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Abstract. We show that an interpolating sequence for the weighted Banach space of analytic
functions on the unit ball of a Hilbert space is hyperbolically separated. In the case of the
so-called standard weights, a sufficient condition for a sequence to be linear interpolating is
given in terms of Carleson type measures. Other conditions to be linearly interpolating are
provided as well. Our results apply to the space of Bloch functions of such unit ball.

1. Introduction and Preliminaries

Throughout the paper E stands for a complex Hilbert space of arbitrary dimension and
BE = {x ∈ E : ‖x‖ < 1} for its open unit ball. Let υ : BE → (0,∞) be a weight, that is, a
continuous positive function. The weighted space of analytic functions

H∞υ (BE) := {f : BE → C : f is analytic and ‖f‖υ = sup
x∈BE

υ(x)|f(x)| <∞}

is a Banach space when endowed with the ‖ · ‖υ norm. Here we are mostly interested in the
standard weights υα(x) = (1 − ‖x‖2)α , α ≥ 0. When α = 0 we get the infinite dimensional
generalization H∞(BE) of the Hardy algebra H∞ of the unit disc. Nevertheless, some of our
results hold true for more general weights.

An analytic function f : BE → C is said to belong to the Bloch space B(BE) if supx∈BE(1−
‖x‖2)‖∇f(x)‖ < ∞ or, equivalently, if supx∈BE(1 − ‖x‖2)|Rf(x)| < ∞, where Rf(x) is the

radial derivative of f at x, Rf(x) = 〈x,∇f(x)〉. Both suprema define equivalent Banach space
norms - modulo the constant functions- in B(BE). We will use both the norms

‖f‖B(BE) := |f(0)|+ sup
x∈BE

(1− ‖x‖2)||∇f(x)||

and

‖f‖R(BE) := |f(0)|+ sup
x∈BE

(1− ‖x‖2)|Rf(x)|.
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We shall deal also with the following generalization: for α > 0, it is said that f ∈ Bα(BE)
whenever supx∈BE(1− ‖x‖2)α|Rf(x)| <∞ and we write

‖f‖Rα(BE) := |f(0)|+ sup
x∈BE

(1− ‖x‖2)α|Rf(x)|.

The space of Bloch functions on the unit ball of a Hilbert space was introduced and studied
in [3] and its generalization Bα(BE) has been considered in [17] and [30]. If E = C, we get
the classical Bloch-type spaces denoted by Bα. We shall use the notation Bα(BE)0 := {f ∈
Bα(BE) : f(0) = 0} and H∞υ (BE)0 := {f ∈ H∞υ (BE) : f(0) = 0}.

The aim of this article is to study interpolating sequences for these spaces. We will say that
(wn) ⊂ BE is interpolating for H∞υ (BE) if the mapping

S : H∞υ (BE)→ `∞ defined by Sf =
(
υ(wn)f(wn)

)
(1.1)

is onto. As usual we write ‖(αn)‖ = supn |αn| for any bounded sequence of complex numbers.
A sequence (wn) ⊂ BE \ {0} is said to be interpolating (for the radial derivative) for the

Bloch space Bα(BE), if the mapping

S : Bα(BE)→ `∞ defined by S(f) =
(
(1− ‖wn‖2)αRf(wn)

)
is onto. Notice that 0 cannot be included into the interpolating sequence since Rf(0) = 0.
In case S has a linear right inverse, we say that (wn) is a linear interpolating sequence.
For a given interpolating sequence (wn), any constant M > 0 such that whenever α ∈ `∞

there exists f with S(f) = α and ‖f‖ ≤ M‖α‖∞ is called an interpolation constant. Such
constants exist by the Open Mapping Theorem.

There are in the mathematical literature several meanings for the expression ”interpolating
sequence” for B that do not take into account the derivative of the function. See [5] and [29]
for details on different types of interpolation for B. For further information on interpolating
sequences on spaces of analytic functions we refer to [26].

After the celebrated result by L. Carleson which characterizes interpolating sequences for
the space H∞ (see [14]) also interpolating sequences for the spaces H∞υα were characterized
by K. Seip in [25]. In connection with Hankel operators, K. R. M. Attele in [1] studied in
connection with Hankel operators interpolating sequences for the derivatives in the Bloch space
B. Such sequences were used by K. Madigan and A. Matheson [18] as a tool for the study of
compactness of some composition operators. The study of interpolating sequences for Banach
spaces of analytic functions on Bn, the open unit ball of the Euclidean space Cn, was initiated
by B. Berndtsson in [2] for H∞(Bn) and by X. Massaneda in [19] for H∞υα(Bn) with α > 0. They
found some necessary and sufficient conditions for a sequence to be interpolating in those spaces.
Interpolating sequences in the n-ball for the so-called fractional derivatives were investigated
in [7]. The existence of interpolating sequences for a given Banach function space shows an
abundance of elements in the space and it has turned to be very useful in the study of weighted
composition operators. The study of interpolating sequences for H∞(BE) was initiated in [11]
and [12] (see also [22]).

In this paper we prove that being hyperbolically separated is also a necessary condition for
a sequence to be interpolating in Bα(BE) or in H∞υ (BE) for quite general weights. In Section 3
we provide some explicit and enlightening examples of interpolating sequences. We also show
that if the sequence is interpolating for H∞(BE), then it is linear interpolating for Bα(BE) as
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well as for H∞υα(BE). By using a suitable extension of the notion of Carleson measure, we obtain
a sufficient condition for a sequence to be linear interpolating in H∞υα(BE) (Theorem 5.7). This
result extends to H∞υα(BE) and Bα(BE) the previously known results (see [1] and [18]) in the
unit disc stating that a sufficiently separated sequence is interpolating. In Section 7 we present
a number of results concerning B(BE) that are extension of the classical ones.

For background on analytic functions on subsets of Hilbert or more general Banach spaces,
we refer to [20]. We will use, frequently without further notice, the following consequence of
Montel’s theorem ([20, Proposition 9.16]).

Lemma 1.1. If Fm ∈ H(BE), the series
∑

m Fm is pointwise convergent and the series has
uniformly bounded partial sums on compact subsets of BE, then it defines an analytic function.

A crucial tool in the study of analytic functions on the unit ball of a Hilbert space is the
homogeneity of the ball. Specifically, the existence of the Möbius transforms ϕa : BE → BE for
each a ∈ BE defined by

ϕa(x) = (saQa + Pa)(ma(x))

where sa =
√

1− ‖a‖2, ma : BE → BE is the analytic function

ma(x) =
a− x

1− 〈x, a〉
and Pa = 1

‖a‖2a⊗a where u⊗v(x) = 〈x, u〉v and Qa = Id−Pa are the orthogonal projection on

the one dimensional subspace generated by a and on its orthogonal complement respectively.
We recall that ϕa ◦ ϕa(x) = x and ϕa(a) = 0.

The pseudo-hyperbolic metric on BE is defined by ρE(x, y) := ‖ϕx(y)‖. In case E = C, we
write ρ instead of ρC. The pseudo-hyperbolic disc given by {y ∈ BE : ρE(x, y) < R} is denoted
by D(x,R). We recall some facts to be used later (see [16] p. 99) Let x ∈ BE and R ∈ (0, 1).
Then

(1.2) ρE(x, y)2 = ‖ϕx(y)‖2 = 1− (1− ‖x‖2)(1− ‖y‖2)
|1− 〈x, y〉|2

, y ∈ BE.

and

(1.3)
1−R2

4
(1− ‖x‖2) ≤ 1− ‖y‖2 ≤ 4

1−R2
(1− ‖x‖2), y ∈ D(x,R).

We shall write Bn for the unit ball of Cn and denote by νn the normalized measure in Bn
for n ≥ 1. It is well known that for n = 1 the pseudo-hyperbolic disc D(z,R) becomes an
Euclidean disc while in the case n ≥ 2 it is not an Euclidean disc (unless z = 0) but an ellipsoid
(see [24, pages 29,30]) and the value νn(D(z, R)) is

νn(D(z, R)) = R2n
( 1− |z|2

1−R2|z|2
)n+1

, z ∈ Bn, 0 < R < 1.

A sequence (wn) ⊂ BE is said to be hyperbolically r−separated for r > 0 if ρE(wn, wm) >
r for n 6= m. We say that the sequence is hyperbolically separated if it is hyperbolically
r−separated for some r > 0. We will say that the sequence (wn) satisfies the Carleson’s
condition if

∏
m6=n ρE(wn, wm) ≥ δ for some δ and for all m ∈ N.
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2. Carleson measures on the unit ball BE

For any ξ ∈ E, ‖ξ‖ = 1 and 0 < h < 1 we shall denote by S(ξ, h) the Carleson window given
by

S(ξ, h) = {y ∈ BE : |1− 〈y, ξ〉| < 2h}.
We write S(ξ, h) = BE for h ≥ 1.

Definition 2.1. Let η be a finite Borel measure on BH and β > 0. We say that η is a β-Carleson
measure whenever there exists C > 0 such that

(2.1) η(S(ξ, h)) ≤ Chβ, for all ‖ξ‖ = 1, and all 0 < h < 1.

We write ‖η‖β = sup‖ξ‖=1,0<h<1
η(S(ξ,h))

hβ
.

Lemma 2.2. Let η be a finite Borel measure on BH and β > 0. Define for α > 0

Iη(α, β) = sup
‖x‖<1

1

(1− ‖x‖2)β

∫
BE

( |1− ‖x‖2
|1− 〈w, x〉|

)α
dη(w) ∈ [0,∞].

(i) If Iη(α, β) <∞ for some α > 0, then η is a β-Carleson measure.
(ii) If η is a β-Carleson measure, then Iη(α, β) <∞ for any α > β.
Furthermore, for α > β one has

(2.2)
2α − 2β

22α
Iη(α, β) ≤ ‖η‖β ≤ 2β3αIη(α, β).

Proof. (i) Let 0 < h < 1 and ξ ∈ BE with ‖ξ‖ = 1 and set x = (1 − h)ξ. Hence h = 1 − ‖x‖
and for y ∈ S(ξ, h) we have

|1− 〈y, x〉| = |1− 〈y, ξ〉+ h〈y, ξ〉| ≤ 3h ≤ 3(1− ‖x‖2).

Therefore

η(S(ξ, h)) =

∫
S(ξ,h)

dη(y)

≤ 3α
∫
BE

( |1− ‖x‖2
|1− 〈y, x〉|

)α
dη(y)

≤ 3αIη(α, β)(1− ‖x‖2)β ≤ 3αIη(α, β)2βhβ.

(ii) Let α > β. For each x ∈ BE, x 6= 0, we write ξ = x
‖x‖ . Note that if y /∈ S(ξ, h) and

h > 1−‖x‖
2

, then

|1− 〈y, x〉| ≥ |1− 〈y, ξ〉| − |〈y, x− ξ〉|

≥ 2h−
∥∥∥∥ x

‖x‖
− x
∥∥∥∥ ‖y‖

≥ 2h− (1− ‖x‖)

Define E0 = S(ξ, 1− ‖x‖2) and

Ek = S(ξ, 2k(1− ‖x‖2)) \ S(ξ, 2k−1(1− ‖x‖2)).



INTERPOLATING SEQUENCES FOR WEIGHTED SPACES OF ANALYTIC FUNCTIONS 5

Now for k ≥ 1, y ∈ Ek and selecting h = 2k−1(1 − ‖x‖2) in the above estimate, we obtain
that

|1− 〈y, x〉| ≥ 2k(1− ‖x‖2)− (1− ‖x‖) ≥ 2k−1(1− ‖x‖2).
Select M ∈ N so that 2M−1(1− ‖x‖2) < 1 ≤ 2M(1− ‖x‖2). Hence∫

BE

(|1− ‖x‖2)α

|1− 〈w, x〉|α
dη(w) =

M∑
k=0

∫
Ek

(|1− ‖x‖2)α

|1− 〈w, x〉|α
dη(w)

≤ 2αη(S(ξ, 1− ‖x‖2) +
M∑
k=1

2−α(k−1)η(S(ξ, 2k(1− ‖x‖2))

≤ 2α‖η‖β(1− ‖x‖2)β(
∞∑
k=0

2k(β−α))

=
22α‖η‖β
2α − 2β

(1− ‖x‖2)β.

This completes the proof and give the stated estimates. �

Recall that for x ∈ BE, the evaluation map δx is given by δx(f) = f(x) for f ∈ H(BE).

Definition 2.3. Given (wn)∞n=1 ⊂ BE and γ > 0 we define

(2.3) ηγ,(wn) =
∞∑
n=1

(1− ‖wn‖2)γδwn .

In particular ηγ,(wn)(BE) <∞ if and only if
∑∞

n=1(1− ‖wn‖2)γ <∞.

The following characterization is a direct consequence of Lemma 2.2 together with (1.2).

Lemma 2.4. Let (wn)∞n=1 ⊂ BE and α > β > 0. Then for each γ > 0 the measure ηγ,(wn) is a
β-Carleson measure if and only if there exists C > 0 such that

(2.4)
∑
n∈N

(1− ρ2E(x,wn))α/2(1− ‖wn‖2)γ−α/2 ≤ C(1− ‖x‖2)β−α/2, x ∈ BE.

In particular, the following are equivalent:
(i) ηβ,(wn) is a β-Carleson measure.

(ii) Iηβ,(wn)
(α, β) = sup‖x‖<1

∑
n∈N(1− ρE(x,wn)2)α/2

(
1−‖wn‖2
1−‖x‖2

)β−α/2
<∞.

(iii) Iηβ,(wn)
(α, β) = sup‖x‖<1

∑
n∈N

(1−‖wn‖2)β(1−‖x‖2)α−β
|1−〈x,wn〉|α <∞.

We consider the following notation introduced in [19] for Bn. For p, q > 0 and (wj) ⊂ BE,
we denote

K({wj}, p, q) = sup
k∈N

∑
j 6=k

(1− ‖wk‖2)p(1− ‖wj‖2)q

|1− 〈wk, wj〉|p+q
.

Corollary 2.5. Let γ, β > 0 and (wj) ⊂ BE . If ηβ,(wj) is a β-Carleson measure then

K({wj}, γ, β) ≤ Iηβ,(wj)(β + γ, β) <∞.
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Remark 2.6. It was shown in [19, Lemma 1.4] that for E = (Cn, ‖ · ‖2) one has that ηβ,(zj) is a
β-Carleson measure for β ≥ n if and only if K({zj}, γ, β) <∞ for any 0 < γ ≤ β.

Let us now relate the notion of ”hyperbolic separation” with β-Carleson measures. Combin-
ing Remark 2.6 and [19, Lemma 1.5] it was shown that any hyperbolically separated sequence
(zj) ⊂ Bn satisfies that ηβ,(zj) is a β-Carleson measure for β > n. We shall give an alternative
proof of such a result using the following well known estimate (see [28, Lemma 2.24])

(2.5) |f(z)|p ≤ C

(1− |z|2)n+1

∫
D(z,r)

|f(w)|pdνn(w), z ∈ Bn.

for any 0 < r < 1, 0 < p <∞ and any holomorphic function f in Bn.

Proposition 2.7. Let n ∈ N and let (zj) ⊂ Bn be a hyperbolically separated sequence, then
ηβ,(zj) is a β-Carleson measure for any β > n.

Proof. Assume that ρCn(zj, zk) ≥ 2R for j 6= k. Hence D(zj, R) are pairwise disjoint sets in Bn.
Let us show that (zj) satisfies (iii) in Lemma 2.4 for any β > n and any α > β. Let z ∈ Bn.
Applying (2.5) to the function 1

(1−〈w,z〉)α for the point zj ∈ D(zj, R) together with (1.3), we

have ∑
j∈N

(1− |zj|2)β(1− |z|2)α−β

|1− 〈zj, z〉|α
≤ CR(1− |z|2)α−β

∑
j∈N

∫
D(zj ,R)

(1− |w|2)β−n−1

|1− 〈w, z〉|α
dνn(w)

= CR(1− |z|2)α−β
∫
∪jD(zj ,R)

(1− |w|2)β−n−1

|1− 〈w, z〉|α
dνn(w).

Now use the well-known fact (see [24, Page 18]) that for c > 0 and t > −1∫
Bn

(1− |w|2)tdνn(w)

|1− 〈w, z〉|n+1+t+c
≤ C

(1− |z|2)c
.

In our case β − n− 1 = t > −1 and c = α− β > 0, so we get the estimate∑
j∈N

(1− |zj|2)β(1− |z|2)α−β

|1− 〈zj, z〉|α
≤ CRC.

�

Remark 2.8. For the unit ball of infinite dimensional Hilbert spaces the fact that a sequence is
hyperbolically separated does not imply that ηβ,(wj) is a β-Carleson measure for any β > 0. It

suffices to use wj = 1
2
ej which satisfies that ρE(wj, wk) =

√
7
4

for k 6= j and
∑

j(1−‖wj‖2)β =∞
for any β > 0.

Invoking now Proposition 2.7, Lemma 2.4 and the fact ρ(‖x‖, ‖y‖) ≤ ρE(x, y) for any x, y ∈
BE we obtain the following result.

Corollary 2.9. Let (wj) ⊂ BE such that (‖wj‖) ⊂ D is a hyperbolically separated sequence.
Then ηβ,(wj) is a β-Carleson measure for any β > 1.
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3. Examples of interpolating sequences

Let us start by pointing out that in the case of infinite dimensional Hilbert spaces we can
find interpolating sequences for H∞v (BE) and in Bα(BE) whose interpolating functions are
polynomials.

Proposition 3.1. Let (en) ⊂ E be an orthonormal sequence and let u be a bounded radial
weight on D. Then for each (zn) ⊂ D such that

(3.1) (inf
n
|zn|)(inf

n
u(|zn|)) > 0

the sequence (wn) = (znen) is linear interpolating for H∞υ (BE), where υ(x) = u(‖x‖).
Specifically, for any bounded sequence (αk) ⊂ C and any degree d ≥ 2, there is a polyno-

mial Pd ∈ P(dE) such that S(Pd) = (αn), where P(dE) stands for the set of d-homogeneous
polynomials defined on BE and S is the map defined in (1.1).

Proof. Consider the d-homogeneous polynomial

Pd(x) =
∞∑
n=1

αn
u(|zn|)zdn

〈x, en〉d.

Clearly Pd is well-defined since
(

αn
zdnv(wn)

)
∈ `∞ and

∑
n |〈x, en〉|d ≤ ‖x‖d. Note that

u(‖x‖)|Pd(x)| ≤ C‖(αn)‖∞ for C = supz∈D u(z)·(infn |zn|)−d(infn u(|zn|))−1 and v(wn)Pd(wn) =
αn for any n ∈ N. �

Proposition 3.2. Let (en) ⊂ E be an orthonormal sequence and α > 0. Then for each (zn) ⊂ D
such that

(3.2) 0 < inf
n
|zn| ≤ sup

n
|zn| < 1

the sequence (wn) = (znen) is linear interpolating for Bα(BE).
Specifically, for any bounded sequence (αk) ⊂ C and any degree d ≥ 2, there is a polynomial

Pd ∈ P(dE) such that S(Pd) = (αn).

Proof. We argue similarly to Proposition 3.1 using now

Qd(x) =
∞∑
n=1

αn
dzdn(1− |zn|2)α

〈x, en〉d.

Clearly Qd is well-defined since `2 ⊂ `d and
(

αn
dzdn(1−|zn|2)α

)
∈ `∞ due to (3.2). Since RQd(x) =

dQd(x) one obtains for each ‖x‖ < 1

(1− ‖x‖2)α|RQd(x)| ≤ ‖(αn)‖
∞∑
n=1

(1− ‖x‖2)α

|zn|d(1− |zn|2)α
|〈x, en〉|d ≤ C‖(αn)‖‖x‖d.

On the other hand (1− ‖wn‖2)αRQd(wn) = αn for any n ∈ N. �

Let us give another procedure to generate interpolating sequences where the interpolating
functions are explicitly given.
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Proposition 3.3. Let α > 0 and (zn) ⊂ D such that infn |zn| > 0. For any orthonormal
sequence (en) ⊂ E, denote wn = znen ∈ BE for n ∈ N. Then the sequence (wn) is a linear
interpolating sequence for H∞vα(BE) and Bα(BE).

Proof. Let (αn) be a bounded sequence and define

f(x) =
∞∑
n=1

αn
z2n

〈x, en〉2

(1− z̄n〈x, en〉)α
.

The convergence of the series is guaranteed by Bessel’s inequality, while the analyticity of f
follows from Lemma 1.1. Obviously one has f(wm) = αm

(1−|zm|2)α and also

(1− ‖x‖2)α|f(x)| ≤ ‖(αn)‖
∞∑
n=1

|〈x, en〉|2

|zn|2
(1− ‖x‖2)α

(1− |〈x, en〉|)α
≤ (1 + ‖x‖)α ‖(αn)‖

infn |zn|2
‖x‖2.

This shows that f ∈ H∞vα(BE) and that it interpolates (αn) at the points (wn).
Now we turn to the case of Bα(BE). We define for each bounded sequence (αn) the functions

gα(x) =
∞∑
n=1

αn(1 + |zn|2)α

2(α− 1)|zn|4
(
(1− z̄2n〈x, en〉2)1−α − 1

)
, α 6= 1

and

g1(x) =
∞∑
n=1

αn(1 + |zn|2)
2|zn|4

log(
1

1− z̄2n〈x, en〉2
).

To verify that gα, α 6= 1, is well defined consider fα(t) = (1−λt)1−α−1 for 0 ≤ t ≤ 1 and λ ∈ D
and notice that |fα(1)− fα(0)| ≤

∫ 1

0
|f ′α(t)|dt ≤ |1−α||λ|

(1−|λ|)α . An analogous argument works as well

for g1, by considering f1(t) = log(1− λt).
Since |z̄2n〈x, en〉2| ≤ ||x||2 < 1, we get that

∣∣(1− z̄2n〈x, en〉2)1−α − 1
∣∣∣ ≤ |1− α| |z̄2n〈x, en〉2|

(1− |z̄2n〈x, en〉2|)α
≤ |1− α| |〈x, en〉|

2

(1− ||x||2)α
, α 6= 1

and ∣∣ log(1− z̄2n〈x, en〉2)
∣∣∣ ≤ |z̄2n〈x, en〉2|

1− |z̄2n〈x, en〉2|
≤ |〈x, en〉|

2

1− ||x||2
.

Therefore by Bessel’s inequality,

|gα(x)| ≤ 2α−1‖(αn)‖
∞∑
n=1

|〈x, en〉|2

(1− ||x||2)α|zn|4
≤ 2α−1‖(αn)‖

(1− ||x||2)α infn |zn|4
‖x‖2,

and the analyticity of gα follows again using Lemma 1.1.
Recall that if H(x) = h(〈x, ξ〉) for a given holomorphic function h in the unit disc then

RH(x) = h′(〈x, ξ〉)〈x, ξ〉. Hence

Rgα(x) =
∞∑
n=1

αn
z2n

(1 + |zn|2)α〈x, en〉2

(1− z̄2n〈x, en〉2)α
.
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Now we obtain

(1− ‖x‖2)α|Rgα(x)| ≤ 2α‖(αn)‖
∞∑
n=1

|〈x, en〉|2

|zn|2
≤ 2α

‖(αn)‖
infn |zn|2

‖x‖2.

Finally since (1− ‖wn‖2)αRgα(wn) = αn for all n ∈ N, the proof is complete. �

Also we can rely in the results in one variable to produce examples. Recall that sequences
(zn) ⊂ D\{0} which are interpolating for any of the spaces we are dealing with in the unit disc
satisfy that infn |zn| > 0. Notice that (zn) is interpolating for Bα if and only if the mapping
Υ : g ∈ Bα →

(
(1− |zn|2)αg′(zn)

)
∈ `∞ is onto.

Proposition 3.4. Let α > 0, ξ ∈ E with ‖ξ‖ = 1 and (zn) ⊂ D. Denote wn = znξ ∈ BE for
n ∈ N. Then (wn) is an interpolating sequence for Bα(BE) if and only if (zn) is an interpolating
sequence for Bα.

Proof. Assume that (wn) is an interpolating sequence for Bα(BE). Let (αn)n ∈ `∞ and find
f ∈ Bα(BE) with (1 − ‖wn‖2)αRf(wn) = αn for all n ∈ N. Denote ϕ(z) = f(zξ). Since
Rϕ(z) = zϕ′(z) = Rf(zξ) one has that ϕ ∈ Bα and we are done since

(1− |zn|2)αznϕ′(zn) = (1− ‖wn‖2)αRf(wn) = αn, n ∈ N.

Assume now that (zn) is an interpolating sequence for Bα. Let (αn)n ∈ `∞ and find ϕ ∈ Bα
with (1 − |zn|2)αznϕ′(zn) = αn for all n ∈ N. Denote f(x) = ϕ(〈x, ξ〉). Since Rf(x) =
ϕ′(〈x, ξ〉)〈x, ξ〉 one has that f ∈ Bα(BE) and that it interpolates (αn) since

(1− ‖wn‖2)αRf(wn) = (1− |zn|2)αznϕ′(zn) = αn, n ∈ N.

�

The analogue to Proposition 3.4 for finite dimensional Hilbert spaces corresponds to the
following procedure. Let L : Cn → E be an isometric linear embedding and let P : E → Cn, be
the orthogonal projection onto L(Cn). Then for any f ∈ H(BE), and any sequence (zm) ⊂ Cn,
one has

(1− ‖L(zm)‖2)αR(f)(L(zm)) = (1− ‖zm‖2)αR(f ◦ L)(zm).

So we get the following result by also taking into account for g ∈ H(Bn) its composition
f = g ◦ P ∈ H(BE).

Remark 3.5. Let (wm) ⊂ BE and denote by E0 = span{wm : m ∈ N}. If dim(E0) = n, consider
(zm) ⊂ Cn and L : Cn → E0 the isometry such that wm = L(zm). Then (zm) is interpolating
for Bα(Bn) if and only if (wn) is interpolating for Bα(BE).

4. Necessary conditions

In all the known cases (see [2, 25, 19, 1]) a necessary condition for a sequence (zn) to be inter-
polating for certain spaces defined in the unit disc D or the unit ball Bn is to be hyperbolically
separated. To extend this result to the case H∞υ (BE) we shall need a couple of lemmas.

The first one is a Schwarz lemma type consequence of inequality (2.1) in [6] applied to the
function w ∈ BE 7→ f(rw).
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Lemma 4.1. Let 0 < r ≤ 1 and f : rBE → C be a bounded analytic function. Then

|f(x)− f(y)| ≤ 2‖f‖rBE
‖x− y‖

max{r − ‖x‖, r − ‖y‖}
for all x, y ∈ rBE,

where ‖f‖rBE = sup‖w‖<r |f(w)|.

The second one and its proof are a suitable version of Lemma 14 in [9].

Lemma 4.2. Let υ be a weight and F : [0, 1) → R+ be a continuous non decreasing function
such that

(4.1)
υ(x)

υ(y)
≤ F (ρE(x, y)), x, y ∈ BE.

If f ∈ H∞υ (BE) and 0 < r < 1 then

(4.2) |f(x)− f(y)| ≤ 4F (r)

rυ(x)
‖f‖υρE(x, y), for ρE(x, y) ≤ r

2
.

The standard weights υα, for α ≥ 0, satisfy the assumption with F (r) =
(

4
1−r2

)α
.

Proof. Consider g = f ◦ϕx and observe that g is an analytic bounded function on rBE. Indeed,
from (4.1) we have

|f(ϕx(z))| ≤ ‖f‖υ
υ(ϕx(z))

≤ ‖f‖υ
υ(x)

F
(
ρE(x, ϕx(z))

)
=
‖f‖υ
υ(x)

F (‖z‖).

Hence sup‖z‖≤r |g(z)| ≤ ‖f‖υ
υ(x)

F (r).

Now applying Lemma 4.1 to g, we conclude that for ‖ϕx(y)‖ ≤ r/2 we have

|f(x)− f(y)| = |g(ϕx(y))− g(ϕx(x))|

≤ 2
‖f‖υ
υ(x)

F (r)
‖ϕx(y)‖

r − ‖ϕx(y)‖

≤ 4F (r)

rυ(x)
‖f‖υρE(x, y).

For the final statement, notice that

1− ρ2E(x, y) ≤ (1− ‖x‖2)(1− ‖y‖2)
(1− ‖x‖)2

≤ 2
1− ‖y‖2

1− ‖x‖
≤ 4

1− ‖y‖2

1− ‖x‖2
.

Hence

(4.3)
υα(x)

υα(y)
≤
( 4

1− ρ2E(x, y)

)α
.

�

Theorem 4.3. Let υ be a weight satisfying (4.1) for some F . Any interpolating sequence (wn)
for H∞υ (BE) is hyperbolically separated. Further, we have infn{‖wn‖ : wn 6= 0} > 0.
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Proof. Let M ≥ 1 be an interpolation constant for (wn). For each n ∈ N there exists fn ∈
H∞υ (BE) such that ‖fn‖υ ≤ M and υ(wm)fn(wm) = 0 for m 6= n ∈ N and υ(wn)fn(wn) = 1.
Fix 0 < r < 1. For n,m ∈ N such that ρE(wn, wm) ≤ r/2, using (4.2) we have

1

υ(wn)
= |fn(wn)− fn(wm)| ≤ 4F (r)M

rυ(wn)
ρE(wn, wm).

In particular if ρE(wn, wm) ≤ r/2, then ρE(wn, wm) ≥ r
4F (r)M

. Thus we obtain that for any

n,m ∈ N we have ρE(wn, wm) ≥ min{r/2, r
4F (r)M

} = r
4F (r)M

where the last equality follows since

MF (r) ≥MF (0) ≥M ≥ 1. Hence it is hyperbolically R-separated for R = sup0<r<1
r

4F (r)M
.

Since for n 6= m, R ≤ ρE(wn, wm) ≤ ρE(wn, 0) + ρE(0, wm) = ‖wn‖+ ‖wm‖, no subsequence
of (‖wn‖) can converge to 0. Hence infn{‖wn‖ : wn 6= 0} > 0. �

Corollary 4.4. Any interpolating sequence for H∞vα(BE), α ≥ 0, is hyperbolically separated.

Example 4.5. Notice that in the one-dimensional case any interpolating sequence (zn) ⊂ D
for B satisfies |zn| → 1 when n → ∞ since it is hyperbolically separated. However, in the
infinite dimensional case, there are examples of sequences (wn) satisfying supn∈N ‖wn‖ < 1 and
interpolating for H∞υ (BE) and Bα(BE), for instance take zn = r for any fixed 0 < r < 1 in
Propositions 3.1 and 3.2.

Now we verify the stability of interpolating sequences under the action of the automorphisms
of BE.

Lemma 4.6. Let ϕ : BE → BE be a holomorphic mapping. Then for x ∈ BE,

1− ‖ϕ(x)‖2

1− ‖x‖2
≥ 1

2
· 1− ‖ϕ(0)‖

1 + ‖ϕ(0)‖
.

Proof. Recall (see [8, page 48]) that for any analytic self map γ of the unit disc, 1−|γ(z)|
1−|z| ≥

1−|γ(0)|
1+|γ(0)| for all z ∈ D. Then if x 6= 0, we apply this inequality to γ(z) = 〈ϕ(z x

‖x‖), ϕ(x)〉 to

obtain
1− |〈ϕ(z x

‖x‖), ϕ(x)〉|
1− |z|

≥ 1− |〈ϕ(0), ϕ(x)〉|
1 + |〈ϕ(0), ϕ(x)〉|

≥ 1− ‖ϕ(0)‖
1 + ‖ϕ(0)‖

,

so for z = ‖x‖, we obtain

1− ‖ϕ(x)‖2

1− ‖x‖2
≥ 1− ‖ϕ(x)‖2

2(1− ‖x‖)
≥ 1

2
· 1− ‖ϕ(0)‖

1 + ‖ϕ(0)‖
.

The estimate is obvious for x = 0. �

Proposition 4.7. Let υ be a weight on BE such that for every automorphism ϕ : BE → BE

there exists C > 0

(4.4) Cυ(ϕ(x)) ≥ υ(x), x ∈ BE.

If (wn) is an interpolating sequence for H∞υ (BE), then
(
ϕ(wn)

)
is also an interpolating sequence.

The analogous statement holds for H∞υ (BE)0 if ϕ(0) = 0. The standard weights υα satisfy (4.4).
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Proof. Notice that for x ∈ BE and f ∈ H∞υ (BE) one has |f(ϕ(x))| ≤ ‖f‖υ
υ(ϕ(x))

≤ C ‖f‖υ
υ(x)

. This

gives f ◦ ϕ ∈ H∞υ (BE).

Now, given (αn) ∈ `∞ also the sequence
( υ(wn)
υ(ϕ(wn))

αn
)

is bounded. Hence there is f ∈ H∞υ (BE)

such that υ(wn)f(wn) = υ(wn)
υ(ϕ(wn))

αn for all n ∈ N. Equivalently

υ(ϕ(wn))f ◦ ϕ−1(ϕ(wn)) = αn, n ∈ N,
that shows that (ϕ(wn)) is interpolating for H∞υ (BE) since f ◦ ϕ−1 ∈ H∞υ (BE).

In order to check that υα satisfies (4.4), just use Lemma 4.6. The remaining statement follows
after realizing that now f ◦ ϕ ∈ H∞υ (BE)0 if f(0) = 0. �

Remark 4.8. In the above Proposition 4.7 and the case of B(BE), the assumption ϕ(0) = 0
cannot be avoided. Suppose that the automorphism ϕ transforms interpolating sequences into
interpolating sequences. Consider a = ϕ−1(0). If a 6= 0, then we may choose in the subspace
{a}⊥ an orthonormal sequence (en). Then as in Proposition 3.2, {a, ‖a‖en : n = 1, . . . } is an
interpolating sequence for B(BE). However, the sequence {ϕ(a), ϕ(‖a‖en) : n = 1, . . . } is not
interpolating since it contains the null vector. Therefore, 0 = ϕ(0).

5. Sufficient conditions

We begin with a result concerning linear interpolation.

Proposition 5.1. Let (wn) ⊂ BE be a linear interpolating sequence for H∞vα(BE), α ≥ 0. Then
(wn) is also linear interpolating for H∞υβ(BE) for any β > α. If, further, all wn 6= 0, then it is

linear interpolating for H∞υβ(BE)0.

Proof. Since (wn) is a linear interpolating sequence for H∞vα(BE), the corresponding mapping
S has a linear right inverse T. Put Fm = T (em) ∈ H∞vα(BE), where (em)m is the sequence of

canonical unit vectors in `∞. Then we have that the sequence
(
vα(wn)Fm(wn)

)
n

= em and
vα(x)

∑∞
m=1 |Fm(x)| ≤ ‖T‖ for all x ∈ BE.

Put γ = β − α > 0. For each x ∈ BE we can select gx(y) = (1−||x||2)γ
(1−〈y,x〉)2γ . It follows that

gx ∈ H∞υγ (BE) since υγ(y)|gx(y)| ≤ (1−‖y‖2)γ(1−||x||2)γ
(1−‖x‖)γ(1−‖y‖)γ ≤ 4γ and it verifies that gx(x) = 1

υγ(x)
.

Define now the operator Φ : `∞ → H∞υβ(BE) according to Φ
(
(αn)

)
(x) =

∑∞
n=1 αngwn(x)Fn(x).

It is a well defined and bounded operator since
∞∑
n=1

|αngwn(x)Fn(x)|υβ(x) ≤ ‖(αn)‖
∞∑
n=1

|Fn(x)|vα(x)‖gwn‖υγ ≤ ‖T‖‖(αn)‖4γ.

Further, Φ
(
(αn)

)
(wk)υβ(wk) = αk.

To obtain values in H∞υβ(BE)0, we can choose the functions hwn(y) = 〈y,wn〉
||wn||2 gwn(y) instead of

gwn , since ‖wn‖ > r for some r > 0 if all wn 6= 0. �

It is known that if (wn) ⊂ BE is interpolating for H∞(BE) it is also a linear interpolating
sequence (see [21] or [13]). Therefore, we obtain from Proposition 5.1 the following corollary.

Corollary 5.2. If (wn) ⊂ BE is an interpolating sequence for H∞(BE), then it is linear
interpolating for H∞υα(BE) for any α > 0.
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In [11] and [22] it was proved that a sufficient condition for a sequence (wn) to be interpolating
for H∞(BE) is to satisfy the Carleson’s condition. Hence, we obtain

Corollary 5.3. Let (wn) ⊂ BE. If there exists δ > 0 such that∏
m 6=n

ρE(wm, wn) ≥ δ

for all n ∈ N, then (wn) is linear interpolating for H∞υα(BE).

From Corollary 5.3, we deduce, bearing in mind [12] or ρ(‖x‖, ‖y‖) ≤ ρE(x, y), that a sequence

(wn) ⊂ BE which grows exponentially to the unit sphere, that is, 1−‖wn+1‖
1−‖wn‖ < c for some

c < 1, is linear interpolating for H∞υα(BE). In addition, a sequence (wn) ⊂ BE such that
limn→∞ ‖wn‖ = 1 has a subsequence which is linear interpolating for H∞υα(BE).

In the case E = C all interpolating sequences in H∞vp (D) were completely characterized by K.

Seip in [25]. Concerning interpolating sequences for H∞vα(Bn), let us recall the following results
due to X. Massaneda.

Theorem 5.4. ([19, Theorems 1 and 2]). Let α > 0 and (zj) ⊂ Bn.
(i) If (zj) is interpolating for H∞vα(Bn), then it satisfies that K({zj}, α, β) <∞ for any β ≥ α

with β > n .
(ii) If there exists β ≥ max{n, α} with K({zj}, α, β) < 1, then (zj) is interpolating for

H∞vα(Bn).

When replacing Bn by the open unit ball BE of an infinite dimensional Hilbert space E, the
assumptions in both statements above cannot be anymore fulfilled. Actually Proposition 3.1
shows that interpolating sequences in H∞vα(BE) may have K({wj}, α, β) =∞ for all β > 0.

We now shall see that some of the previously known results can be extended to the infinite
dimensional case under the additional assumption of ηγ,(wn) being a γ-Carleson measure for
some γ.

Proposition 5.5. Let α > 0. If (wn) ⊂ BE is an interpolating sequence for H∞υα(BE), such
that ηγ,(wn) is a γ-Carleson measure for some γ, then it is linear interpolating for H∞υβ(BE) for
β > α.

Proof. Let (Fk) ⊂ H∞υα(BE) and M > 0 such that Fk(wn) = δkn
(1−||wn||2)α and ‖Fk‖υα ≤ M

for all n, k ∈ N. Put gk(y) = (1−||wk||2)γ
(1−〈y,wk〉)β+γ−α

. Then Fk · gk ∈ H∞υβ(BE) and the operator

Φ : `∞ → H∞υβ(BE) defined by Φ
(
(αn)

)
(y) =

∑∞
n=1 αngn(y)Fn(y) is a well defined and bounded

operator since
∞∑
n=1

|αngn(y)Fn(y)|υβ(y) ≤ ‖(αn)‖
∞∑
n=1

|Fn(y)|(1− ||y||2)α (1− ||wn||2)γ(1− ||y||2)β−α

|1− 〈y, wk〉|β+γ−α

≤ M‖(αn)‖Iηγ,(wn)
(β + γ − α, γ).

where Iηγ,(wn)
(β + γ − α, γ) is finite because ηγ,(wn) is a γ-Carleson measure (Lemma 2.2). To

conclude observe that Φ
(
(αn)

)
(wk) = αk

(1−||wk||2)β
. �

Corollary 5.6. ([19, Corollary 1.6]) Let α > 0. Any interpolating sequence for H∞υα(Bn) is
linear interpolating for H∞υβ(Bn) for β > α.
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Proof. It follows by appealing to Theorem 4.3, Proposition 2.7 and choosing γ = n + α in
Proposition 5.5. �

We now give other sufficient conditions for a sequence to be interpolating in this setting that
is inspired by the above results and [18, Proposition 1]

Theorem 5.7. Let α > 0 and (wn) ⊂ BE such that ηβ,(wn) is a β-Carleson measure for some
β > 0.

(i) If (wn) is hyperbolically R-separated for some R > 0 satisfying

(1−R2)α/2‖ηβ,(wj)‖β <
2α/2 − 1

2α+β
,

then it is linear interpolating for H∞vα(BE).

(ii) If K({wn}, α, β) < 1, then (wn) is linear interpolating for H∞vα(BE).

Proof. For any β + α ≥ ε > β and from Lemma 2.4 we obtain

(5.1) sup
m

∞∑
n=1

(1− ρE(wm, wn)2)ε/2
(1− ‖wn‖2)β−ε/2

(1− ‖wm‖2)β−ε/2
≤ Iηβ,(wj)(ε, β) < +∞.

Define the operators S : H∞vα(BE)→ `∞ given by

S(f) =
(

(1− ‖wn‖2)αf(wn)
)
n

and Φ : `∞ → H∞vα(BE) given by

Φ
(
(αn)

)
(x) :=

∞∑
n=1

αn
(1− ‖wn‖2)2p−α

(1− 〈x,wn〉)2p

for (αn) ∈ `∞ and x ∈ BE, where p = α + β − ε/2. Of course S is a bounded linear operator
with ‖S‖ ≤ 1.

Since β ≤ 2p − α and ηβ,(wn) is a Carleson measure, Lemma 2.4 (iii) for x = 0, yields that∑∞
n=1(1 − ‖wn‖2)2p−α < ∞. This guarantees that the series defining Φ

(
(αn)

)
(x) is uniformly

convergent in rBE for any 0 < r < 1 and hence it defines an analytic function on BE.
Moreover

|Φ
(
(αn)

)
(x)| ≤ ‖(αn)‖

∞∑
n=1

(1− ‖wn‖2)2p−α

|1− 〈x,wn〉|2p
.

or equivalently, since ε/2 ≤ p,

(1− ‖x‖2)α|Φ
(
(αn)

)
(x)| ≤ ‖(αn)‖

(1− ‖x‖2)p−α
∞∑
n=1

(1− ρ2E(x,wn))p(1− ‖wn‖2)p−α

≤ ‖(αn)‖
(1− ‖x‖2)β−ε/2

∞∑
n=1

(1− ρ2E(x,wn))ε/2(1− ‖wn‖2)β−ε/2

≤ ‖(αn)‖Iηβ,(wj)(ε, β).

Hence Φ is well defined and bounded. We aim to prove that ‖Id− S ◦ Φ‖ < 1, thus S ◦ Φ will
be invertible, hence S has Φ ◦ (S ◦ Φ)−1 as right linear inverse.
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Consider now the composition operator,

(S ◦ Φ)
(
(αn)) =

(
(1− ‖wm‖2)α

∞∑
n=1

αn
(1− ‖wn‖2)2p−α

(1− 〈wm, wn〉)2p
)
m

and

(Id− S ◦ Φ)
(
(αn)) = −

(
(1− ‖wm‖2)α

∞∑
n=1,n6=m

αn
(1− ‖wn‖2)2p−α

(1− 〈wm, wn〉)2p
)
m
.

We look at the mth component of (Id− S ◦ Φ)
(
(αn)

)
.

|
(
Id− S ◦ Φ)

(
(αn)

))
m
| ≤ ‖(αn)‖(1− ‖wm‖2)α

∞∑
n=1,n 6=m

(1− ‖wn‖2)2p−α

|1− 〈wm, wn〉|2p
(5.2)

≤ ‖(αn)‖K({wn}, α, 2p− α).

Further,

K({wn}, α, 2p− α) = sup
m∈N

∞∑
n=1,n 6=m

(1− ρE(wm, wn)2)p
(1− ‖wn‖2)p−α

(1− ‖wm‖2)p−α

≤ sup
n,m∈N

(1− ρE(wm, wn)2)α+β−εK({wj}, ε− β, β).

From this it follows that

‖Id− S ◦ Φ‖ ≤ Iηβ,(wj)(ε, β) sup
n,m∈N

(1− ρE(wm, wn)2)α+β−ε ≤ Iηβ,(wj)(ε, β)(1−R2)α+β−ε.

From (2.2) and picking ε < β + α/2 we obtain

Iηβ,(wj)(ε, β)(1−R2)α+β−ε ≤ (1−R2)α/2‖ηβ,(wj)‖β
2
α
2
+β

1− 2(β−ε) .

Since infβ<ε<β+α/2
1

1−2(β−ε) = 1
1−2−α/2 and by choosing R such that

2
α
2
+β

1− 2−α/2
(1−R2)α/2‖ηβ,(wj)‖β < 1

we conclude that ‖Id− S ◦ Φ‖ < 1 and therefore (i) is proved.
For (ii), we get from (5.2) that

‖Id− S ◦ Φ‖ ≤ K({wn}, α, α + 2β − ε),
for all β < ε ≤ β + α. By choosing ε = β + α, the assumption gives that ‖Id − S ◦ Φ‖ < 1 as
wanted. �

Corollary 5.8. Let α > 0. If (zk) ⊂ Bn is hyperbolically R-separated for R close enough to 1,
then it is linear interpolating for H∞vα(Bn)

Proof. According to Proposition 2.7, ηβ,(zk) is β-Carleson measure for any β > n. Then we
apply (i) in Theorem 5.7. �

Similarly to the above corollary, we deduce the next result using Corollary 2.9 instead of
Proposition 2.7.
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Corollary 5.9. Let α > 0 and (wk) ⊂ BE. If the sequence (‖wk‖) is hyperbolically R-separated
for R close enough to 1, then (wk) is linear interpolating for H∞vα(BE).

6. Interpolating sequences for radial derivatives in Bloch-type spaces

Our previous results apply to the Bloch-type spaces by means of the following theorem.

Theorem 6.1. Let α > 0. The radial derivative mapping

f ∈ Bα(BE)0 7→ Rf ∈ H∞υα(BE)0

is an onto isometric isomorphism.

Proof. Notice that for every m-homogeneous polynomial P : E → C we have RP (z) = mP (z).
Next for any analytic function f : BE → C with Taylor series f(x) =

∑∞
m=0 Pm(x), its radial

derivative Rf(z) =
∑∞

m=0RPm(z) =
∑∞

m=1mPm(z), defines an analytic function on BE. If
moreover, f ∈ Bα(BE), then clearly Rf ∈ H∞υα(BE)0 and ‖f‖Bα(BE) = ‖Rf‖υα , if f(0) = 0.

To show that the mapping is onto, let g ∈ H∞υα(BE)0 with Taylor series g(x) =
∑∞

m=1Qm(x).
Define

G(x) =

∫ 1

0

g(tx)

t
dt =

∫ 1

0

∞∑
m=1

tm−1Qm(x)dt, x ∈ BE.

The integral exists since the integrand function is a continuous one and G(0) = 0. Since for
every given x ∈ BE and chosen 1 < λ such that ‖λx‖ < 1, the series

∞∑
m=1

∫ 1

0

tm−1|Qm(x)|dt =
∞∑
m=1

|Qm(λx)|
∫ 1

0

tm−1

λm
dt =

∞∑
m=1

|Qm(λx)| 1
m

1

λm
,

turns to be convergent, it follows that

G(x) =
∞∑
m=1

∫ 1

0

tm−1Qm(x)dt =
∞∑
m=1

Qm(x)

m
.

Hence G is analytic and for its radial derivative RG(x) =
∑∞

m=1Qm(x) = g(x). �

Corollary 6.2. Let α > 0. The sequence (wn) ⊂ BE \ {0} is interpolating for Bα(BE) if and
only if it is interpolating for H∞υα(BE)0.

Hence the analogous results to Corollary 4.4, Corollary 5.2 and Theorem 5.7 hold for the
Bloch-type spaces. Let us state those results in this setting.

Theorem 6.3. Let (wn) ⊂ BE \ {0}.
(i) If (wn) is interpolating for H∞(BE), then it is also linear interpolating for Bα(BE).

(ii) If (wn) is interpolating for Bα(BE), then it is hyperbolically R-separated for some R > 0.

(iii) If
∑∞

n=1(1−‖wn‖2)2δwn is a 2-Carleson measure and (wn) is hyperbolically R-separated

for some R >
√

1−
(

2α/2−1
2α+2‖η2,(wn)‖2

)2/α
, then it is linear interpolating for Bα(BE).

We are interested in producing sequences which are interpolating for B but not forH∞. Recall
that a Blaschke sequence (zn) ⊂ D is a sequence which satisfies

∑∞
k=1(1− |zk|) <∞. It is well-

known that if a sequence satisfies the Carleson’s condition, then it is a Blaschke sequence. On
the other hand, Proposition 2.7 for the case E = C yields that

∑∞
n=1(1−|zn|2)2δzn is 2-Carleson
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for any hyperbolically separated sequence (zn). We will show the existence of a sequence which
is hyperbolically R−separated for R close enough to 1 which is not a Blaschke sequence. We
will adapt the example in [10] to give an example of such a sequence.

Proposition 6.4. Consider k an even number, k ≥ 2 and circles Cn centered at 0 and radius

rn = 1 − 1
kn

for any n ≥ 1. In each circle Cn, we take zn,j = rne
2πij

kn−1 for any 0 ≤ j < kn−1.
For any k ≥ 2, the sequence created in this way is hyperbolically Rk−separated for some Rk so
close to 1 as we want. Moreover, the sequence is not a Blaschke sequence.

Proof. Take z, w in the sequence. Then there are two possibilites. If z and w are in different
circles Cn and Cm, m > n, then

ρ(z, w) ≥ ρ(|z|, |w|) =
rm − rn
1− rmrn

=
km − kn

km + kn − 1
≥ km−n − 1

km−n + 1
≥ k − 1

k + 1

where last inequality is clear since function x−1
x+1

is increasing for x ≥ 0 and km−n ≥ k.
Now suppose that |z| = |w| = rn. Since ρ is invariant for automorphisms, in particular,

for rotations, we consider, without loss of generality, that z = rn and w = rne
2πij

kn−1 for some
1 ≤ j ≤ kn−1

2
since we take by symmetry the semicircle {z ∈ Cn : 0 ≤ arg z ≤ π}. Then,

ρ(z, w) =
rn

∣∣∣1− e 2πij

kn−1

∣∣∣∣∣∣1− r2ne 2πij

kn−1

∣∣∣ =
2rn sin πj

kn−1√
(1− r2n)2 + 4r2n sin2 πj

kn−1

=
1√

1 +

(
1−r2n

2rn sin πj

kn−1

)2
.

Bearing in mind that sinα ≥ 2
π
α for any 0 ≤ α ≤ π

2
and j ≥ 1, we have that

ρ(z, w) ≥ 1√
1 +

(
(1−r2n)kn−1

4rnj

)2 ≥ 1√
1 +

(
(1−r2n)kn−1

4rn

)2 =
1√

1 +
(

2kn−1
4k(kn−1)

)2 .
Hence, for any two terms of the sequence z, w we have that

ρ(z, w) ≥ min


k − 1

k + 1
,

1√
1 +

(
2kn−1

4k(kn−1)

)2
 .

This expression tends clearly to 1 when k →∞ as we wanted. Let (zn,j) be the sequence that
we have constructed. It is clear that it is not a Blaschke sequence since

∞∑
n=1

kn−1−1∑
j=0

(1− |zn,j|) =
∞∑
k=1

kn−1(1− rn) =
∞∑
k=1

kn−1
1

kn
=
∞∑
k=1

1

k
=∞.

The proof is now complete. �

Corollary 6.5. There are sequences (zk) which are interpolating for the Bloch space B but not
interpolating for H∞. This is also valid for the Bloch space B(BE) and H∞(BE).



18 O. BLASCO, P. GALINDO, M. LINDSTRÖM, AND A. MIRALLES

Proof. The first statement is true by Proposition 6.4. The other one follows just by considering
the sequence (znξ) where (zn) is the sequence defined in Proposition 6.4 and ξ ∈ E such that
‖ξ‖ = 1. If (znξ) were interpolating for H∞(BE), then (zn) would be interpolating for H∞ and
it is well-known that an interpolating sequence for H∞ satisfies the Carleson’s condition and,
in particular, it is a Blaschke sequence. �

7. Some Banach space properties of the Bloch space

By B0(BE) we denote the subspace {f ∈ B(BE) : lim‖x‖→1(1 − ‖x‖2)|Rf(x)| = 0}. One can
check that if f ∈ B(BE) and 0 < r < 1, the function fr(x) := f(rx) defines an element in
B0(BE).

Lemma 7.1. For every f ∈ B(BE), the net {fr}0<r<1 converges to f uniformly on balls of
radius less than 1.

Proof. Firstly we remark that f is bounded on any ball of radius σ < 1, because according

to Theorem 3.1 in [4], |f(x) − f(0)| ≤ M log 1+‖x‖
1−‖x‖ ≤ M log 1+σ

1−σ for some constant M > 0,

independent of x.
Fix 0 < s < 1 and pick 1 > σ > s and apply Lemma 4.1 to get

|fr(x)− f(x)| = |f(rx)− f(x)| ≤ 2‖f‖σBE
‖rx− x‖
σ − ‖x‖

≤ 2‖f‖σBE
1− r
σ − s

for any x ∈ BE, ‖x‖ ≤ s, which shows that limr→1 fr(x) = f(x) uniformly on sBE. �

The next result is an extension of [27, Theorem 3.9].

Proposition 7.2. For all f ∈ B(BE), the following estimates hold

lim sup
‖x‖→1−

(1− ‖x‖2)|Rf(x)| ≤ d(f,B0(BE)) ≤ 2 lim sup
‖x‖→1−

(1− ‖x‖2)|Rf(x)|,

where d(f,B0(BE)) = inf{‖f − g‖R(BE) : g ∈ B0(BE)}.
Proof. Since fr ∈ B0(BE), we have d(f,B0(BE)) ≤ ‖f − fr‖R(BE).

Put L := lim sup‖x‖→1−(1− ‖x‖2)|Rf(x)|. We seek for an 0 < r < 1 such that ‖f − fr‖R(BE)

is close enough to the upper estimate. Let ε > 0, then there is s < 1 such that sup‖x‖>s′(1 −
‖x‖2)|Rf(x)| < L+ ε for all s′ ≥ s.

Notice that Rfr(x) = Rf(rx). Thus for ‖x‖ > s,

(1− ‖x‖2)|Rfr(x)| ≤ 1− s2

1− r2s2
(1− ‖rx‖2)|Rf(rx)|.

Since the function η(r) = 1−s2
1−r2s2 has limit 1 when r → 1, we find r1 < 1 such that for r ≥ r1,

1−s2
1−r2s2 ≤ 1 + ε. And we may choose r1 such that also for σ := 1+s

2
one has r1σ > s, so that if

‖x‖ > σ, then ‖rx‖ ≥ s for all r ≥ r1. Therefore

sup
‖x‖≥σ

(1− ‖x‖2)|Rfr(x)| ≤ (1 + ε)(L+ ε) for r ≥ r1.

According to Lemma 4.10 in [4],

(7.1) (1− ‖x‖2)Rf(x) = − 1

2πi

∫
|ξ|=1

f(ϕx(ξx))
dξ

ξ2
, x ∈ BE
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which gives the estimate

(1− ‖x‖2)|R
(
f − fr

)
(x)| ≤ 1

2π

∫
|ξ|=1

∣∣∣(f − fr)(ϕx(ξx))
∣∣∣d|ξ|.

It turns out that the set {ϕx(ξx) : ‖x‖ < σ, |ξ| = 1} lies in a ball of radius less than 1 because
the [0, 1[-valued function

‖ϕx(ξx)‖ =
∥∥∥ (1− ξ)x

1− ξ‖x‖2
∥∥∥ =

|1− ξ|‖x‖
|1− ξ‖x‖2|

is a continuous one of the variables ‖x‖ and ξ on the compact set [0, σ]×S1. Now we use Lemma
7.1 to find r0 < 1, r0 > r1, such that for r ≥ r0, sup‖x‖<σ,|ξ|=1 |(f−fr

)
(ϕx(ξx))| ≤ ε, and hence,

sup‖x‖<σ(1− ‖x‖2)|R
(
f − fr

)
(x)| ≤ ε for r ≥ r0. Finally for r > r0,

‖f − fr‖R(BE) ≤

max
(

sup
‖x‖<σ,

(1− ‖x‖2)|R
(
f − fr

)
(x)|, sup

‖x‖≥σ
(1− ‖x‖2)|R

(
f
)
(x)|+ sup

‖x‖≥σ
(1− ‖x‖2)|R

(
fr
)
(x)|

)
≤

max
(
ε, L+ ε+ (1 + ε)(L+ ε)

)
.

By letting ε→ 0, we deduce that d(f,B0(BE)) ≤ 2 lim sup‖x‖→1−(1− ‖x‖2)|Rf(x)|.
The estimate d(f,B0(BE)) ≥ lim sup‖x‖→1−(1− ‖x‖2)|Rf(x)| is a routine verification. �

Proposition 7.3. The Bloch space B(BE) is the dual of

∗B(BE) := {l ∈ B(BE)∗ : l is τ0-continuous on bounded sets},

where τ0 denotes the compact-open topology.

Proof. The closed unit ball (UB(BE), || · ||B(BE)) of B(BE) is τ0-bounded, since the norm-topology
of B(BE) is finer than the τ0-topology. Now Montel’s theorem ([20, Proposition 9.16]) gives
that UB(BE) is τ0-relatively compact. If {fα} is a net in UB(BE), we conclude that there is a
subnet {fαj} such that fαj → f ∈ H(BE) with respect to the τ0-topology. For x ∈ BE choose
s > 0 such that ||x||+s < 1. Then for any y ∈ E with ||y|| = 1, we have by the Cauchy integral
formula that

〈y,∇fαj(x)〉 =
1

2πi

∫
|λ|=s

fαj(x+ λy)

λ
dλ→ 1

2πi

∫
|λ|=s

f(x+ λy)

λ
dλ = 〈y,∇f(x)〉.

From this we obtain that

|f(0)|+ (1− ||x||2)|〈y,∇f(x)〉| ≤ lim
j
||fαj ||B(BE) ≤ 1.

Thus f ∈ UB(BE), i.e. UB(BE) is τ0-closed and therefore also τ0-compact. Then ∗B(BE) is a
Banach space which is a predual of B(BE). In fact, by the Dixmier-Ng theorem [23], J :
B(BE)→ (∗B(BE))∗, J(f)l := l(f), f ∈ B(BE), l ∈ ∗B(BE), is an isometric isomorphism. �

Proposition 7.4. The space B0(BE) is weak* dense in B(BE).

Proof. Taking into account that ‖fr‖R(BE) ≤ ‖f‖R(BE), the result follows immediately from
Lemma 7.1. �
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Remark 7.5. The dual space E∗ is isomorphic to a complemented subspace of B(BE). Indeed,

the projection mapping f ∈ B(BE)
π7→ f ′(0) ∈ E∗ is continuous since ‖f ′(0)‖ = ‖∇f(0)‖ ≤

‖f‖B(BE). While on the other hand, the embedding µ ∈ E∗ ι7→ µ ∈ B(BE) is also continuous
because for every x ∈ BE, µ

′(x) = µ, so supx∈BE(1−‖x‖2)‖∇µ(x)‖ = supx∈BE(1−‖x‖2)‖µ‖ ≤
‖µ‖. Finally, π ◦ ι = id.

Remark 7.6. Therefore since E is reflexive, neither B(BE) nor B0(BE) can have the Dunford-
Pettis property. This in sharp contrast to the classical case (E = C) where B is isomorphic to
`∞.

We close this section with an application of the above results to interpolating sequences.

Proposition 7.7. Let (wn) ⊂ BE \ {0} be a c0-linear interpolating sequence for B(BE), that
is, suppose that there is a linear operator T : c0 → B(BE) such that S ◦ T = idc0 . Then (wn) is
linear interpolating for B(BE).

Proof. Let (em)m the sequence of canonical unit vectors in `∞. The sequence of functions
T (en) = fn defines a weakly Cauchy series

∑
n fn in B(BE) and

∑
n |u(fn)| ≤ ‖T‖‖u‖ for

all u ∈ B(BE)∗. Hence, for each sequence (αn) ∈ `∞ the series
∑

n αnfn is a weakly Cauchy
series in B(BE) and

∑
n |u(αnfn)| ≤ ‖T‖‖u‖‖(αn)‖. Thus

∑
n αnfn is a w(B(BE),∗ B(BE))

Cauchy series lying in the ball in B(BE) of radius ‖T‖, which is w(B(BE),∗ B(BE)) compact.
Hence

∑
n αnfn ∈ B(BE) and ‖

∑
n αnfn‖R(BE) ≤ ‖T‖‖(αn)‖.

Define T̃ : `∞ → B(BE) according to T̃
(
(αn)

)
=
∑

n αnfn. Now using (7.1) and recalling
that the series also converges for the τ0-topology, we get that

(1− ‖wk‖2)R(T̃
(
(αn)

)
(wk) =

∑
n

αn(1− ‖wk‖2)R(fn)(wk) = αk.

Thus (S ◦ T̃ ) = Id`∞ , as wanted. �
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Appl. 156 Birkhäuser, Basel, 2005.

[11] P. Galindo, T. W. Gamelin and M. Lindström, Spectra of composition operators on algebras of analytic
functions on Banach spaces, Proc. Roy. Soc. Edinb. 139A (2009), 107–121.

[12] P. Galindo and A. Miralles, Interpolating sequences for bounded analytic functions, Proc. Am. Math. Soc.
135 (10) (2007), 3225–3231.

[13] P. Galindo, A. Miralles and M. Lindström, Interpolating sequences on uniform algebras, Topology 48
(2009), 111-118.

[14] J.B. Garnett, Bounded analytic functions. Academic Press, New York, 1981.
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