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Abstract The renowned k-nearest neighbor de-

cision rule is widely used for classification tasks,

where the label of any new sample is estimated

based on a similarity criterion defined by an

appropriate distance function. It has also been

used successfully for regression problems where

the purpose is to predict a continuous numeric

label. However, some alternative neighborhood

definitions, such as the surrounding neighbor-

hood, have considered that the neighbors should

fulfill not only the proximity property, but also

a spatial location criterion. In this paper, we ex-

plore the use of the k-nearest centroid neighbor

rule, which is based on the concept of surround-

ing neighborhood, for regression problems. Two

support vector regression models were executed
as reference. Experimentation over a wide col-

lection of real-world data sets and using fif-

teen odd different values of k demonstrates that
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the regression algorithm based on the surround-

ing neighborhood significantly outperforms the

traditional k-nearest neighborhood method and

also a support vector regression model with a

RBF kernel.
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sion analysis · surrounding neighborhood ·
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1 Introduction

The nearest neighbor (NN) rule constitutes one

of the most popular non-parametric classifica-

tion models in pattern recognition and machine

learning [7]. The general idea behind this tech-

nique is very simple and intuitive: if two exam-

ples belong to the same class, they should be

close enough to each other according to a mea-

sure of dissimilarity in the D-dimensional fea-

ture space RD. Thus given a data set of size n,

T = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}, where

Xi ∈ RD denotes the i-th training example and

Yi ∈ {ω1, ω2, . . . , ωM} is its class label, a new

sample p is assigned to the class of its nearest

neighbor in the training set T . An extension to

the NN decision rule is the k-NN classifier, in

which the label to be assigned to p corresponds

to the one with a majority of votes from the k

closest examples in T .

Apart from other properties common to most

non-parametric classification techniques, the k-

NN rule combines its conceptual simplicity and

good performance with the fact that its asymp-

totic or infinite (n→∞) error tends to the op-
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timal Bayes error under very weak conditions

(k →∞ and k/n→ 0).

In general, the k-NN model has intensively

been applied to classification problems with the

aim of predicting or estimating a discrete class

label. However, this technique has already been

used for regression modelling [3,6,17,22] where

the labels to be estimated correspond to con-

tinuous values. For instance, Yao and Ruzo [26]

proposed a general framework based on the k-

NN algorithm for the prediction of gene func-

tion. Dell’Acqua et al. [8] introduced the time-

aware multivariate NN regression method to pre-

dict traffic flow. Treiber and Kramer [23] an-

alyzed the k-NN regression method in a mul-

tivariate times series model for predicting the

wind power of turbines. Yang and Zhao [25] de-

veloped several generalized algorithms of the

k-NN regression and applied them to a face

recognition problem. Hu et al. [14] predicted

the capacity of lithium-ion batteries by means

of a data-driven method based on k-NN, which

is used to build a non-linear kernel regression

model. Xiao et al. [24] combined NN and logistic

regression for the early diagnosis of late-onset

neonatal sepsis. Eronen and Klapuri [10] pro-

posed an approach for tempo estimation from

musical pieces with k-NN regression. Leon and

Popescu [16] presented an algorithm based on

large margin NN regression for predicting stu-

dents’ performance using their contributions to

several social media tools. Yu and Hong [27]

developed an ensemble of NN regression in low-

rank multi-view feature space to infer 3D hu-

man poses from monocular videos.

Intuitively, neighborhood should be defined

in a way that the neighbors of a sample are as

close to it as possible and they are located as

homogeneously around it as possible. The sec-

ond condition is a consequence of the first in

the asymptotic case but in some practical cases,

the geometrical distribution may become even

more important than the actual distances to

characterize a sample by means of its neighbor-

hood [19]. As the traditional concept of neigh-

borhood takes care of the first property only,

the nearest neighbors may not be placed sym-

metrically around the sample.

Some alternative neighborhoods have been

proposed as a way to overcome the problem

just pointed out. These consider both proxim-

ity and symmetry so as to define the general

concept of surrounding neighborhood [19]: they

try to search for neighbors of a sample close

enough (in the basic distance sense), but also in

terms of their spatial distribution with respect

to it. The nearest centroid neighborhood [5] is a

well-established representative of the surround-

ing neighborhood, showing a better behavior

than the classical nearest neighborhood on a va-

riety of preprocessing and classification tasks [12,

19,20,28].

Taking into account the good performance

in classification, the purpose of this paper is to

introduce the k nearest centroid neighbors (k-

NCN) model for regression and to investigate its

efficiency by carrying out a comprehensive em-

pirical analysis over 31 real-life data sets when

varying the neighborhood size (k).

Henceforth, the paper is organized as fol-

lows. Section 2 presents the foundations of the

k-NCN algorithm and defines the regression al-

gorithm proposed in this paper. Section 3 pro-

vides the main characteristics of the databases

and the set-up of the experiments carried out.

Section 4 discusses the experimental results. Fi-

nally, Section 5 remarks the main conclusions

and outlines possible avenues for future research.

2 Regression models based on

neighborhood

In this section, we briefly introduce the basis

of the regression models based on k-NN and k-

NCN.

Let T = {(x1, a1), . . . , (xn, an)} ∈ (x × a)n

be a data set of n independent and identically

distributed (i.i.d.) random pairs (xi, ai), where

xi = [xi1, xi2, . . . , xiD] represents an example

in a D-dimensional feature space and ai denotes

the continuous target value associated to it. The

aim of regression is to learn a function f : y→ a

to predict the value a for a query sample y =

[y1, y2, . . . , yD].

2.1 k-NN regression

The concept of the k-NN rule for regression

can be generalized since the nearest neighbor

method assigns a new sample y the same target

value as the closest example in T , according to

a certain dissimilarity measure (generally, the

Euclidean distance). An extension of this pro-

cedure is the k-NN decision rule, in which the

algorithm retrieves the k closest examples in T .
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When k = 1, the target value assigned to

the input sample is the target value indicated

by its closest neighbor. For k > 1, the k-NN

regression model (k-NNR) estimates the target

value f(y) of a new input sample y by averaging

the target values of its k nearest neighbors [2,

13,15]:

f(y) =
1

k

k∑
i=1

ai (1)

where ai denotes the target value of the i-th

nearest neighbor.

2.2 k-NCN regression

Let p be a query sample whose k nearest cen-

troid neighbors should be found from a set X =

{x1, . . . , xn}. These k neighbors are such that

(a) they are as near p as possible, and (b) their

centroid is also as close to p as possible. Both

conditions can be satisfied through the iterative

procedure given in Algorithm 1.

Algorithm 1 Nearest centroid neighbors
1: Input:
2: X = {x1, . . . , xn} {Input data set}
3: k {Neighborhood size}
4: p {Query point}
5:
6: Output:
7: Q = {q1, . . . , qk} {Nearest centroid neighbors}
8:
9: Q← ∅

10: q1 ← findNN(X, p) {q1 is the nearest neighbor}
11: Q← {q1}
12: Aux← X − {q1}
13:
14: j ← 1
15: while j < k do
16: j ← j + 1
17: dist←∞
18: for all xi ∈ Aux do
19: M ← computeCentroid(Q ∪ {xi})
20: if computeDist(M,p) < dist then
21: qj ← xi
22: end if
23: end for
24: Q← Q ∪ {qj}
25: Aux← Aux− {qj}
26: end while

The algorithm is better illustrated through

a simple example in Fig. 1. The first neighbor

of a query point p, which is denoted by the let-

ter a, corresponds to its first nearest neighbor.

The second neighbor is not the second nearest

neighbor (represented as e); instead, the algo-

rithm picks a point located in the opposite di-

rection of the first neighbor with respect to p

so that the centroid of that point and all previ-

ously selected neighbors is the closest to p.

a 
e 

f 
g 

b 

c 

d 

p 

4-NCN 

4-NN 

Fig. 1 A comparison between NCN and NN

This definition leads to a type of neighbor-

hood in which both closeness and spatial dis-

tribution of neighbors are taken into account

because of the symmetry (centroid) criterion.

Besides, the proximity of the nearest centroid

neighbors to the sample is guaranteed because
of the incremental nature of the way in which

those are obtained from the first nearest neigh-

bor. However, note that the iterative procedure

outlined in Algorithm 1 does not minimize the

distance to the centroid because it gives prece-

dence to the individual distances instead. On

the other hand, the region of influence of the

NCN results bigger than that of the traditional

nearest neighborhood; as can be seen in Fig. 1,

the four nearest centroid neighbors (a, b, c, d)

of a point p enclose a region quite bigger than

the region defined by the four nearest neighbors

(a, e, f, g).

For a set of cardinality n, computation of

one nearest centroid neighbor of any point re-

quires at most n centroid and distance compu-

tations, and also n comparisons to find the min-

imum of the distances. Therefore k nearest cen-

troid neighbors of a point can be computed in

O(kN) time, which is the same as that required

for the computation of k nearest neighbors.
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From the concept of nearest centroid neigh-

borhood, it is possible to introduce an alterna-

tive regression model, namely k-NCNR, which

estimates the output of a query sample y as

follows:

1. Find the k nearest centroid neighbors of y

by using Algorithm 1.

2. Estimate the target value of y as the average

of the target values of its k neighbors by

means of Eq. 1.

3 Experiments

The main purpose of the experiments in this

study is two-fold. First, we want to establish

whether or not the proposed k-NCNR model

outperforms the classical k-NNR algorithm. Sec-

ond, we are also interested in evaluating the

performance of the best k-NCNR and k-NNR

algorithms in comparison with two support vec-

tor regression methods. Experimentation was

carried out over a collection of 31 data sets

with a wide variety of characteristics in terms

of number of attributes and samples. All these

data sets were taken from the KEEL reposi-

tory [1] and their main characteristics are sum-

marized in Table 1.

The 5-fold cross-validation procedure was

adopted for the experiments because it provides

some advantages over other resampling strate-

gies, such as bootstrap with a high computa-

tional cost or re-substitution with a biased be-

havior [18]. The original data set was randomly

divided into five stratified segments or folds of

(approximately) equal size; for each fold, four

blocks were used to fit the model, and the re-

maining portion was held out for evaluation as

an independent test set. Then the results re-

ported here correspond to the averages across

the five trials.

The main hyper-parameters of the regres-

sion models used in the experiments are listed

in Table 2. Note that two support vector re-

gression (SVR) algorithms [21], with linear and

RBF kernels, were also employed as reference

solutions for comparison purposes.

3.1 Evaluation criteria

In the framework of regression, the purpose of

most performance evaluation scores is to esti-

mate how much the predictions (p1, p2, . . . , pn)

Table 1 Characteristics of the data sets used in the
experiments

#Samples #Attributes

(1) Diabetes 43 2
(2) Ele-1 495 2
(3) Plastic 1650 2
(4) Quake 2178 3
(5) Laser 993 4
(6) Ele-2 1056 4
(7) AutoMPG6 392 5
(8) Friedman 1200 5
(9) Delta-Ail 7129 5

(10) MachCPU 209 6
(11) Dee 365 6
(12) AutoMPG8 392 7
(13) Anacalt 4052 7
(14) Concrete 1030 8
(15) Abalone 4177 8
(16) California 20640 8
(17) Stock 950 9
(18) Wizmir 1461 9
(19) Wankara 1609 9
(20) MV 40768 10
(21) ForestFire 517 12
(22) Treasury 1049 15
(23) Mortgage 1049 15
(24) Baseball 337 16
(25) House 22784 16
(26) Elevators 16599 18
(27) Compact 8192 21
(28) Pole 14998 26
(29) Puma32h 8192 32
(30) Ailerons 13750 40
(31) Tic 9822 85

Table 2 Parameters of the regression algorithms

Method Learning Parameters

k-NCNR k =1, 3, . . . , 29; Euclidean dis-
tance

k-NNR k =1, 3, . . . , 29; Euclidean dis-
tance

SVR(L1) Complexity parameter = 1; lin-
ear kernel (polynomial of degree
1); sequential minimal optimiza-
tion algorithm; epsilon round-off
error = 1×1012; epsilon insensitive
loss function = 0.001; tolerance =
0.001

SVR(RBF) Complexity parameter = 1; RBF
kernel; sequential minimal opti-
mization algorithm; gamma =
0.01; epsilon round-off error =
1×1012; epsilon insensitive loss
function = 0.001; tolerance =
0.001

deviate from the target values (a1, a2, . . . , an).

These metrics are minimized when the predicted

value for each query sample agrees with its true

value [4]. Probably, the most popular measure
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that has extensively been used to evaluate the

performance of a regression model is the root

mean square error (RMSE),

RMSE =

√√√√ 1

n

n∑
i=1

(pi − ai)2 (2)

This metric indicates how far the predicted

values pi are from the target values ai by aver-

aging the magnitude of individual errors with-

out taking care of their sign.

From the RMSE, we defined the error nor-

malized difference, which is computed for each

data set i and each neighborhood size k as fol-

lows:

Differrori,k =
RMSENNi,k

−RMSENCNi,k

RMSENNi,k

(3)

where RMSENNi,k
and RMSENCNi,k

repre-

sent the RMSE achieved on data set i using

k-NNR and k-NCNR, respectively.

In practice, Differrori,k can be considered

as an indicator of improvement or deterioration

of the k-NCNR method with respect to the k-

NNR model:

– if Differrori,k > 0, k-NCNR is better than

k-NNR;

– if Differrori,k < 0, k-NCNR is worse than

k-NNR;

– if Differrori,k ≈ 0, there are no significant

differences between k-NNR and k-NCNR.

3.2 Non-parametric statistical tests

When comparing the results of two or more

models over multiple data sets, a non-parametric

statistical test is more appropriate than a para-

metric one because the former is not based on

any assumption such as normality or homogene-

ity of variance [9,11].

Both pairwise and multiple comparisons were

used in this paper. First, we applied the Fried-

man’s test to discover any statistically signifi-

cant differences among all the regression mod-

els. This starts by ranking the algorithms for

each data set independently according to the

RMSE results: as there are 30 competing mod-

els (15 k-NNR and 15 k-NCNR), the ranks for

each data set are from 1 (best) to 30 (worst).

Then the average rank of each algorithm across

all data sets is computed.

As the Friedman’s test only detects signif-

icant differences over the whole pool of com-

parisons, we then proceeded with the Holm’s

post-hoc test in order to compare a control al-

gorithm (the best model) against the remaining

techniques by defining a collection of hypothesis

around the control method.

Afterwards, the Wilcoxon’s paired signed-

rank test was employed to find out whether or

not there exist significant differences between

each pair of the five top k-NNR and k-NCNR

algorithms. This statistic ranks the differences

in performance of two algorithms for each data

set, ignoring the signs, and compares the ranks

for the positive and the negative differences.

In summary, the statistical tests were used

as follows: (i) the Friedman’s test was employed

over all the models; (ii) the Wilcoxon’s, Fried-

man’s and Holm’s post-hoc tests were applied

to the five top-ranked k-NNR and k-NCNR al-

gorithms with the aim of concentrating the anal-

ysis on the best results of each approach.

4 Results

This section is divided into two blocks. First,

the comparison between the k-NCNR and k-

NNR models is discussed in Section 4.1. Sec-

ond, the results of the best configurations of

k-NCNR and k-NNR are compared against the

results of the SVR models in Section 4.2. The

detailed results obtained over each data set and

each algorithm are reported in Tables 8 and 9

in the Appendix.

4.1 k-NCNR vs k-NNR

Figure 2 depicts the error normalized difference

for each database (i = 1, . . . , 31) with all neigh-

borhood sizes. The most important observation

is that a vast majority of cases achieved posi-

tive values (Differrori,k > 0), indicating that

the performance of the k-NCNR model was su-

perior to that of the corresponding k-NNR al-

gorithm for most databases.

Figure 3 shows the Friedman’s average ranks

achieved from the RMSE results with all the

regression methods (k-NNR and k-NCNR). As

can be observed, the lowest (best) average ranks



6 V. Garćıa et al.

Fig. 2 Error normalized difference on the 31 data sets

were achieved with both strategies using k val-

ues in the range from 9 to 21. More specifi-

cally, the best k-NNR configurations were with

k = 9, 11, 17, 13, 15, whose ranks were 6.4194,

6.7097, 6.7903, 6.9032 and 6.9032 respectively.

In the case of k-NCNR, the best k values were

11, 19, 21, 9 and 13 with ranks 7.0323, 7.1935,

7.2581, 7.3226 and 7.3871 respectively.

Fig. 3 Friedman’s ranks of the k-NNR and k-NCNR
models

Table 3 reports the results of the Wilcoxon’s

test applied to the ten best regression models.

The upper diagonal half summarizes this statis-

tic at a significance level of α = 0.10 (10% or

less chance), and the lower diagonal half cor-

responds to a significance level of α = 0.05.

The symbol “•” indicates that the method in

the row significantly outperforms the method

in the column, whereas the symbol “◦” means

that the method in the column performs signif-

icantly better than the method in the row.

Table 3 Summary of the Wilcoxon’s statistic for
the best k-NNR and k-NCNR models. Upper and
lower diagonal halves are for α = 0.10 and α = 0.05,
respectively

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1) 9-NNR – ◦ ◦ ◦
(2) 11-NNR – ◦ ◦ ◦ ◦ ◦
(3) 17-NNR – ◦ ◦ ◦ ◦ ◦
(4) 13-NNR – ◦ ◦ ◦ ◦ ◦
(5) 15-NNR – ◦ ◦ ◦ ◦ ◦
(6) 11-NCNR • • • • • –
(7) 19-NCNR • • • • –
(8) 21-NCNR • • • • –
(9) 9-NCNR • • • • • –

(10) 13-NCNR • • • • • –

Analysis of the results in Table 3 allows to

remark that the k-NCNR models were signifi-

cantly better than the k-NNR algorithms. On

the other hand, it is also interesting to note that

different values of k did not yield statistically

significant differences between pairs of the same

strategy; for instance, in the case of k-NCNR,

there was no neighborhood size performing sig-

nificantly better than some other value of k.



A regression model based on the nearest centroid neighborhood 7

Because the Wilcoxon’s test for multiple com-

parisons do not allow to conclude which algo-

rithm is the best, we applied a Friedman’s test

to the five top-ranked k-NNR and k-NCNR ap-

proaches and afterwards, a Holm’s post-hoc test

in order to determine whether or not there ex-

ists significant differences with the best (con-

trol) model. As we had 10 algorithms and 31

databases, the Friedman’s test using the Iman-

Davenport statistic, which is distributed accord-

ing to the F -distribution with 10 − 1 = 9 and

(10− 3)(31− 1) = 270 degrees of freedom, was

8.425717. The p-value calculated by F (9, 270)

was 4.3×10−11 and therefore, the null-hypothesis

that all algorithms performed equally well can

be rejected with a high significance level.

Figure 4 depicts the Friedman’s average rank-

ings for the five top-ranked k-NNR and k-NCNR

algorithms. One can see that the approach with

the best scores corresponds to 11-NCNR, which

will be the control algorithm for the subsequent

Holm’s post-hoc test. It is also worth pointing

out that all the k-NCNR models achieved lower

rankings than the k-NNR methods, proving the

superiority of the surrounding neighborhood to

the conventional neighborhood,

Fig. 4 Friedman’s ranks of the five best results for
the k-NNR and k-NCNR models.

Table 4 reports the results of the Holm’s

test using 11-NCNR as the control algorithm,

including the z value, the unadjusted p-value,

and the adjusted α value at significance lev-

els of 0.05 and 0.10. It can be viewed that 11-

NCNR was significantly better than the five

top-ranked k-NNR models at both significance

levels. On the contrary, it is not possible to re-

ject the null-hypothesis of equivalence between

11-NCNR and the rest of k-NCNR algorithms.

Table 4 Unadjusted p-values for α = 0.05 and
α = 0.10 with 11-NCNR as the control algorithm.
The models in bold were significantly worse than the
control algorithm

z p-value α = 0.05/i α = 0.10/i

15-NNR 4.026889 0.000057 0.005556 0.011111
17-NNR 3.942996 0.000080 0.006250 0.012500
21-NNR 3.775209 0.000160 0.007143 0.014286
13-NNR 3.775209 0.000160 0.008333 0.016667
9-NNR 3.313794 0.000920 0.010000 0.020000
9-NCNR 0.545308 0.585542 0.012500 0.025000

21-NCNR 0.503361 0.614710 0.016667 0.033333
19-NCNR 0.419468 0.674874 0.025000 0.050000
13-NCNR 0.041947 0.966541 0.050000 0.100000

4.2 Neighborhood-based regression models vs

SVR

This section analyzes the results of the two top

k-NCNR and k-NNR algorithms with respect

to two SVR algorithms. The average RMSE re-

sults of these models on the 31 data sets and

the Friedman’s average rankings are reported

in Table 5.

Friedman’s average ranks for the four regres-

sions models have been plotted in Fig.5. As can

be seen, both 11-NCNR and SVR(L1) arose as

the algorithms with the lowest rankings, that

is, the lowest RMSE in average.

Fig. 5 Friedman’s ranks of two best k-NCNR and
k-NNR benchmarked methods and two SVR models.

In order to check whether or not the RMSE

results were significantly different, the Iman-

Davenport’s statistic was computed. This is dis-

tributed according to an F -distribution with 3



8 V. Garćıa et al.

Table 5 Average RMSE results of two SVR models
and the best neighborhood-based algorithms

SVR(L1) SVR(RBF) 11-NCNR 9-NNR

Diabetes 5.88×10−1 6.62×10−1 6.16×10−1 6.31×10−1

Ele-1 6.40×102 7.64×102 6.41×102 6.41×102

Plastic 1.53×100 2.19×100 1.59×100 1.63×100

Quake 2.04×10−1 2.04×10−1 1.94×10−1 1.95×10−1

Laser 2.34×101 2.46×101 1.06×101 1.14×101

Ele-2 1.68×102 2.16×102 1.19×102 1.60×102

AutoMPG6 3.55×100 3.67×100 3.88×100 4.14×100

Friedman 2.71×100 2.69×100 1.68×100 1.81×100

Delta-Ail 1.74×10−4 1.76×10−4 1.85×10−4 1.90×10−4

MachCPU 6.98×101 9.03×101 8.04×101 7.53×101

Dee 4.08×10−1 4.23×10−1 4.02×10−1 4.22×10−1

AutoMPG8 3.45×100 3.61×100 3.92×100 4.20×100

Anacalt 5.15×10−1 5.14×10−1 7.67×10−2 7.80×10−2

Concrete 1.11×101 1.09×101 7.91×100 9.64×100

Abalone 2.27×100 2.40×100 2.12×100 2.20×100

California 7.08×104 7.33×104 9.17×104 9.67×104

Stock 2.39×100 2.48×100 9.23×10−1 8.46×10−1

Wizmir 1.26×100 1.27×100 1.31×100 1.45×100

Wankara 1.57×100 1.58×100 1.36×100 1.48×100

MV 5.31×100 2.35×100 6.08×100 7.07×100

ForestFire 5.71×101 5.71×101 5.87×101 5.97×101

Treasury 2.48×10−1 2.85×10−1 5.44×10−1 5.17×10−1

Mortgage 5.31×100 2.35×100 3.72×10−1 3.54×10−1

Baseball 7.57×102 7.76×102 9.08×102 8.92×102

House 4.77×104 4.79×104 5.02×104 5.07×104

Elevators 2.97×10−3 2.93×10−3 6.35×10−3 6.56×10−3

Compact 1.24×101 1.35×101 6.23×100 6.50×100

Pole 3.10×101 3.28×101 8.20×100 8.33×100

Puma32H 2.71×10−2 2.70×10−2 2.79×10−2 2.82×10−2

Ailerons 1.77×10−4 1.70×10−4 3.00×10−4 3.49×10−4

Tic 2.44×10−1 2.44×10−1 2.39×10−1 2.41×10−1

Avg. Ran. 2.16 2.87 2.16 2.81

and 90 degrees of freedom. The p-value com-

puted was 0.03275984862, which is less than a

significance level of α=0.05. Therefore, the null-

hypothesis that all regression models performed

equally well can be rejected.

Table 6 shows the unadjusted p-values for a

Holm’s post hoc test using the 11-NCNR algo-

rithm as the control method. For a significance

level of α=0.05, the procedure could not reject

the null-hypothesis of equivalence in any of the

three algorithms. Conversely, at a significance

level of α=0.10, the Holm’s test indicates that

11-NCNR was significantly better than 9-NNR

and SVR(RBF), and equivalent to SVR(L1).

Table 6 Unadjusted p-values for α = 0.05 and
α = 0.10 with 11-NCNR as the control algo-
rithm when compared against 9-NNR, SVR(L1), and
SVR(RBF). The model in bold was significantly
worse than the control algorithm at α = 0.10.

z p-value α = 0.05/i α = 0.10/i

SVR(RBF) 2.164225 0.030447 0.016667 0.033333
9-NNR 1.967478 0.049128 0.025 0.05
SVR(L1) 0 1 0.05 0.10

We run a Wilcoxon’s paired signed-rank test

for α = 0.05 and α = 0.10 between each pair

of regression algorithms. From Table 7, we can

observe that 11-NCNR performed significantly

better than 9-NNR at both significance levels,

and it was significantly better than SVR(RBF)

at α = 0.10. On the other hand, it also has to

be noted that SVR(L1) was significantly bet-

ter than the SVR model with an RBF kernel

at α = 0.10 and α = 0.05. This suggests that,

for regression problems, we can use either k-

NCNR or the linear SVR, since both these mod-

els yielded equivalent performance results.

Table 7 Summary of the Wilcoxon’s statistic for
the best k-NNR and k-NCNR models, and two SVR
algorithms. Upper and lower diagonal halves are for
α = 0.10 and α = 0.05, respectively

(1) (2) (3) (4)

(1) 11-NCNR - � �

(2) 9-NNR � -
(3) SVR(L1) - �

(4) SVR(RBF) � -

5 Conclusions and future work

In this paper, a new regression technique based

on the nearest centroid neighborhood has been

introduced. The general idea behind this strat-
egy is that neighbors of a query sample should

fulfill two complementary conditions: proxim-

ity and symmetry. In order to discover the ap-

plicability of this regression model, it has been

compared to the k-NNR algorithm when vary-

ing the neighborhood size k from 1 to 29 (using

only the odd values) and two configurations of

SVR (with linear and RBF kernels) over a total

of 31 databases.

The experimental results in terms of RMSE

(and the error normalized difference proposed

here) have shown that the k-NCNR model is

statistically better than the k-NNR method. In

particular, the best results have been achieved

with values of k in the range from 9 to 21 and

more specifically, the 11-NCNR approach has

outperformed the five top-ranked k-NNR algo-

rithms. When compared against the two SVR

models, the results have suggested that the k-

NCNR algorithm performs equally well as the

linear SVR and better than SVR(RBF).
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It is also important to note that the k-NCNR

model is a lazy algorithm that does not require

any training, which can constitute an interest-

ing advantage over the SVR methods for big

data applications.

Several promising directions for further re-

search have emerged from this study. First, a

natural extension is to develop regression mod-

els based on other surrounding neighborhoods

such as those defined from the Gabriel graph

and the relative neighborhood graph, which are

two well-known proximity graphs. Second, it

would be interesting to assess the performance

of the k-NCNR algorithm and compared to other

regression models when applied to some real-life

problem.
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1. Alcalá-Fdez, J., Fernández, A., Luengo, J.,
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Tables 8 and 9 report the average RMSE results

for all the data sets and for each value of k. In

addition, the Friedman’s rankings are given in

the last row of each table.
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