °C and 35 °C. It is notably remarkable 390
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TABLE IV
LCOS OF THE 5 MW BATTERIES BASED ON THE ESTIMATED EOL (IN €/KWH)

from the results that although the initial investment cost obvi-391

ously influences the LCOS value of the system, the increase in392

the estimated service life of the batteries, due to a less stressing393

operation regime and the consequent reduced ageing, involves394

a decrease in the resulting LCOS of the larger energy capacity395

batteries. Therefore, the larger the capacity, the lower the LCOS396

in this application. Still, the operating temperature is also very397

important since the LCOS can vary for the same battery and398

ramp-rate limitation level between 40 and 50% for operating399

temperatures going from 25 °C up to 35 °C.400

Finally, note that results presented in this work can be com-401

pared with those provided by the financial advisory and asset402

management firm Lazard in [52]. This consultancy offers LCOS403

values ranging from $272 up to $386 for “in-front-of-the-meter”404

applications. Therefore, some of the combinations analyzed here405

offer a LCOS quite lower than those estimated by Lazard. How-406

ever, this is mainly obtained for large capacity batteries that,407

although taken into account here, would be difficult to justify408

for the ramp-rate control application from an economic and409

financial point of view.410

VI. CONCLUSIONS411

In conclusion, the ramp-rate PV power production control412

is a grid injection power limitation that is gaining importance413

in the electric systems, mainly in weak power systems to the414

moment, as the degree of penetration of PV power plants gets415

higher. The inherently intermittent and stochastic power pro-416

duction fluctuations of this technology could affect the stability417

of the system. This limitation can be managed by integrating418

batteries into large PV plants but such an operation involves an419

aggressive environment for the ageing of the batteries. This work 420

has analyzed this ageing for a specific technology of lithium ion 421

batteries, the LFP family. Results in this sense highlight the 422

importance of the temperature of operation of the batteries as 423

well as the influence of the battery size and degree of ramp-rate 424

limitation on the cycle ageing. Lifetime estimations range from 425

3.6 years up to 12.2 years depending on the battery size and the 426

ramp-rate control at 35 °C. This ageing prognosis opened the 427

door to a careful analysis of the Levelized Cost of Storage for 428

this application using batteries. In this sense, LCOS results are 429

in accordance with previous reports and tend to offer optimistic 430

low cost results for large battery combinations, which would be 431

oversized in this application with the consequent lack of usage of 432

the whole capacity. Therefore, these should not be contemplated 433

for a ramp-rate control application from a financial point of view. 434
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